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Abstract. It has been shown that the multiple trellis code 
can perform better than the conventional trellis code over 
AWGN channels, at the cost of additional computations per 
trellis branch. Multiple trellis coded multi-h CPM schemes 
have been shown in the literature to have attractive power-
bandwidth performance at the expense of increased 
receiver complexity. In this method, the multi-h format is 
made to be associated with the specific pattern and 
repeated rather than cyclically changed in time for succes-
sive symbol intervals, resulting in a longer effective length 
of the error event with better performance. It is well known 
that the rate (n-1)/n multiple trellis codes combined with 
2n-level CPM have good power-bandwidth performance. In 
this paper, a scheme combining rate 1/2 and 2/3 multiple 
trellis codes with 4- and 8-level multi-h CPM is shown to 
have better power-bandwidth performance over the upper 
bound than the scheme with single-h. 
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1. Introduction 
With the adoption of MIL-STD-188-181B on 20 

March 1999 [1], Multi-h Continuous Phase Modulation 
(CPM) became a mandatory requirement of US. Military 
UHF SATCOM terminals. A dual-h CPM scheme (with 
two distinct modulation indices) was selected as a Tier-II 
waveform in IRIG-106 Aeronautical Telemetry (ARTM) 
standard in 2004 because of its superior spectral efficiency 
and error performance as compared to the legacy PCM/FM 
(Pulse Code Modulation/Frequency Modulation) wave-
forms [2]. 

In these multi-h CPM schemes, a properly chosen cy-
clic set of modulation indices results in delayed merging of 
neighboring phase trellis paths and therefore, provides 
a larger minimum Euclidean distance than conventional 
single-h CPM schemes. The error performance for multi-h 
CPM schemes on AWGN and flat fading channels were 
presented in [3] and [4] respectively. However, most multi-

h schemes change the modulation index in a cyclical fash-
ion for successive symbol intervals. Bhumi A. Dave and 
Raveendra K. Rao described a class of CPM signals re-
ferred to as generalized asymmetric multi-h phase-coded 
modulation which adaptively changed modulation indices 
by a function of the current symbol, previous symbol and 
phase state and hence could achieve significant amount of 
increase in minimum distance as compared to ordinary 
multi-h CPM signaling [5]. 

Trellis coded multi-h CPM schemes using a Viterbi 
decoder has been investigated to achieve further coding 
gains [6], [7], in which trellis paths remained unmerged 
longer and offered generally improved minimum Euclidean 
free distance. This scheme results in a kind of concatenated 
code and provides better performance with properly chosen 
modulation indices [8–11]. A nonlinear CPM technique is 
presented in [12] which achieves the maximal constraint 
length allowed by the number of states and achieves attrac-
tive minimum distances compared with other existing CPM 
signaling formats. However, maximization of the constraint 
length does not ensure the maximization of the minimum 
distance and hence this technique does not guarantee the 
highest achievable minimum distance. This technique also 
has the disadvantage of using a large number of modula-
tion indices. 

The multiple trellis code, wherein more than one 
channel symbol per trellis branch is transmitted, could 
usually provide superior performance [13]. Such mecha-
nism accommodates more freedom for the assignment of 
signal points to transmitted symbols, and thus for many 
cases, produce better codes. Although the multiple trellis 
code is a powerful code, the branch extension operations 
required for the transition between states are more complex 
than that in the conventional trellis code. 

In this paper, we propose a design procedure based on 
super trellis of the merged encoder combined by multiple 
trellis encoder and CPE (Continuous Phase Encoder). Sys-
tem performance in AWGN channel is analyzed based on 
the minimum squared Euclidean free distance dominated 
by the minimal error event of the merged encoder. 

The remainder of this paper is organized as follows. 
System model and the merged encoder constructed by 
multiple trellis encoder and CPE are given in Section 2. 
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Super trellis structure of the merged encoder is presented in 
Section 3. Section 4 presents the design procedure of the 
multiple trellis coded multi-h CPM system to achieve supe-
rior performance. Performance analysis is described in 
Section 5 and numerical results and discussion are given in 
Section 6. Finally, conclusions are drawn in Section 7.  

2. System Model 

2.1 Multiple Trellis Coded Multi-h CPM 
System Description 

The multiple trellis coded multi-h CPM system con-
sidered in this paper is shown in Fig. 1. At epoch n, the 
source information bit bn is input to a multiple trellis en-
coder whose output is code symbol Un from the M -ary 
alphabet  0,1, , 1M  . The code symbol Un is fed into 
CPE whose output  

n
  is input to memoryless modulator 

(MM) which completely specifies the physical phase and 
therefore, completely specifies the output signal. The two 
sub-encoders construct the merged encoder, and the analy-
sis of overall error event is based on such merged encoder. 
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Fig. 1.  Transmitter/Receiver structure of multiple trellis coded 
multi-h CPM system. 

