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Abstract. Traditional spectrum sensing techniques such as
energy detection, for instance, can sense the spectrum only
when the cognitive radio (CR) is not in operation. This con-
straint is relaxed recently by some blind source separation
techniques in which the CR can operate during spectrum
sensing. The proposed method in this paper uses the fact
that the primary spectrum usage is correlated across time
and follows a predictable behavior. More precisely, we pro-
pose a new spectrum sensing method that can be trained
over time to predict the primary user’s activity and sense
the spectrum even while the CR user is in operation. Per-
formance achieved by the proposed method is compared to
classical spectrum sensing methods. Simulation results pro-
vided in terms of receiver operating characteristic curves in-
dicate that in addition to the interesting feature that the CR
can transmit during spectrum sensing, the proposed method
outperforms conventional spectrum sensing techniques.
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1. Introduction
In cognitive radio (CR) systems [1], spectrum sensing

is an essential part since it indicates the absence/presence
of primary user (PU). Several methods are proposed in the
spectrum sensing literature such as energy detection (ED),
cyclostationary detection or matched filter detection [2]. For
instance, ED calculates the energy of received signal and if
the calculated energy is greater than a predefined threshold,
then the spectrum sensing decides that the PU is in opera-
tion [2][3]. Cyclostationary method uses the statistical prop-
erties of received signal, and if the statistical properties of
received signal is similar to statistical properties of the PU
signal, then the spectrum sensing indicates the presence of
the PU [2]. In these classical methods, when the PU is in
operation, the secondary user (SU) is not allowed to send its
own data. More precisely, in opportunistic spectrum access,

the SU is allowed to send its data only when the spectrum
sensing block has decided that the PU is not in operation
[4][5][6]. This inherent limitation forces the CR network to
be synchronized with PU data transmission frames and to
sense the activity of PU at the beginning part of each PU
data frame. Then, if the result of spectrum sensing indicates
the absence of PU, the SU sends its data over the rest of the
data frame.

Blind source separation (BSS) has recently been advo-
cated for spectrum sensing in CR systems. In [7], the authors
proposed a spectrum sensing method based on BSS, that can
operate in the presence of active secondary transmitter and
does not need any synchronization with the primary signal.
In [8], BSS is used to separate the observed mixed signals in
different frequency bands with the aim of performing multi-
frequency spectrum sensing. In [9], BSS is used to separate
the observed signals, and then based on the correlation be-
tween separated signals, the spectrum sensing unit indicates
the presence or absence of PU. In [5], the authors use inde-
pendent component analysis (ICA) to separate the observed
signals and measure the Gaussian properties of separated
signals to indicate the presence/absence of the PU. In [7],
the authors use the Kurtosis metric for separating observed
signals and for measuring Gaussian properties of separated
signals, without however using any prediction in the sensing
process.

Recently, some spectrum sensing techniques have
adopted learning and predictions methods. These methods
are based on the fact that the PU transmission activity is not
random but rather follows some specific patterns and corre-
lations [10]. More precisely, the PU does not behave like
a jammer, but rather like a real and physical user that tries to
send its data through the channel and thus we can argue that
the PU activity is predictable.

Different algorithms are proposed in the literature for
predicting the future state of a PU, based on training se-
quences and observed values. In [25] and [26] , the authors
have proposed to use prediction in the spectrum sensing pro-
cess. However, in [25] and [26] the spectrum sensing tech-
nique is not based on BSS algorithm and the prediction capa-
bility does not affect the CR activity in the predicted frame.
In [6], the dynamic PU activity and the spectrum sensing
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process are modeled by means of a finite state Markov chain.
In [11][12], an auto regressive (AR) model is used to predict
the PU activity and then AR parameters are estimated by
minimum mean square error (MMSE) or least square (LS)
methods. A prediction method based on binary time series is
proposed in [13] to predict the PU activity. Some algorithms
based on hidden Markov models (HMM) are proposed in
[14] for predicting the PU activity. In [15], the well known
variable order Markov model (VMM) [16] is used to predict
the PU activity.

