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Abstract. A high input impedance voltage-mode universal 
biquadratic filter with three input terminals and seven 
output terminals is presented. The proposed circuit uses 
three differential difference current conveyors (DDCCs), 
four resistors and two grounded capacitors. The proposed 
circuit can realize all the standard filter functions, namely, 
lowpass, bandpass, highpass, notch and allpass, simulta-
neously. The proposed circuit offers the features of high 
input impedance, using only grounded capacitors, and 
orthogonal controllability of resonance angular frequency 
and quality factor.  
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1. Introduction 
The differential difference current conveyors (DDCC) 

[1] or differential voltage current conveyors (DVCC) [2], 
[3] have received considerable attention on realizing multi-
function filters and oscillators. This is due to the fact that 
the addition and subtraction operations for voltage signals 
can be performed easily.  

High input impedance voltage-mode active filters are 
of great interest because several cells of this kind can be 
directly connected in cascade to implement higher order 
filters [4]-[6]. Besides the use of only grounded capacitors 
and resistors are beneficial from the point of view of inte-
grated circuit fabrications [7]-[9]. 

Several high input impedance voltage-mode universal 
biquads each with multi-input terminals were presented in 
[5], [10]-[14]. Five kinds of standard filter functions can be 
derived by the selections of different input voltage termi-
nals in these circuits. However, only one standard filter 
function can be obtained in each realization of [5], [10]-
[12]. Moreover, four kinds of standard filter functions at 
most can be obtained, simultaneously, in each circuit reali-
zation of [13], [14]. Moreover, the resonance angular fre-
quencies and quality factors of these circuits cannot be 
orthogonally controllable. Three multi-inputs and one out-

put universal biquads were presented in [15]-[17]. Al-
though the resonance angular frequencies and quality fac-
tors of these circuits can be orthogonally controllable, they 
require passive components matching conditions in the 
realizations of some filter functions. Two high input im-
pedance three-inputs and one output universal biquads 
were presented in [18]. However, the resonance angular 
frequency and quality factor of the first proposed circuit 
cannot be orthogonally controllable and both circuits re-
quire passive components matching conditions in the reali-
zation of allpass filter functions.  

The circuits that consist of more filter functions mean 
more applications they can be used. Therefore, many high 
input impedance circuits that can realize all of the standard 
filter functions; namely highpass, bandpass, lowpass, notch 
and allpass from the same circuit configuration simultane-
ously were presented in the literatures [15], [19]-[25]. 
However, the resonance angular frequencies and quality 
factors of the circuits in [15], [19], [20] cannot be 
orthogonally controllable. The circuits in [21]-[25] have 
the feature of orthogonally controllable of resonance 
angular frequencies and quality factors but they use 
floating resistors. 

In this paper, a new high input impedance voltage-
mode universal biquadratic filter with three input terminals 
and seven output terminals using three DDCCs is pre-
sented. The proposed circuit uses four resistors and two 
grounded capacitors. The proposed circuit has the follow-
ing features: (i) high input impedance, (ii) using only 
grounded capacitors, (iii) five kinds of standard filter func-
tions can be obtained simultaneously from the same circuit 
configuration, and (iv) orthogonal controllability of reso-
nance angular frequency and quality factor. Moreover, if 
one of the output terminals at the proposed circuit is not 
required (deleted), five kinds of filter functions still can be 
obtained from the circuit by appropriate selecting the input 
terminals. This circuit configuration needs not passive 
component matching condition in the realization of all 
filter types and using only grounded passive components. 
With respect to the multi-inputs universal biquads in [5], 
[10]-[14], the resonance angular frequency and quality 
factor can be orthogonally controllable in the proposed 
circuit. With respect to the three inputs universal biquads 
in [15]-[18], the proposed circuit needs no passive compo-
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nents matching conditions in the realization of allpass filter 
functions. Comparisons of some multi-inputs biquads are 
given in Tab. 1. Tab. 1 shows the features of the proposed 
circuit in orthogonally controllable of resonance angular 
frequency and quality factor and using only grounded pas-
sive components. Comparisons of some multi-outputs 
biquads that can realize all of the standard filter functions 
simultaneously are given in Tab. 2.  