For AWGN channels, the received signal is 

      r t s t n t   (1) 

where n(t) is a Gaussian random process with power spec-

tral density N0 W/Hz. The received signal is fed into 

matched filter whose output  ˆn
  is input to Viterbi de-

modulator. The output of demodulator ˆ
nU  is input to 

Viterbi decoder whose output n̂b  is the recovered informa-

tion bits. 

2.2 Decomposition of Multi-h CPM 

Rimoldi presented a tilted phase description of the 
single-h CPM signals in [14] by shifting the carrier fre-
quency from f0 to f1 = f0 - h(M – 1)/2T, where h  is the 
modulation index, T  is the symbol interval. The resulting 
modified phase (tilted phase) trellis is time invariant, and 
the single-h CPM modulator can be interpreted as a cas-
cade of a linear CPE and a memoryless modulator. Saleem 

and Stüber showed that the tilted phase representation of 
multi-h CPM signals results in a periodic phase trellis in 
[15], which enables the decomposition of multi-h CPM 
modulator as a cascade of a periodic recursive CPE and 
a memoryless modulator. 

First, the complex envelope of a multi-h CPM 
waveform with H different modulation indices is given by 

      0, exp , , 0
E

s t j t t
T

   U U  (2) 

where E is the energy per symbol, 0  is a constant phase 
term which can be ignored if phase synchronization is 
assumed. The time varying phase  ,t U , also called the 
excess phase, is defined as 

         
0

, 2π 2 1 , 0
H

nn
n

t h U M q t nT t




    U . (3) 

Here ()H denotes the modulo H operation and the modula-
tion index for each symbol interval is chosen cyclically 
from the set {h0,h1,…,hH – 1}, q()is the phase shaping func-
tion. In order to ensure a finite number of states in the 
decoding trellis, modulation indices are restricted to the set 
of rational numbers with a common denominator P, such 
that hi = Ki/P. The denominator P  is always chosen such 
that gcd(K0, K1,…, KH – 1, P) = 1, where gcd() denotes the 
greatest common divisor of these arguments. 

The excess phase in (3) can be written as 

              
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 (4) 

Substituting  = t - nT such that the interval 
t  [nT, (n + 1)T] is equivalent to   [0, T], (4) becomes 
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Second, we define the tilted phase for 
t  [nT, (n + 1)T] as 

       
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  (6) 

Note that the sum of second and third term is actually 
the negative of the lowest trajectory of the excess phase 
trellis. When written in terms of  , where   [0, T], and 
substituting  ,nT   U  from (5), we get 
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All the terms in  ,nT   U  are periodic in n  and 
depend only on the time translated variable  . So the tilted 
phase transformation turns out to be a periodic function of 
time with period H . 

On the time interval, t  [nT, (n + 1)T], (7) can be 
expressed as 

          
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where  R t  is a data independent term, and is defined as 
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The tilted phase is generated from the input symbols 
by the CPE of (8). The CPE is a Finite State Machine 
(FSM) with a periodic coefficient 

 H
nK . Based on the 

relationship between the excess and tilted phase in (6), the 
CPE in (8), and the phase modulator in (2), we represent 
the multi-h CPM modulator as a periodic CPE followed by 
a memoryless modulator, as shown in Fig. 2. Here 

    , 4πiQ t n P q t n i T    , the block labeled “TT” 

is the transformation in (6), and the double circled symbol 
denotes a modulo- P  adder. 
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Fig. 2.  Decomposition of multi-h CPM. 

Unlike single-h CPM, where the state vector is de-
fined as the cascade of the cumulative and the 1L   previ-
ous input symbols, for multi-h CPM we must also take the 
periodicity of the state machine into account. We define the 
state vector as 

     1
1, ,n

n n L n L H
n  

   U  (10) 

where  1
1 1 2 1, , ,n

n L n L n L nU U U
      U   is the set of past 

symbols determining the correlative terms in the tilted 
phase, 2πn n P  , n  is called the cumulative phase 

state. Note that (n)H is incorporated in the state vector to 
conform to the usual definition of a state machine, i.e., the 
next state and output of the CPE is determined solely by 
the knowledge of the previous state and current input 
symbol. 

3. Super Trellis Structure of Merged 
Encoder 
Because of the existence of periodicity in the state 

machine, the trellis structure of CPE decomposed by multi-
h CPM becomes complex, and much more difficult to draw 
with several indices. For simplicity, the super trellis struc-
ture with single-h CPM is presented and the minimum 
error event based on super trellis is analyzed firstly, then 
the analysis will be extended to the design of multiple 
trellis coded multi-h CPM system. 

3.1 Construction of Super Trellis 
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Fig. 3.  Block diagram of multiple trellis coded CPM system. 