In this paper, we combine BSS based spectrum sensing
that can sense the spectrum while the SU is in operation, and
PU activity prediction based on VMM. The VMM algorithm
predicts the state of the PU in the next sensing frame (that is
different from the PU data frame), and if the prediction result
is the absence of PU for next sensing frame, then one of the
SUs (active SU or CR transmitter, denoted hereafter ASU)
is allowed to send its data during the next sensing frame and
other SUs continue to sense the spectrum simultaneously. In
this way, the throughput of the CR network increases since
the CR is not limited to send only in a portion of the primary
data frame. We will see through ROC analysis that spectrum
sensing accuracy is improved compared to traditional BSS
based spectrum sensing.

The rest of this paper is organized as follows. The con-
sidered system model is described in Section 2. In Section 3,
the proposed spectrum sensing method is presented. Section
4 contains our simulation results and discussions, and finally
Section 5 draws our conclusion.

2. System Model

2.1 Formulation of BSS Spectrum Sensing
and System Model

The main purpose of the spectrum sensing block in
each CR network is to monitor the PU activity since this unit
indicates the presence or absence of the PU. It is assumed
that we are analyzing a specific frequency band. Sensing
the presence of PU is usually viewed as a binary hypothesis
testing problem as follows:{

H0 : primary user is not in operation,
H1 : primary user is in operation.

(1)

Practically, the spectrum sensing process may have
some errors, characterized by the difference between the
real state of PU and its estimated state. In the above bi-
nary hypothesis, the real state of PU is denoted by H PU

i
(i = 0 means that the PU is not in operation and i = 1
means that the PU is in operation) and the sensed state
of PU is denoted by H CN

i (i = 0 means that the PU is
sensed as absent and i = 1 means that the PU is sensed
as present). Based on these assumptions, two different
types of error probabilities, usually referred to as miss-
detection (Pm) and false-alarm (Pf ) are defined as follows.

ASUSU1

SU2
PU Transmitter

CR Base Station

SU3

SUq

Fig. 1. The considered system model in which there are q SUs,
one PU transmitter and one ASU (CR transmitter).
Dashed arrows show channels between ASU and other
SUs. Plain line arrows show the sensing channel between
the PU transmitter and the SUs.

Pm = P(H CN
0 |H PN

1 ), (2)

Pf = P(H CN
1 |H PN

0 ). (3)

Obviously, an accurate spectrum sensing method must
have as low Pf and as low Pm as possible at the same time.

The considered network architecture is illustrated in
Fig. 1. The CR base station operates as a fusion center to
implement cooperative spectrum sensing. In the absence of
PU, one of the SUs (ASU) is allowed to send its data and
other SUs behave as distributed sensors. The received signal
at the j-th SU can be written as:

y j = h j,1aPN +h j,2aCN +n j (4)

where:

aPN =
[
aPN

1 aPN
2 . . . aPN

L
]
, (5)

aCN =
[
aCN

1 aCN
2 . . . aCN

L
]
, (6)

n j =
[
n j,1 n j,2 . . . n j,L

]
(7)

and where h j,1 is the channel between PU and the j-th SU
and h j,2 is the channel between the ASU and the j-th SU
having Rayleigh distribution. More precisely, regarding the
channel model, we have considered a quasi-static Rayleigh
distributed channel model in which the channel coefficient
is constant during the time interval of one sensing frame,
but changes from one frame to another sensing frames. This
is a reasonable assumption since the sensing frame time is
much shorter than the PU data frame. Also, n j is the zero
mean circularly symmetric complex Gaussian (ZMCSCG)
noise with distribution n j ∼ CN (0,σ2

n j
IL) where IL is the

L×L identity matrix. The vector aPN (primary network sig-
nal) contains the transmitted PU symbol and aCN contains
the transmitted ASU symbols. ASU is the only active SU
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in the secondary network, as we have assumed that only one
of the SUs can send its data in the sensed frequency band
and L is the sensing frame length. If the PU is absent, all
symbols in aPN are equal to zero and if the ASU is not in
operation, all symbols in vector aCN are equal to zero, sim-
ilarly. When both aPN and aCN are non zero, it means that
the ASU causes interference to the primary network. This
case happens only when a miss-detection error has occurred.
The frame length is assumed to be constant for both primary
and secondary networks, and we assume that we have one
PU and one ASU. If a specific user (PU or ASU) is not ac-
tive, all symbols in the related vector are equal to zero. If the
ASU is in operation we have:

y j =

{
h j,2aCN +n j H PN

0 ,

h j,1aPN +h j,2aCN +n j H PN
1

(8)

and if the ASU is not in operation, we get:

y j =

{
n j H PN

0 ,

h j,1aPN +n j H PN
1 .