2. Circuit Description 
Using standard notation, the port relations of an ideal 

DDCC can be characterized by 
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where the plus and minus signs indicate whether the con-
veyor is configured as a non-inverting or inverting type 
circuit, termed DDCC+ or DDCC-.  

The proposed configuration is shown in Fig. 1. The 
output voltages can be expressed as:  
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Fig. 1.  The proposed universal filter. 
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From (2)–(8), we can see that six circuit types can be 
obtained from Fig. 1: 

(1) If Vin2 = Vin3 = 0 (grounded); Vin1 = input voltage 
signal, a notch filter can be obtained at Vout1, three band-
pass filters can be obtained at Vout2, Vout4 and Vout6, a low-
pass filter can be obtained at Vout3, a highpass filter can be 
obtained at Vout5 and and if R4 = R1, an allpass filter can be 
obtained at Vout7.  

(2) If Vin1 = Vin3 = 0 (grounded); Vin2 = input voltage 
signal, five bandpass filters can be obtained at Vout1, Vout2, 
Vout4, Vout6 and Vout7, a lowpass filter can be obtained at 
Vout3, and a highpass filter can be obtained at Vout5. 

(3) If Vin1 = Vin2 = 0 (grounded); Vin3 = input voltage 
signal, four highpass filters can be obtained at Vout1, Vout4, 
Vout6 and Vout7 and a bandpass filter can be obtained at Vout3. 

(4) If Vin3 = 0 (grounded), then Vin1 = Vin2 = input volt-
age signal, an allpass filter can be obtained at Vout1, three 
bandpass filters can be obtained at Vout2, Vout4 and Vout6, 
a lowpass filter can be obtained at Vout3 and a highpass 
filter can be obtained at Vout5. 

(5) If Vin2 = 0 (grounded), then Vin1 = Vin3 = input volt-
age signal and R3 = R1, two lowpass filters can be obtained 
at Vout1 and Vout2 and a bandpass filter can be obtained at 
Vout5. 

(6) If Vin1 = 0 (grounded), then Vin2 = Vin3 = input volt-
age signal and R3 = R1, a lowpass filter can be obtained at 
Vout2 and a bandpass filter can be obtained at Vout5. 
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 Active 
device 

Needs 
inverting 

inputs 

Grounded 
passive 

components 

Floating 
passive 

components 

Matching 
constraints 

High input 
impedance  

ωo/Q orthogonal 
controllability 

Kinds of filter 
functions 

simultaneously 

[5] three 
CCIIs 

yes 0 4 no yes no 1 

[10] three 
DDCCs 

no 4 0 no yes no 1 

[11] one 
DDCC 

one 
FDCCII 

no 4 0 no yes no 1 

[12] three 
DDCCs 

no 5 0 yes yes no 1 

[13] three 
DDCCs 

no 4 0 no yes no 4 

[14] One 
DDCC 

one 
FDCCII 

no 4 0 no yes no 4 

[15] 
Fig. 3 

three 
DVCCs 

no 5 0 yes yes yes 1 

[16] four 
CFAs 

no 3 4 yes yes yes 1 

[17] three 
CFAs 

no 4 3 yes yes yes 1 

[18],  
Fig.  1 

three 
DVCCs 

no 5 1 yes yes no 1 

[18], 
Fig. 2 

two 
DVCCs 

one 
DDCC 

no 6 0 yes yes yes 1 

New 
circuit 

three 
DDCCs 

no 5 0 no yes yes 4 

 
Tab. 1. Comparisons of some multi-inputs biquads (The resistor R4 in the proposed circuit is shorted). 