The block diagram of multiple trellis coded CPM sys-
tem is shown in Fig. 3. The multiple trellis encoder is 
a two-state conventional rate 1/2 encoder with multiple fac-
tor 2k  . Parameters of the single-h CPM signaling are 
defined as: 4M  , 1 4h  , 1REC pulse shape. Such 
CPFSK (Continuous Phase Frequency Shift Keying) sig-
naling with rectangular pulse shaping function with length 

1L   is a simple form of full-response CPM. 

The super trellis is defined as S1S2, where S1 and S2 
represent the trellis state of the multiple trellis encoder and 
the CPE respectively. As shown in Fig. 3, the trellis state 
of multiple trellis encoder is defined as 0 and 1, and the 
trellis state of the CPE is defined as 0 , π 2 , π  and 3π 2 . 

The super trellis structure of the merged encoder 
constructed by multiple trellis encoder and CPE is shown 
in Fig. 4. Based on the definition above, the state number 
of the merged encoder is the product of the state number of 
the multiple trellis encoder and CPE, e.g., the number of S1 
and S2 is 2 and 4 respectively, so the state number of the 
merged encoder is 2 4 8  . 
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Fig. 4.  Super trellis structure of merged encoder. 
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3.2 Error Event of Multiple Trellis Coded 
CPM 

Based on analysis of super trellis structure as shown 
in Fig. 4, the occurrence of an error event of the merged 
encoder indicates the occurrence of the error event of the 
multiple trellis encoder and CPE simultaneously, and all 
the error events of the merged encoder must contain one or 
more error events of the multiple trellis encoder and CPE 
simultaneously. For example, an error event defining as E0 
occurred when trellis paths diverge at the same super state 
S1S2 = 0,0 and converge at the same super state 
S1S2 = 0,3/2 after two transitions. The corresponding out-
put of these two transitions is 0021 and 2100 respectively. 
The pairwise error sequence is defined as ξ , which is 

0021-2100 for error event E0. 

As shown in Fig. 4, there aren’t parallel branches in 
the super trellis structure. So the minimum number of 
transitions of all error events is two at least, i.e., the error 
event with two transitions is the minimal error event, such 
as E0 and E1. Also the number of symbols of the minimal 
error event is the effective length of the encoder, obviously, 
it is the product of the effective length of the multiple trel-
lis encoder and CPE, e.g., the effective length of the multi-
ple trellis encoder and CPE in Fig. 4 are both 2, so the 
effective length of the merged encoder is 2 2 4  . 

For single-h CPFSK, the effective length of the CPE 
is always 2, and no matter what kind of pairwise error 
sequence A1…Aj – B1…Bj of the multiple trellis encoder is, 
the pairwise sequence A1…Aj B1…Bj – B1…Bj A1…Aj   must 
be the error sequence of the merged encoder. We define the 
error event with such error sequence as the “back-loop” 
error event, which is important in the analysis of the 
merged encoder with multi-h CPM, and the “back-loop” 
error event with j k  ( k  is the multiple factor) must be 
the minimal error event in the merged encoder. 

4. Design Procedure 
The design procedure in this section could be divided 

into the following four steps. 

4.1 Maximizing the Effective Length 

For multiple trellis encoder, the effective length is the 

multiple factor k . Error events with cross transitions must 
have more symbols than error events with parallel transi-
tions. 

Based on the analysis of the super trellis structure, the 
effective length of the merged encoder is the product of the 
effective length of multiple trellis encoder and CPE. So 
maximizing the effective length of the merged encoder can 
be divided into maximizing the effective length of multiple 
trellis encoder and CPE each. The effective length of CPE 
is always 2 for single-h CPM because of the modulo P  

( P  is the denominator of the modulation index) adder 
operation. So the effective length of the merged encoder 
equals to 2k  with single-h CPM. 

For multi-h CPM, the effective length of the CPE can 
be always increased by proper use of several indices. How-
ever, the use of greater number of indices can not always 
guarantee the increase of the effective length of the CPE. 
For example, the “back-loop” error event E0 with single-h 
CPFSK “0021-2100”, at the same time, is the minimal 
error event of the merged encoder with dual-h CPFSK in 
cyclic use, i.e., the cyclic use of two indices fails to in-
crease the effective length of the merged encoder when 
compared with single index. Therefore, compared with the 
number of indices, the proper use of them (pattern of indi-
ces) are more important in the design of maximizing the 
effective length of the merged encoder with multi-h CPM. 

4.2 Maximizing Minimum Euclidean Distance 

We first define D2() as the squared Euclidean dis-
tance with pairwise error sequence ξ , and Dmin as the 
minimum Euclidean distance among all these pairwise 
error sequences. For a superior code, Dmin is always gener-
ated by the minimal error event with effective length. In 
other words, if Dmin is generated by the error event in 
which the number of symbols is greater than the effective 
length, such code design is sure to be inferior. So the maxi-
mization of effective length and Euclidean distance is al-
ways jointly considered. 