(9)

For convenience, we write the received signal in matrix
form as:

Y = HA+N (10)

where q is the number of SUs and

Y =


y1,1 y1,2 . . . y1,L
y2,1 y2,2 . . . y2,L

...
...

. . .
...

yq,1 yq,2 . . . yq,L

=


y1
y2
...

yq

 (11)

where y j,l is the l-th observed symbol in the j-th SU ( j =
1,2, . . . ,q) and q is the number of SU that cooperate in spec-
trum sensing process. We also have:

A =

[
aPU

aCR

]
=

[
a1
a2

]
, (12)

H =

h11 h12
...

...
hq1 hq2

 (13)

where hi j is the channel coefficient between SUs and the PU
and

N =


n1,1 n1,2 . . . n1,L
n2,1 n2,2 . . . n2,L

...
...

. . .
...

nq,1 nq,2 . . . nq,L

=


n1
n2
...

nq

 . (14)

The spectrum sensing unit senses the spectrum in sev-
eral CR sensing subframes and a sequence of results pro-
duced after this sensing, constitutes the observation required
by the prediction algorithm to predict the next PU state. In

Fig. 2, we observe the framing structure inside the CR sens-
ing in which n− 1 sensing frames form the observations to
predict the PU state in the n-th sensing frame. If the predic-
tor indicates that the PU is present, then the ASU becomes
inactive in the n-th sensing frame, and if it indicates that the
PU is absent, then the ASU becomes active in the n-th sens-
ing frame.

CR i fCR sensing frames

n-1n-111 22 33 nn……

observations frame to be predicted
Fig. 2. Structure of the sensing frame for the CR. It is observed

that the predictor unit observes n− 1 previous sensing
frames to predict the upcoming n-th sensing frame.

It is worth mentioning that in the proposed method,
the CR does not require to know the length of the PU data
frame.

2.2 Prediction Algorithm
Sequential data learning is a fundamental task and

a main challenge in pattern recognition [16]. The traffic of
data patterns can be classified in two different categories: de-
terministic patterns and stochastic patterns [10]. Generally,
we can find some models for PU traffic and predict the traffic
with historical observations. Here, we propose to use VMM
methods to predict the PU activity. In the prediction process,
VMM needs some sequences for training the model, called
training data. In fact, the prediction algorithm needs to know
the PU activity for a long time. Predicting the PU activity is
usually a prediction of discrete sequences over a finite alpha-
bet. In our case the alphabet is Σ = {0,1} where 0 means the
absence and 1 means its presence of PU in the considered
frequency band. We have:

PU f rames =
[

f1 f2 . . . fm
]

(15)

where fi ∈ {0,1} is the PU status. Each fi is related to
a frame with L symbols; i = 0 means that the PU is not
in operation and i = 1 means that the PU is in operation.
The number of training data is equal to m. The learner is
given the training sequence f m = f1 f2. . . fm where fi ∈ Σ

and fi fi+1 is the concatenation of fi and fi+1. Based on f m,
the goal is to learn a model P̂ that provides a probability
assignment for any future outcome given some past observa-
tions. In other words, for any PU activity pattern, referred
to as “context” s ∈ Σ∗ and σ ∈ Σ in prediction terminology,
a learner should generate the conditional probability distri-
bution P̂(σ|s) [16], where σ is the predicted state and s is
the observation context. There are some functions that help
us to measure the performance of the predictor. In this work,
the performance of predictor is analyzed through the CR net-
work performance curves.
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Based on above definitions, prediction of σ = 0 for
the next sensing frame after observing the context f1 . . . fm
would be:

P̂(0| f1 . . . fm)> P̂(1| f1 . . . fm) (16)

and in a similar way, prediction of σ = 1 for the next sensing
frame after observing the context f1 . . . fm would be:

P̂(1| f1 . . . fm)> P̂(0| f1 . . . fm). (17)

3. Proposed Method: Combination of
BSS based Spectrum Sensing
Algorithm and PU Activity
Prediction
In this section, we introduce our proposed method uti-

lizing prediction unit in the context of BSS-based spectrum
sensing. First, the BSS algorithm that is used in our simu-
lations, is briefly introduced. Then, an introduction to BSS-
based spectrum sensing is provided. At the end of this sec-
tion, the combination of prediction and BSS-based spectrum
sensing is explained.