 
 

 Active 
device 

Grounded 
passive 

components 

Floating 
passive 

components 

Matching 
constraints 

High input 
impedance 

ωo/Q orthogonal 
controllability 

[15], 
Fig. 2 

three 
DVCCs 

5 0 yes yes no 

[19], 
Fig. 1 

two 
FDCCIIs 

4 0 no yes no 

[20] three 
DDCCs 

3 1 no yes no 

[21] five  
CFAs 

5 3 yes yes yes 

[22] two 
DVCCs 

3 2 yes no yes 

[23] three 
DVCCs 

3 2 yes yes yes 

[24]  three 
DDCCs 

4 1 no yes yes 

[25] three 
DVCCs 

4 2 yes yes yes 

New 
circuit 

three 
DDCCs 

5 1 yes yes yes 

 
Tab. 2. Comparisons of some biquads that can realize all of the standard filter functions simultaneously. 
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The resonance angular frequency 0 and quality 
factor Q are obtained by 
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In first circuit type, all standard filter functions can be 
simultaneously obtained from the same circuit configura-
tion. If the output terminal Vout7 is not required, the floating 
resistor R4 is not needed and can be shorted. Note that if 
the output terminal Vout7 is not needed, five kinds of filter 
functions still can be realized by appropriate selecting the 
input terminals without component matching condition and 
using only grounded passive components.   

The proposed circuit uses grounded capacitors, which 
are attractive for integrated circuit implementation [7]. Due 
to the three input signals, Vin1, Vin2 and Vin3, are connected 
to the high input impedance input nodes of the three 
DDCCs (the y port of the DDCC), respectively, the pro-
posed circuit enjoys the feature of high input impedance. 
From (9), (10), the resonance angular frequency can be 
controlled by R2 or R3. The quality factor can be independ-
ently controlled by R1. Therefore, the resonance angular 
frequency and quality factor can be orthogonally controlla-
ble.  

3. Sensitivities Analysis 
Taking the non-idealities of the DDCC into account, 

the relationship of the terminal voltages and currents can 
be rewritten as 
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where k1(s), k2(s), and k3(s) represent the frequency 
transfer functions of the internal voltage followers and 
k(s) represent the frequency transfer function of the inter-
nal current follower of the k-th DDCC. They can be ap-
proximated by first order lowpass functions, which can be 
considered to have a unity value for frequencies much 
lower than their corner frequencies [2]. If the circuit is 
working at frequencies much lower than the corner fre-
quencies of k1(s), k2(s), k3(s) and k(s), then 
k1(s) = k1 = 1 - k1 and k1 (k1 << 1) denotes the volt-
age tracking error from y1 terminal to x terminal of the k-th 
DDCC, k2(s) = k2 = 1 - k2 and k2 (k2 << 1) denotes 

the voltage tracking error from y2 terminal to x terminal of 
the k-th DDCC, k3(s) = k3 = 1 - k3 and k3 (k3 << 1) 
denotes the voltage tracking error from y3 terminal to x 
terminal of the k-th DDCC and k(s) = k = 1 - ki and ki 
(ki  << 1) denotes the current tracking error of the k-th 
DDCC. The denominator of the non-ideal output voltage 
function for Fig. 1 becomes 
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The resonance angular frequency 0 and quality 
factor Q become 
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The active and passive sensitivities of 0 and Q are 
shown as    
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All the active and passive sensitivities are no larger 
than 1. 