For multi-h CPM, the maximization of Dmin can be 
divided into the following three steps:  

(1) The effective length of the merged encoder with 
single-h CPM is firstly analyzed, which equals to 2k ; 

(2) For single-h CPM, the minimum Euclidean dis-
tance Dmin with the effective length 2k  is maximized 
through a computer search to find the largest Euclidean 
distance among the pairwise error sequences like 

1 2 1 2 1 2 1 20 0 0 0 0 0k k k kB B B B B B     with arbitrary 

values  of 1 2 kB B B , then the superior multiple trellis 

code based on such Dmin is designed, which is described in 
the following subsection 4.3; 

(3) For multi-h CPM, the effective length is further 
maximized through designing the pattern of several indices, 
and the minimum Euclidean distance Dmin for multi-h CPM 
is further maximized based on the increase of effective 
length, which is described as following in subsection 4.4; 

Since there is not any exact formula that describes  
D2() against h  even for a given CPM signaling format, 
the maximization of Dmin is extremely difficult especially 
with several indices. For simplicity, the analysis is firstly 
based on the single-h CPM and then extended to multi-h 
CPM, firstly based on the effective length, and then ex-
tended to the minimum Euclidean distance, just as these 
three steps described above. 
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4.3 Multiple Trellis Code Design Following 
Ungerboeck’s Set Partition Rules 

Similarly to Ungerboeck’s TCM design [16], the fol-
lowing two design rules are adopted. 

(1) All the diverging transition outputs from each 
state must be unique. 

(2) All the merging transition outputs to each state 
must be unique. 

As an example, the multiple trellis code with dual-h 
CPM is designed, and parameters are listed as following: 
the code rate is 1/2, the state number of the multiple trellis 
code is 4, the multiple factor k = 3, the modulation alpha-
bet M = 4, the modulation indices [h0,h1] = [3,4]/16, and 
the memory length 1L  . 

As analyzed in the previous subsection, multiple trel-
lis code with single index 1 4h   is firstly designed. The 

effective length of the multiple trellis encoder and CPE is 3 
and 2 respectively, so the effective length of the merged 
encoder is 6. Then the minimum Euclidean distance is 
maximized through computer search among all the pair-
wise error sequences 1 2 3 1 2 3000 000B B B B B B  with arbi-

trary 1 2 3B B B . 

The largest Euclidean distance under search is 4, and 
the corresponding pairwise error sequence is 000202-
202000. Following Ungerboeck’s set partition rules, the 
multiple trellis code designed for single index CPFSK with 

1 4h   is shown in Fig. 5. 

In most cases, the largest Euclidean distance under 
search cannot be accomplished in the code design. When 
the pairwise error sequence achieves the largest Euclidean 
distance, the Ungerboeck’s set partition rules cannot al-
ways be obeyed at the same time, and other requirements 
are also need to satisfy which will be described later. In 
this case, the second or third largest Euclidean distance will 
be the alternative in the code design. 
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Fig. 5.  Superior design for single index with 1 4h  . 

After the design above, further verifying is need to 
make sure that the minimum Euclidean distance generated 
by the pairwise error sequence 000202-202000 is actually 

the minimum one among all these pairwise error sequences. 
As shown in Fig. 5, the effective length of error events 
with parallel transitions and cross transitions is 3 and 6 
respectively. Generally speaking, the Euclidean distance of 
error events with effective length 6 is larger than error 
events with effective length 3. However, the operation of 
verifying can not be neglected. In this case, the Euclidean 
distance with pairwise error sequence 000000020020-
020020000000 and 000000002111-002111000000 is 6.22 
and 4.68 respectively, which are both larger than 4 (parallel 
transitions), and the latter is proved to be the minimum one 
among all error events with cross transitions. 

In the design of multiple trellis code, such pairwise 
error sequences as A1A2A3 and B1B2B3 with 
(A1 + A2 +A3) modP = (B1 + B2 +B3) modP should be 
avoided, because such error sequences will result in the 
occurrence of the error event of multiple trellis encoder and 
CPE simultaneously. In this case, the effective length of 
the merged encoder will be shortened as to be 3. Similar 
case like A1…Aj and B1…Bj (j < 2k) with 
(A1 + … +Aj) modP = (B1 +…+Bj) modP should also be 
avoided. 

The error sequence with 1 4h   which generates the 

largest Euclidean distance is also the same error sequence 
with [h0,h1] = [3,4]/16 which also generates the largest 
Euclidean distance, i.e., the superior design of multiple 
trellis code for single index with 1 4h   is always the 

superior one for two indices with [h0,h1] = [3,4]/16. It can 
be proved because  0 1average ,h h h . 

One may doubt that the code design in Fig. 5 is not 
superior for single-h with  1 4  i.e. 4h P  , because 
the pairwise error sequence 000-202 satisfies 
   0 0 0 mod 4 2 0 2 mod 4     . In fact it really isn’t 
and that doubt is reasonable. 