3.1 Blind Source Separation
BSS is one of the well-established signal processing

techniques that separates the combinations of several in-
dependent sources from their mixed observations, without
any prior information. Generally, in BSS problems, some
stochastic properties of independent sources are assumed,
i.e., BSS approaches separate signals from their combina-
tion in the way that the assumed stochastic properties are
satisfied. Considering the following system model:

Y = HA+N, (18)

Y is the observation which is a linear combination of inde-
pendent sources in matrix A, H is the linear transformation
matrix and N is the Gaussian noise. The goal of BSS al-
gorithm is to estimate H from the observed Y. Let us have
a quick look on multiuser Kurtosis maximization algorithm
(MUK) that is used in our simulations. The stochastic prop-
erty in MUK algorithm is non-Gaussian property that is mea-
sured by Kurtosis metric. After some standard preprocessing
(centering and whitening), we multiply the observation Y by
the 2× q equalizer matrix W that produces the 2× 1 vec-
tor output Z = [z1,z2]

T . This operation can be represented
mathematically as:

Z = WY = WHA+N′ = GA+N′ (19)

where G = WH is the 2× 2 global response matrix, and
N′ = WN is the colored noise at the receiver output. The

receiver (BSS) outputs z j, j = 1,2 should ideally match the
transmitted signals a j, j = 1,2 [17].

The MUK algorithm employs Kurtosis metric in order
to measure the non-Gaussian property of the separated sig-
nals. Therefore we define:

Ka j = Kurtosis[a j] = K[a j], j = 1,2, (20)

σ
2
a = E[|a j|2], j = 1,2 (21)

where:

K[x] = E[|x4|]−2E2[|x|2]−|E(x2)|2. (22)

It can be proved that [17]:

E[|z j|2] = σ
2
a

2

∑
l=1
|g jl |2, j = 1,2, (23)

K(z j) =
2

∑
l=1

Kal |g jl |4, j = 1,2. (24)

So, the BSS problem leads to solve the following optimiza-
tion problem:{

maxG F(G) = ∑
2
j=1 |K(z j)|,

subject to:GHG = I2.
(25)

In fact, the MUK algorithm separates signals in a way that
the separated signals have the maximum possible value of
Kurtosis metric. Kurtosis metric for Gaussian random vari-
able is equal to zero and for non-Gaussian random variable
it is non-zero.

3.2 BSS Based Spectrum Sensing
Here, we explain the methodology we have adopted in

our BSS based spectrum sensing which is based on MUK.
The MUK algorithm is based on the maximization of the
following metric [17]:

F(G) =
2

∑
j=1
|K(z j)|= |K(z1)|+ |K(z2)|. (26)

Maximizing F(G) is equivalent to the maximization of
each term in (26) value, individually. Since we have assumed
two independent signals in the channel, the maximum value
for these two absolute values in ideal situations will be equal
to Ka j , j = 1,2. Now, if we have only one independent signal
in the channel, only one of these terms will take the max-
imum value (in ideal situations equal to Ka j , j = 1,2) and
the other one will not have a meaningful maximum. When
two independent signals are present in the channel, there is
a meaningful maximum for |K(z1)| and |K(z2)| terms. We
can thus argue that the number of meaningful maximums
in the absolute values of |K(z1)| and |K(z2)| is equal to the
number of independent signals present in the channel.
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The proposed spectrum sensing algorithm can thus be
written as follows:

(A) While the active SU is in operation,

• If spectrum sensing indicates the presence of two
independent signals in the channel, then we can
conclude that the PU is in operation.

• If spectrum sensing indicates the presence of one
independent signal in the channel, then we can
conclude that the PU is not in operation.

(B) While the SU is not in operation,

• If spectrum sensing indicates one independent sig-
nal in channel, then we can conclude that the PU
is in operation.

• If spectrum sensing indicates that there are no in-
dependent signals in the channel, then we can con-
clude that the PU is not in operation.