4. Influence of Parasitic Elements 
A non-ideal DDCC model is shown in Fig. 2 [26]. It 

is shown that the real DDCC has parasitic resistors and 
capacitors from the y1, y2, y3 and z terminals to the ground, 
and also, a series resistor at the input terminal x. Taking 
into account the non-ideal DDCCs and assuming the cir-
cuits are working at frequencies much lower than the cor-
ner frequencies of i(s), and j(s), namely, i  j  1. 
Moreover, in practical DDCCs, the external resistors can 
be chosen to be much smaller than the parasitic resistors at 
the y and z terminals of DDCCs and much greater than the 
parasitic resistors at the x terminals of DDCCs, i.e. Ry, Rz 
>> Rk >> Rx. The external capacitances C1 and C2 can be 
chosen to be much greater than the parasitic capacitors at 
the y and z terminals of DDCCs, i.e. Cy, Cz << C1, C2. 
Furthermore, assuming that the resistances R4 = R1 and the 
parasitic capacitances at the y terminals and z terminals of 
the DDCCs are equal, i.e. Cy  Cz. 
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Fig. 3. The CMOS realization of the DDCC. 

 

 
Fig. 2. The non-ideal DDCC model.  

Under these conditions, the denominator of Fig. 1 
becomes 
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where  

221111 ' yz CCCC  ,  31222 ' yz CCCC  , 

111 ' xRRR  ,  222 ' xRRR  ,  333 ' xRRR  .  

In (15), undesirable factors are yielded by the non-
idealities of the DDCCs. The capacitance Cz becomes 
effective at very high frequency. To minimize the effects of 
the DDCCs’ non-idealities, the operation angular fre-
quency should be restricted to the following conditions 
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Moreover, application of the Routh-Hurwitz test to 
the denominator of (15) shows that Cz may cause instabil-
ity. According to this test, the transfer functions is stable if 
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It is not difficult to satisfy this condition, since the 
external capacitance C2 can be chosen very much greater 
than Cz. 

5. Simulation Results 
HSPICE simulations were carried out to demonstrate 

the feasibility of the proposed circuit in Fig. 1. The DDCC 
was realized by the CMOS implementation of Elwan and 
Soliman [2] (by ungrounding the gate of MOSFET M2 and 
treating this as the third y-input y3) and is redrawn in 
Fig. 3. The simulations use TSMC (Taiwan Semiconductor 
Manufacturing Company, Ltd.) 0.18μm level 49 CMOS 
technology process parameters. The supply voltages are 
V+ = +1.25 V, V- = -1.25 V, Vb1 = -0.45 V and Vb2 = 0.3 V. 
The dimensions of the NMOS transistors in the DDCC are 
set to be W = 4.5 μm and L = 0.9 μm. The dimensions of 
the PMOS transistors in the DDCC are set to be W = 9 μm 
and L = 0.9 μm. Fig. 4 (a)-(g) represent the simulated fre-
quency responses for the notch (Vout1), inverting bandpass 
(Vout2), lowpass (Vout3), bandpass (Vout4), highpass (Vout5), 
inverting bandpass (Vout6) and allpass (Vout7) filters of 
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Fig. 1, respectively, designed with Vin2 = Vin3 = 0 
(grounded), Vin1 = input voltage signal, Q = 1 and 
fo = 1.5915 MHz: C1 = C2 = 10 pF and R1 = R2 = R3 = R4 = 
10 k . Fig. 5 represents the INOISE and ONOISE simula-
tion results of the bandpass filter at Vout4. Fig. 6 shows the 
the total harmonic distortion (THD) of the Vout2 and Vout4 

 
(a) 

 
(b) 

 
(c) 

output voltages (bandpass signals). They are given at 
1.5915 MHz operation frequency with Vin1 = input voltage 
signal, Vin2 = Vin3 = 0 (grounded) and Q = 1: C1 = C2 = 
10 pF and R1 = R2 = R3 = R4 = 10 k . Fig. 6 shows that the 
THDs of Vout2 and Vout4 are less than 3 percent at 1000 mV 
output voltages (peak to peak). 

 
(d) 

 
(e) 

 
(f) 
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(g) 

Fig. 4. Simulated frequency responses of Fig. 1 designed with 
Vin2 = Vin3 = 0 (grounded), Vin1 = input voltage signal: 
(a) notch filter (Vout1), (b) inverting bandpass filter 
(Vout2), (c) lowpass filter (Vout3), (d) bandpass filter 
(Vout4), (e) highpass filter (Vout5), (f) inverting bandpass 
filter (Vout6), (g) allpass filter (Vout7). 