However, the code design in Fig. 5 is actually the 
superior one for dual-h with [h0,h1] = [3,4]/16 because 

         3 3 3 4 3 3 mod16 1 3 3 4 1 3 mod16               , 
and it could be verified later. 

4.4 Design of Pattern of Several Indices 

Based on the superior design of multiple trellis code 
with single-h CPM in the previous subsection, the effective 
length with multi-h CPM can be further maximized by a 
proper pattern design of these several indices. 

Before the analysis, the state transfer diagram of the 
superior multiple trellis code designed above is shown in 
Fig. 6. As shown in the diagram, the exponent of J  and 
D  represents the number of transitions and the symbol 
weight respectively between two states. For example, 

 2 2J D D  represents that there are one transition and 
two parallel branches from the state “A” to state “B”, and 
the symbol weight of two branches are both 2. Note that 
the definition on the exponent of D  is different with the 
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traditional analysis on the convolutional code, which is 
hamming distance always. 

 4J D

 2 2J D D

 2 6J D D

 4 4J D D

 5 5J D D

 3 7J D D
 5 9J D D

 7 7J D D

 0 4J D D

 2 2J D D

 2 6J D D

 3 7J D D

 5 9J D D

 5 5J D D

 4 4J D D

 7 7J D D

 

Fig. 6.  State transfer diagram of the designed multiple trellis 
encoder. 

Based on the state transfer diagram, the state transfer 
equations are listed as follows: 

       
       
       
       

2 2 5 5 4 4 7 7

2 6 5 9 0 4 3 7

4 4 7 7 2 2 5 5

4 3 7 2 6 5 9

B A B C D

C A B C D

D A B C D

E A B C D

X J D D X J D D X J D D X J D D X

X J D D X J D D X J D D X J D D X

X J D D X J D D X J D D X J D D X

X J D X J D D X J D D X J D D X

        

        


       


      

 

(11) 

Solving these equations, we get the state transfer 
function as: 

 
4 2 5 2 8 2 12 2 13 3 5 3 10 3 13 3 14

4 5 2 5 2 10 2 13 2 14

2 2 2 4 4
,

1 4 2 4 2 4

JD J D J D J D J D J D J D J D J D
T D J

J JD JD J D J D J D J D

       


      
 (12) 

Obviously, 4JD  is the minimum polynomial in 
 ,T D J , and it also represents the minimal error event of 

the multiple trellis encoder, so the analysis on error events 
before is verified by the state transfer function, and the 
further maximization of effective length with several indi-
ces is just based on this state transfer function. 

We define   as symbol difference between the two 
corresponding symbols and  D   as the sum of symbol 
differences in the pairwise error sequence. 

For single-h CPM, the design criteria is to maximize 
the minimal transitions which satisfies 

  mod 0D P    (13) 

where P  is the denominator of the modulation index, 
which is 4 with 1 4h  . The “back-loop” error event de-
fined above with the pairwise error sequence 000202-
202000 must satisfy (13), because  D   of such error 
event must be zero, which satisfies equation (13) obviously 
no matter P  is. Note that the pairwise error sequence 000-
202 also satisfies (13) because   4D   , So the minimal 
transitions we could maximize is 1 actually, and the effec-
tive length of the merged encoder is shortened to be 3k  . 

For multi-h CPM with   0 1 1 0 1 1, , , , ,H Hh h h K K K P   , 
the design criteria is also to maximize the minimal 
transitions which satisfies 

 
 

0 0 1 1 1 1

0 1 1

mod 0K K K P

D

  

   
 



   
    

ξ ξ

ξ




 (14) 

Here  D   is the exponent of polynomials with dummy 
variable “ D ” in equation (12), or the addition (subtraction) 
of the exponent of several polynomials, which is corre-
sponding to the concatenated error events in the pairwise 
error sequence. The subscript ξ  is the length of the pair-
wise error sequence ξ . 

For example, we analyze the case of dual-h CPM with 
[h0,h1] = [3,4]/16 in cyclic use. “Back-loop” error events of 
several polynomials in (12) have been checked with criteria 
in (14). Results are shown in Tab. 1. 
 

Polynomial Pairwise error sequence Whether satisfies (14) 

4JD  000202-202000 No 

2 4J D  
000000020020-
020020000000 

Yes 

2 12J D  
000000222222-
222222000000 

Yes 

      

Tab. 1.  Validation results. 

From Tab. 1, pairwise error sequence 000000020020-
020020000000 has been verified firstly to satisfy (14), so 
the minimal transitions we could maximize is 4, hence the 
effective length of the merged encoder with two indices 
[h0,h1] = [3,4]/16 in cyclic use is 4 12k  . The effective 
length could be further increased by a proper pattern de-
sign of the two indices. The pattern includes the number 
and the periodicity of these indices. Generally speaking, it 
is much more complex to deal with a great number of mo-
dulation indices, and it is relatively manageable to just in-
crease the periodicity with some few indices. 