3.3 Prediction Using Variable Order Markov
Models
Several VMM algorithms are used in data compression

and prediction such as Lempel-Ziv 78 (LZ78) [18], predic-
tion by partial match (PPM) [19], the context tree weighting
method (CTW) [20], CTW for multi-alphabets [21], proba-
bilistic Suffix Trees (PST) [22] and (LZ-MS) [23] that is an
improved version of Lempel-Ziv algorithm, for instance. In
this section, we introduce the LZ78 method that we will use.
The LZ78 method is one of the most popular lossless com-
pression algorithms that enjoys a dynamic dictionary. This
algorithm can also be used for prediction applications [16].
Given a sequence f m ∈ Σm, LZ78 incrementally parses f m

into non-overlapping adjacent ‘phrases’ that are collected
into a phrase ‘dictionary’. The algorithm starts by construct-
ing the ‘dictionary’ as obvious from the pseudo code of this
algorithm.

In other words, the algorithm starts with a null compo-
nent in the dictionary and then adds the shortest component
to the dictionary from the training sequence, that is not yet
in the dictionary. Evidently, the new component say s′ is an
extension of the present component in the dictionary say s;
that is, s′ = sσ, where s is already in the dictionary and σ is
taken from training sequence and s′ is the concatenation of s
and σ.

After constructing the dictionary, we create a tree,
based on the constructed dictionary. For instance, the con-
structed dictionary based on training sequence s= 00110011
is, { Null, 0, 01, 1, 00, 11 } and the created tree regarding
this sequence is illustrated in Fig. 3. Each node in the tree
maintains a counter. The counter in a leaf is always set to 1.
The counter in an internal node is always maintained so that
it equals the sum of its ‘0’ and ‘1’ child counters. To esti-
mate the conditional probability, related to prediction of the
next state, denoted P(σ|s), we start from the root and move

over the tree with respect to s. More precisely, P(σ|s) is the
probability to have σ ∈ {0,1} in a next state after observing
the context s. If we reach a leaf while s is not finished yet, we
restart from the root by considering the rest of the sequence
s. After finishing its traversal (we may end up at some in-
ternal node or at a leaf), the prediction of σ = ‘0’ is equal
to the value holed by the ‘0’ counter divided by the sum-
mation of values holed by ‘0’ and ‘1’ counters at that node
or leaf. In the above example shown in Fig. 3, to compute
the conditional probability P(1|110) we traverse the tree as
1→ 1→ 0→ Root→ 1 and the conditional probability is
equal to 3/7. Likewise, the conditional probability P(0|110)
is equal to 4/7.

Root

0

0 0

1

11

0 0 0 111

Fig. 3. An instance of the constructed tree based on training se-
quence ‘00110011’.

Pseudo code for creating the dictionary for LZ78

◦ Let variable w = NULL
◦ while (there is input)
• Let variable K = next symbol from input
• Let wK = concatenation of w and K

• if (wK exists in the dictionary)
� Let w = wK

• else
� output (index(w), K)
� add wK to the dictionary
� Let w = NULL
• end if
◦ end while

3.4 Proposed Scheme: Combination of VMM
Prediction and BSS Based Spectrum
Sensing
Here, we introduce the proposed method, that enables

the prediction feature inside the BSS based spectrum sens-
ing architecture. We assume that we have a predictor that
is trained over time, and thus the predictor can generate the
conditional probability P(σ|s) defined in Section 2.

The block diagram of the proposed algorithm for spec-
trum sensing is illustrated in Fig. 4. The algorithm starts
with disabled CR transmitter, and if it has some data to send,
it senses the channel, and then the predictor unit predicts the
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presence or absence of the PU in the next state. If the pre-
dictor unit forecasts the absence of PU, the CR transmitter
(i.e., the ASU) is allowed to send its data through channel
and other SUs continue to sense the channel, simultaneously.
Note that the CR network can sense the channel while the
ASU is transmitting its data and other users operate as sen-
sors. This scheme reduces considerably the interference that
the CR network imposes into the primary network.

The proposed model can also be added to the joint
spectrum sensing system model proposed in [6], in which
conventional spectrum sensing method is combined with
BSS-based spectrum sensing. More precisely, the combined
method switches between covariance based spectrum sens-
ing and BSS based spectrum sensing, based on the last state
sensing result. Adding this prediction model to the com-
bined method proposed in [6] is done with the aim of in-
creasing the sensing accuracy and reducing the interference
that harms the PU.

Start

Turn The CR Transmitter OFF

Data to send?

Yes

No

BSS Based Sensing

Yes

Predict the state of PU in next 
(following) sensing frame.

Result?
Presence

Absence

Turn The CR Transmitter ON

Stop

Fig. 4. The diagram of the proposed spectrum sensing using PU
prediction.