 
Fig. 5. INOISE and ONOISE simulation results of the 

proposed bandpass filter at Vout4.  

 
Fig. 6. THD analysis results of the proposed bandpass filters 

at Vout2 and Vout4. 

Fig. 7 represents the simulated frequency responses 
for the allpass (Vout1) filter of Fig. 1, designed with Vin3 = 0 
(grounded), Vin1 = Vin2 = input voltage signal, Q = 1 and fo 
= 1.5915 MHz: C1 = C2 = 10 pF and R1 = R2 = R3 = R4 = 
10 k. Fig. 8 represents the simulated gain responses for 
the inverting highpass (Vout1) filter of Fig. 1, designed with 
Vin1 = Vin2 = 0 (grounded); Vin3 = input voltage signal, Q = 
1 and fo = 1.5915 MHz: C1 = C2 = 10 pF and R1 = R2 = R3 
= R4 = 10 k. Fig. 9 represents the simulated frequency 
responses for the inverting bandpass (Vout2) filter of Fig. 1 
as the resistor R1 in Q is varied designed with Vin2 = Vin3 = 
0 (grounded) and Vin1 = input voltage signal: C1 = C2 = 
10 pF and R2 = R3 = R4 = 10 k. The quality factor was 
found to vary as 3.157, 1.988, 1.468 and 0.994 for four 
values of R1 as 2 k, 4 k, 6 k and 10 k, respectively. 
All the simulation results are coherent and support the 
theoretical analyses.  

 
Fig. 7.  Simulated frequency responses for the allpass filter 

(Vout1) of Fig. 1 designed with Vin3 = 0 (grounded),  
Vin1 = Vin2 = input voltage signal, C1 = C2 = 10 pF, and 
R1 = R2 = R3 = R4 = 10 k. 

 

Fig. 8. Simulated gain responses for the highpass filter (Vout1) 
of Fig. 1 designed with Vin1 = Vin2 = 0 (grounded);  
Vin3 = input voltage signal, C1 = C2 = 10 pF, and  
R1 = R2 = R3 = R4 = 10 k. 
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Fig. 9.  Simulated frequency responses for the inverting 

bandpass filter of Fig. 1 designed with C1 = C2 = 10 pF 
and R2 = R3 = R4 = 10kΩ.  
 ____ , ideal curve; o o o, R1 = 2 kΩ; x x x, R1 = 4 kΩ; 
□  □  □ , R1 = 6 kΩ; * * *, R1 = 10 kΩ. 

The DDCC has parasitic resistor from the z terminal 
to the ground (Rz) [26]. When the z terminal load of the 
DDCC is a capacitor (C), it introduces a pole produced by 
Rz and C at low frequency. This can explain why Fig. 4(b), 
4(d), 4(f) and Fig. 8 have non-ideal phase responses at low 
frequencies. This effect can be minimized by using larger 
loading capacitors. 

6. Conclusion 
In this paper, a new high input impedance voltage-

mode universal biquadratic filter with three input terminals 
and seven output terminals is presented. The proposed 
circuit uses three DDCCs, four resistors and two grounded 
capacitors and offers the following advantages: high input 
impedance, the use of only grounded capacitors, the versa-
tility to synthesize lowpass, bandpass, highpass, notch, and 
allpass responses, simultaneously and orthogonal control-
lability of resonance angular frequency and quality factor.  

Finally, it should be mentioned that if the output ter-
minal Vout7 at the proposed circuit is not required, the float-
ing resistor R4 can be deleted. Note that five kinds of filter 
functions still can be obtained from this circuit by appro-
priate selecting the input terminals. This circuit configura-
tion needs not passive component matching condition in 
the realizations of all filter functions and using only 
grounded passive components.  
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