For the case of two indices with [h0,h1] = [3,4]/16, the 
periodicity could be increased to  3Q Q   by use of the 

pattern like [h0,0, …,h0,i-1, h1,0,…,h1,j-1], (i +j = Q), which 
means that the number of h0 and h1 is i  and j  respectively. 

Obviously, the larger Q  is, the larger effective length we 

could maximize for the merged encoder. 

As we know, the minimal error event with 4JD  and 
the minimal “back-loop” error event with 2 0J D  are the 
“bottle-neck” in the maximization of the periodicity Q . 
Details of the maximization process are shown in Tab. 2. 
The last column indicates whether satisfying (14) with the 
“bottle-neck” error event or not. 

The largest Q  we could maximize is 10 from Tab. 2, 
because patterns with  10Q Q   all satisfy (14) for the 
minimal “back-loop” error event. Also for arbitrary number 
of indices H , the maximal Q  we could get is Qmax = 5H, 
because once 5Q H , there must be one pattern with at 
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least 6 same consecutive indices, which means single index 
for the minimal “back-loop” error event, and then the 
effective length will be shorten greatly. Once the maximal 
Q  has been achieved, the next step is to compute the 
effective length of the merged encoder for dual-h CPM 
with a pattern like [h0,h0,h0,h0,h0,h1,h1,h1,h1,h1]. 
 

Q  Pattern Whether satisfies (14) 

3 [h0,h0,h1] No 

4 [h0,h0,h0,h1] No 

5 
[h0,h0,h0,h1,h1] 

[h0,h0,h0,h0,h1] 

No 

No 

6 
[h0,h0,h0,h0,h1,h1] 

[h0,h0,h0,h0,h0,h1] 

No 

No 

7 

[h0,h0,h0,h0,h1,h1,h1] 

[h0,h0,h0,h0,h0,h1,h1] 

[h0,h0,h0,h0,h0,h0,h1] 

No 

No 

Yes 

8 

[h0,h0,h0,h0,h0,h1,h1,h1] 

[h0,h0,h0,h0,h0,h0,h1,h1] 

[h0,h0,h0,h0,h0,h0,h0,h1] 

No 

Yes 

Yes 

9 

[h0,h0,h0,h0,h0,h1,h1,h1,h1] 

[h0,h0,h0,h0,h0,h0,h1,h1,h1] 

[h0,h0,h0,h0,h0,h0,h0,h1,h1] 

[h0,h0,h0,h0,h0,h0,h0,h0,h1] 

No 

Yes 

Yes 

Yes 

10 

[h0,h0,h0,h0,h0,h1,h1,h1,h1,h1] 

[h0,h0,h0,h0,h0,h0,h1,h1,h1,h1] 

[h0,h0,h0,h0,h0,h0,h0,h1,h1,h1] 

[h0,h0,h0,h0,h0,h0,h0,h0,h1,h1] 

[h0,h0,h0,h0,h0,h0,h0,h0,h0,h1] 

No 

Yes 

Yes 

Yes 

Yes 

    Yes 

Tab. 2.  Details of the maximization of Q . 

Polynomials in (12) have been verified one by one. 
Because the greatest common divisor of the multiple factor 

3k   and the periodicity 10Q   is 1, i.e., gcd(k,Q) = 1. 
So the minimal error event of the multiple trellis encoder 
for dual-h CPM with such pattern is ten repeated error 
events corresponding to 4JD , i.e., 000 000 202 202  , 
and the value of (K00 + …+ K2929 = 140) mod 16  0. 
Hence, the “back-loop” error event of this pattern 
000 000202 202 202 202000 000     is the minimal 
error event of the merged encoder because 
(K00 + …+ K5959 = 140) mod 16 = 0, so the effective 
length of the merged encoder is 60, and the minimum 
Euclidean distance can be further maximized based on such 
effective length. The larger the number of the modulation 
indices is, the larger the periodicity Q  could be achieved, 
and the larger the effective length of the merged encoder 
could be maximized. Based on the maximization of effec-
tive length and the minimum Euclidean distance, further 

verifying is necessary to guarantee the performance 
optimization. 

Based on the analysis above, further verifying is nec-
essary. Polynomials in (12) and “back-loop” error events of 
them with  2TJ T Q  must be verified one by one with 
pattern as [h0,h0,h0,h0,h0,h1,h1,h1,h1,h1]. Once one of them 
has been verified to satisfy (14), the number of minimal 
transitions will be shortened, and also the effective length 
and the Euclidean distance will be reduced. Obviously, the 
process of verifying is very complex and time-consuming. 
However, it can not be neglected, and it can be done by 
computer search, and it makes the design effective and 
religious. 