It is worth mentioning that measuring the performance
of the proposed method with ROC curves, have some in-
herent differences compared to ROC curves of conventional
spectrum sensing methods. In fact, for the prediction based
method, two different ROC curves can be plotted. To study
this difference, let us describe the ROC curve for a well-
known spectrum sensing method such as ED. In ED method,
the PU data frame is divided into three parts for instance,
and the spectrum sensing acts in the first 1/3 part of the PU
data frame and if the PU is sensed as absent, the SU sends its
data in the remaining two parts. The performance of spec-
trum sensing for making a correct decision about the pres-

ence or absence of the PU in the first part of PU data frame
is classically formulated as:

Pcorrect
0 = P(H CN

0 |H PN
0 ) = 1−Pf , (27)

Pcorrect
1 = P(H CN

1 |H PN
1 ) = 1−Pm. (28)

Clearly, if a miss detection error occurs in the begin-
ning of the PU data frame, it causes interference in the rest
of the PU data frame and likewise a false alarm error, re-
duces the available opportunities for SU to send its data. This
means that miss-detection and false alarm errors are directly
related to the imposed interference to PU and the achiev-
able throughput in the CR network. In fact, miss detection
and false alarm errors characterize the sensing performance.
Note that classical ROC curves are formed by plotting Pm
versus Pf , defined previously. It is important to notice that
classical ROC curves do not consider any prediction feature
and dependency between the decision about the current and
previous sensing frames.

However, in the proposed method, the sensing perfor-
mance is not directly related to the imposed interference to
the PU and the throughput of the CR network. More pre-
cisely, in the proposed method, the miss detection in current
sensing frame does not cause any interference to the next
sensing frame. In fact, if the prediction of PU activity in next
state forecasts the absence of PU and if this forecasting is not
true in the next state, the miss detection error would occur,
and if the prediction of PU activity for the next state, fore-
casts the presence of PU and if this forecasting is revealed
to be not true in the next state, a false alarm occurs. We can
thus conclude that in our predictive scenario, it is necessary
to provide a new definition for both Pm and Pf that takes into
account the dependency that exists between the decision in
consecutive sensing frames. Consequently, the ROC curve
in the proposed method is different from the ROC curves for
classical spectrum sensing methods. Mathematically, we can
express the appropriate miss detection (denoted P∗m) and false
alarm (denoted P∗f ) probabilities in our predictive spectrum
sensing as:

P∗m = P(prediction = 0| fm+1 = 1), (29)

P∗f = P(prediction = 1| fm+1 = 0). (30)

Based on the above two probabilities, we can define and plot
new ROC curves (denoted as ROC∗) that are based on the
above defined probabilities P∗m and P∗f .

As explained previously, the proposed method per-
forms BSS spectrum sensing in a predefined number of sub-
frames (to form the context) and then uses the decisions in
these subframes for making a prediction in next subframes.
Thus two types of performance measure must be used: i) the
classical ROC that lets us measure the accuracy of spectrum
sensing in each subframe and ii) the new ROC defined above
that lets us to measure the prediction accuracy of our method.
In the next section, we will analyze the performance of our
method by using both classical and new ROC curves.
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Fig. 5. The Classical ROC curve for BSS-based spectrum sens-
ing compared to BSS-based spectrum sensing using pre-
diction unit.
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Fig. 6. The Defined ROC∗ curve for BSS-based spectrum sens-
ing compared to BSS-based spectrum sensing using pre-
diction.

4. Simulation Results and Discussion
In this section, we provide simulation results and

discussion to compare the performance achieved by the
proposed BSS spectrum sensing and by classical BSS
based spectrum sensing methods. The BSS technique used
throughout simulations is based on MUK algorithm. We
have provided numerical results in terms of classical ROC
and the defined ROC∗ curves, as explained in the previous
section. For comparison with classical BSS based spectrum
sensing (i.e., a BSS based sensing without any prediction ca-
pability), we have considered the method proposed in [7] and
the joint method proposed in [6] that combines BSS sensing
and covariance based sensing. In [6], a parameter ε is de-
fined, which is the ratio of CR sensing frame length to the
PU data frame length. For instance, ε = 0.1 means that the
PU data frame is 10 times larger than CR sensing frames. In
our comparative simulation results, the parameter ε in [6] is
set to 0.2 and 0.1, respectively. Throughout our simulations,
the CR sensing frame length is fixed and is equal to L = 100.
In the proposed method the PU data frame length is 5 times
longer than the CR sensing frame length.
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Classical joint method for real activity of PU

Classical joint method for ε = 0.1
Proposed joint method with prediction

Fig. 7. The classical ROC curve for joint spectrum sensing
method compared to joint spectrum sensing method us-
ing prediction.
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Fig. 8. The Defined ROC∗ curve for joint spectrum sensing
method compared to joint spectrum sensing method us-
ing prediction.

To model the PU activity, the measurements that are
collected by the RWTH Aachen university [24] are used.
Some parts of collected data are used to train the predictor
and other parts are used to simulate the PU activity.

In the method proposed in this paper, when the pre-
dictor forecasts the absence of PU, the CR transmitter (i.e.,
the ASU) starts to transmit its data over the channel and the
other SUs continue their sensing over the channel. In our
comparative results, in the classical methods, if the last state
of sensing indicates the absence of PU, the ASU starts to use
the channel and to send its data.

To compare the sensing accuracy of our method in
each subframe, we have shown in Fig. 5 the classical ROC
diagram for SNR = 5 dB where only two SUs are sens-
ing the presence or absence of the PU. We observe that
for smaller values of false alarm probability, the proposed
method achieves a lower miss detection probability.

To analyze the prediction performance of our method,
we have shown in Fig. 6, the defined ROC∗ curve for our
proposed and classical BSS methods. We observe that the
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Fig. 9. Probability of false-alarm versus SNR when the prob-
ability of miss-detection is constant and equal to 0.01
comparing classical BSS and the BSS using prediction.

proposed method achieves better performance than methods
proposed in [6] and [7].

In Fig. 7, we have shown the classical ROC curve
for the joint method introduced in [6] and the joint method
with prediction capability. In fact, the proposed predictive
method can be exploited in the joint method of [6]. More
precisely, in joint method, with prediction, in Fig. 4 if the
prediction of the next state is the presence of PU a covari-
ance based method used to sense the channel, and if the pre-
diction of the next state is the absence of the PU, the BSS
based spectrum sensing is used to sense the channel. It can
be seen that the joint method performance increases by using
prediction.

Similar plots are provided in Fig. 8 for the joint method
where we have shown the defined ROC∗ curve. It can be seen
that the proposed method outperforms significantly the clas-
sical joint method in terms of spectrum sensing accuracy due
to its predictive structure.

In Fig. 9, we have set the probability of miss detection
(Pm) to 0.01 and depicted the probability of false alarm (Pf )
versus SNR. In fact, the probability of false alarm shows the
achievable throughput for the CR network and the fixed Pm
is the tolerated imposed interference to the PU. This fig-
ure compares the classical BSS method and the proposed
BSS method using prediction. We observe that the proposed
methods leads to lower false alarm probabilities and thus
leads to higher achievable rates for the CR network. Similar
plots are provided in Fig. 10 for comparing the sensing per-
formance for classical and predictive joint methods. Again,
we observe that prediction leads to lower false alarm prob-
abilities and conclusions similar to those for Fig. 9 can be
drawn.

5. Conclusion
The main drawback of classical spectrum sensing

methods is the waste of bandwidth when the CR incorrectly
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Fig. 10. Probability of false-alarm versus SNR when the prob-
ability of miss-detection is constant and equal to 0.01
comparing classical joint method proposed in [6] and
the joint method using prediction.

decides that the PU is in operation. Moreover, when the CR
incorrectly decides that the CR is not in operation, this leads
to harmful interference. Both of these issues are addressed
and improved in the proposed spectrum sensing scheme.
More precisely, we proposed a new spectrum sensing tech-
nique based on the prediction of the PU activity. Our scheme
assumed that the PU signaling follows a predictable behav-
ior. By using the proposed method, a prediction capability
is included into BSS based spectrum sensing with the aim
of increasing the sensing accuracy and reducing the interfer-
ence that the CR network imposes to the primary network.
We also used the proposed method to improve the perfor-
mance of a joint spectrum sensing method that combines
BSS based spectrum sensing and covariance based spec-
trum sensing. Numerical results indicated that the proposed
method outperforms conventional BSS based spectrum sens-
ing by improving the sensing accuracy.
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