The procedure of multiple trellis code design with 
multi-h CPM is presented in this section. With the increase 
of multiple factor k  and the state number of super trellis, 
the design becomes much more complex even with the aid 
of computer searching and verifying. However, several 
presented rules have been proved valuable, and make the 
design procedure much more effective. 

5. Performance Analysis 
Based on the analysis above, the minimal error events 

are those pairwise error sequences with the effective length 
60 for dual-h CPM with [h0,h1] = [3,4]/16 by use of pattern 
like [h0,h0,h0,h0,h0,h1,h1,h1,h1,h1]. Because of the huge com-
plexity of (12), the state transfer function is rewritten just 
related with J  and 2J  as following: 

 
4 2 5 2 8 2 12 2 13 3 5 3 10 3 13 3 14

4 5 2 5 2 10 2 13 2 14

4 2 4 2 5 2 8 2 9 2 12 2 13

2 2 2 4 4
,

1 4 2 4 2 4

2 2 4 2

JD J D J D J D J D J D J D J D J D
T D J

J JD JD J D J D J D J D

JD J D J D J D J D J D J D

       


      
       

(15) 

From (15), polynomials with 2 0J D  (“back-loop” 
error event of 4JD ), 2 4J D , 2 52J D , 2 82J D , 2 94J D , 

2 12J D  and 2 132J D  are corresponding to these minimal 
error events generating the minimum Euclidean distance, 
and polynomials with  3TJ T   have been verified to 
generate longer effective length and larger Euclidean 
distance. 

In [17] it is shown that the bit error probability of 
coded continuous phase modulation is upper bounded by 

   min

2 2
0 min 0 +other termsb d b d b

d

P C Q d E N C Q d E N    (16) 

where the summation is over all Euclidean distances in the 
set of all error events, d2

min is the smallest of these dis-
tances and is referred to as the normalized squared free 
Euclidean distance which equals to D2

min/2Eb.  Q x  is 
defined as 

   2 21

2
y

x
Q x e dy



   . (17) 

According to the state transfer function  ,T D J , 
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2
mind  and 

mindC of several terms in (15) corresponding to the 

minimal error events are listed in Tab. 3. 
 

No. i Polynomial Pairwise error sequence  2
mind i  

min

i
dC  

1 2 0J D  000202-202000 31.62 40 

2 2 4J D  000000-020020 29.78 20 

3,4 2 52J D  
000000-002111 

000000-200111 

25.50 

32.78 
40 

5,6 2 82J D  
000000-020222 

000000-222020 

29.78 

29.46 
40 

7~10 2 94J D  

000000-002313 

000000-200313 

000000-220131 

000000-022131 

24.00 

31.27 

26.42 

26.25 

60 

11 2 12J D  000000-222222 29.78 60 

12,13 2 132J D  
000000-220333 

000000-022333 

28.01 

27.84 
80 

Tab. 3.  
2
mind  and 

mindC of several polynomials 

These thirteen polynomials in Tab. 3 almost deter-
mine the error bit probability in (16), and we get the trun-
cated bound as 

    min

13
2 2

0 min 0
1

i
b d b d b

d i

P C Q d E N C Q d i E N


   .  (18) 

As seen in the table, the value of 
min

i
dC  is very large, 

and it should not be ignored in the computation of bit error 
probability in (18). 

6. Numerical Results and Discussion 

6.1 Rate 1/2 Encoded    0 1, 3,4 16h h   Quater-

nary CPFSK ( 1R   bit/symbol) 

We define R  as the number of bits in information per 
modulation symbol. Numerical results for 1R   
bit/symbol are shown in Fig. 7, the dashed line indicates 
the performance of uncoded MSK, and the three solid lines 
indicate the truncated bounds of the three rate 1/2 coded 
quaternary CPFSK schemes, also simulation results of the 
three schemes are given for comparison. The first one is 
the conventional convolutional code with generation 
polynomial (7, 5) in octal form, which is combined with 
single-h CPFSK with 1 4h  ; the second one is the 
multiple trellis code with multiple factor 2k   as shown in 
Fig. 3, which is combined with dual-h CPFSK with 
[h0,h1] = [3,4]/16; the third one is the multiple trellis coded 
with multiple factor 3k   as shown in Fig. 5, which is also 
combined with dual-h CPFSK with [h0,h1] = [3,4]/16. 
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truncated bounds of coded CPFSK
simulation result of (7,5) 1/2code, h=1/4
simulation result of 2TCM, h=[3,4]/16
simulation result of 3TCM, h=[3,4]/16

 
Fig. 7.  Numerical results with four R =1 bit/symbol schemes. 

As shown in Fig. 7, simulation results are consistent 
with the truncated bounds for the three schemes. In Con-
clusion, performance of coded CPFSK schemes are gener-
ally better than the uncoded MSK, the multiple trellis codes 
combined with dual-h CPFSK are much better than the 
convolutional code combined with single-h CPFSK, and 
with the increase of multiple factor, further performance 
gain can be achieved. Compared with uncoded MSK, the 
convolutional code, multiple trellis code with 2k   and 

3k   can achieve 2.2 dB, 5.6 dB and 6.8 dB coding gains 
respectively when bit error probability is 10-6. 

For brevity, multiple trellis code with larger multiple 
factor has not been simulated. In Tab. 4, d2

min and mindC  of 

the best rate 1/2 multiple trellis code design with 
[h0,h1] = [3,4]/16 are given. The comparison assumes that 
the trellis encoders are of the same rate, measured in bits of 
information per modulation symbol as in previous work. 
Since rate 1/2 coded [h0,h1] = [3,4]/16 quaternary CPFSK 
has approximately the same spectral efficiency as MSK, 
performance is compared to MSK. Coding gain is defined 
as  2 2

10 min MSK10 log d d , where 2
MSK 2d   is the minimum 

squared Euclidean distance of MSK. It can be seen that the 
new coding scheme yields superior d2

min and the increase in 
performance gain for k  equals to 5 is almost 7.5 dB. 
 

k  2
mind  

mindC  Gain(dB) over MSK 

2 17.54 44 5.6 

3 24.00 60 6.8 

4 28.82 72 7.2 

5 31.46 88 7.5 

Tab. 4.  Results for rate 1/2 modulo-4 encoded [h0,h1]=[3,4]/16 
quaternary CPFSK. 

6.2 Rate 2/3 Encoded    0 1, 3,4 32h h   Octal 

CPFSK ( 2R   bits/symbol) 

In Fig. 8, numerical results for 2R   bits/symbol are 
given, the dashed line indicates the performance of 
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uncoded quaternary CPFSK with 1 4h  , and the two 

solid lines indicate the truncated bounds of the two rate 2/3 
coded octal CPFSK schemes, also the two schemes are 
simulated for comparison. The first one is the superior 
convolutional code with generation polynomial (17, 06, 15) 
in octal form, which is combined with single-h CPFSK 
with 1 8h  ; the second one is the multiple trellis code 

with multiple factor 2k   as shown in Fig. 9, which is 
combined with dual-h CPFSK with [h0,h1] = [3,4]/32. 
When bit error probability is 10-6, the convolutional code 
with single-h and the multiple trellis code with dual-h are 
1.9dB and 4.3dB better than the uncoded quaternary 
CPFSK schemes respectively. 
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Fig. 8.  Numerical results with three R = 2 bits/symbol 

schemes. 
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Fig. 9.  Superior rate 2/3 code design for dual-h with 

[h0,h1]=[3,4]/32. 

In Tab. 5, 2
mind  and 

mindC  of the best rate 2/3 code 

design with [h0,h1] = [3,4]/32 are given. Since rate 2/3 
coded [h0,h1] = [3,4]/32 octal CPFSK has approximately 
the same spectral efficiency as h = 1/4 quaternary CPFSK 
(d2

min = 1.45), coding gain is compared to that modulator. It 
can be concluded that the new coding scheme yields 
performance superior to the uncoded quaternary CPFSK. 
The reported code searches are not complete in this table 
because of the large complexity. 

k  2
mind  

mindC  Gain(dB) over 1 4h   
quaternary CPFSK 

2 10.38 40 4.7 

3 16.56 48 5.6 

4 20.85 60 6.1 

5 23.42 72 6.5 

Tab. 5.  Results for rate 2/3 modulo-8 encoded [h0,h1]=[3,4]/32 
octal CPFSK. 

Great performance gain could be achieved by adopt-
ing two indices in multiple trellis coded CPM system as 
shown in Tab. 4 and 5. The expense of such performance 
gain is the large number of super states and the large deci-
sion depth, i.e., corresponding to the great increase of the 
system complexity. The reason is that joint demodulation 
and decoding is accomplished based on super trellis struc-
ture by Viterbi algorithm at the receiver side and the deci-
sion depth is large enough (up to hundreds of symbols, 
usually 5 to 7 times of the effective length) to guarantee the 
performance. The large decision depth brings out long data 
delay and huge memory and processing units, which means 
great complexity for the receiver. Besides, superbaud tim-
ing is also necessary for the recovery of the multi-h pattern 
at the receiver side, and the larger the periodicity Q is, the 
much more complex the recovery of superbaud timing will 
become. 

7. Conclusion 
This paper has presented the design of the superior 

multiple trellis encoder combined with multi-h CPM based 
on the super trellis structure of the merged encoder and the 
pattern design of several indices. System performance has 
been analyzed based on the state transfer function of the 
encoder. Comparison results show that this new coding 
scheme consistently obtains better performance than 
previous schemes. With the increase of multiple factor, 
more performance gains could be achieved at the expense 
of larger complexity. 
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