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Abstract. A new variable step size (VSS) control technique 
employing cross correlation between channel output and 
error signal has been proposed as a solution to the prob-
lem of slow convergence of blind and non-blind equaliza-
tion algorithms. The new method resolves the conflict be-
tween the convergence rate and low steady state error of 
the fixed step-size conventional blind and non-blind equali-
zation algorithms, such as Constant Modulus Algorithm 
(CMA) and Least Mean Squares (LMS) algorithm. Com-
puter simulations have been performed to verify the per-
formance of the proposed method in frequency selective 
Rayleigh fading channels. The proposed technique has 
been compared with the popular non-blind equalizers, 
LMS and Recursive Least Squares (RLS) algorithms, and 
blind equalizers, the conventional CMA, Zhao’s VSS-CMA 
and Demir’s VSS-CMA as benchmarks. The obtained 
simulation results have demonstrated that the proposed 
VSS-CMA and VSS-LMS algorithms have considerably 
better performance than the conventional CMA, Zhao’s 
VSS-CMA and Demir’s VSS-CMA blind equalization algo-
rithms, and the conventional LMS non-blind equalization 
algorithm. 
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1. Introduction 
Inter symbol interference is one of the greatest im-

pediments of high data rate digital communication systems. 
In order to overcome the effects of the impairment, several 
channel estimation and equalization methods have been 
developed in the last few decades. One of the best ways to 
cancel the effects is to use an equalizer filter which elimi-
nates the ISI while combining the multi path energy [1]-
[3]. In practice, Linear Transversal Equalizers (LTE) and 
Decision Feedback Equalizers (DFE) are the most common 
structures used [4], [5]. But, in suppressing the ISI, the 
LTE inevitably enhances the channel noise. This basic 
limitation of a LTE’s ability to cope with severe ISI has 

motivated a considerable amount of research into subopti-
mal nonlinear equalizers with low computational complex-
ity such as the DFE. 

The decision feedback equalization is a technique 
widely used for removing ISI in frequency selective multi-
path channels. The major problem in DFE is the so called 
error propagation; a decision error propagating through the 
feedback filter enhances ISI instead of cancelling it. Thus, 
a single error may cause a burst of errors in subsequent 
decisions. As reported in [5], the performance loss due to 
this phenomenon is approximately 2 dB for some channels. 
However, the existing blind algorithms, originally designed 
for transversal equalizers [6], [7], cannot be directly 
applied with a recursive equalizer, such as a DFE, because 
of the phenomenon of error propagation that characterizes 
a decision feedback updating. Namely, the enormous 
number of errors at the start of equalization restricts the use 
of blind adaptation to the case of a mild channel. Recently, 
several authors have presented various approaches to over-
come this major defect of decision feedback blind equaliz-
ers [7]-[10]. Therefore, the use of soft decisions to mitigate 
error propagation in a conventional DFE is considered for 
application to blind equalization in this paper. 

In order to achieve high speed reliable communica-
tions, channel identification and equalization are necessary 
to overcome the effects of ISI. Conventionally, channel 
equalizers are of two types: as blind and non-blind. The 
non-blind channel equalizers waste bandwidth by their 
dependence on a training sequence. On the other hand, 
blind channel equalization is one of the most important 
process during which an unknown input data sequence is 
recovered from the output signal of an unknown channel. 
Unlike the conventional adaptive non-blind channel 
equalizers, the blind channel equalizers do not require any 
training sequence. Instead, the statistical properties of the 
transmitted signals are exploited to carry out the equaliza-
tion at the receiver without access to the transmitted sym-
bols. Hence, they are capable of saving valuable bandwidth 
that is wasted by sending training sequence. 

The popular constant modulus algorithm (CMA) pro-
posed by Sato [11] in 1975 and the famous least mean 
squares (LMS) algorithm proposed by Widrow [12] in 
1966 are widely employed in communications such as 
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blind and non-blind channel equalization and identification 
for their low computational complexity and simple struc-
ture. However, due to using fixed step size, the CMA and 
LMS algorithms suffer from a conflict between conver-
gence rate and steady-state error. A larger step size can 
speed up the convergence rate, but at the same time it 
increases the steady-state error. A smaller step size can 
decrease the steady-state error, but the convergence rate 
will be poor.  

In order to solve this problem, many variable step size 
(VSS) algorithms have been proposed [13]-[23]. The prin-
ciples of these VSS-CMA and VSS-LMS algorithms are: 
a larger step size is chosen to speed up the convergence at 
the beginning of the adaptive process, and the step size will 
get smaller at the steady state region. Xiong and co-work-
ers [13] and Aboulnasr and Mayyas [22] proposed a VSS 
algorithm based on the lag(1) error autocorrelation function 
between )(ˆ ke  and )1(ˆ ke . Here, )(ˆ ke is the output error 

of the blind and non-blind identification system. However, 
lag(1) error autocorrelation is a poor index of convergence 
closeness and poor noise immunity. Liyi and co-workers 
[14] proposed an alternative scheme that considers 
a nonlinear function of instantaneous error for adjusting the 
step-size parameter. Shahzad and co-workers [15] use two 
adaptive equalizers that work in parallel to increase the 
speed of convergence while reducing the tradeoff between 
the convergence speed and steady state error. Zhao and co-
workers [16] derive a new VSS constant modulus blind 
equalization algorithm, which uses the cross-correlation 
coefficient estimation between the input signal and the 
error signal to control the step-size of CMA. However, the 
above algorithms are based on an assumption that the input 
is statistically independent. In the case of correlated signal, 
especially highly correlated signal, these VSS algorithms 
converge slowly. Additionally, most of these approaches 
involve significant increases in complexity or computa-
tional cost. 

On the other hand various kind of successful studies 
have concentrated on adjusting the step-size of the CMA 
and LMS algorithm obtaining a better convergence and 
error performance using analytical or fuzzy logic based 
approaches [17], [18]. As far as authors’ knowledge all 
these systems were considering an analytic approach to the 
step size adjustment by doing either considering error 
variations or obtaining a possible trajectory for the training. 
However, instead of using an analytic approach, this work, 
inspired by [16], [20] and [21], aims to design a training 
trajectory for the simple CMA and LMS algorithm em-
ploying cross correlation between channel output and error 
signal which provides a simple and more deterministic 
control on the training trajectory. Thus, with the help of 
proposed technique the performance of the conventional 
CMA and LMS algorithms have become comparable to 
other blind adaptive VSS-CMA and non-blind adaptive 
VSS-LMS training algorithms. Simulation results have 
shown that the proposed VSS-CMA and VSS-LMS algo-
rithms perform better than the conventional CMA, Zhao’s 

VSS-CMA [16] and Demir’s VSS-CMA [21] blind training 
algorithms, and the conventional LMS non-blind training 
algorithm found in the literature. 

The rest of the paper is organized as follows: The 
following section summarizes the blind and non-blind 
channel equalizer trainings. Section 3 explains some of the 
VSS-CMA algorithms. The proposed VSS-CMA algorithm 
is introduced in detail in Section 4. Section 5 evaluates the 
obtained MSE and BER performances to verify the feasi-
bility and robustness of the proposed technique and finally, 
the paper is concluded in Section 6. 

2. Channel Equalization 
The received signal of a wideband channel )(kv  is 

given by  
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where )(kx is the transmit data sequence, )(ih  is the ith tap 
coefficients of the tapped-delay-line filter model of a chan-
nel, L is the tap number of the channel, )(k  is the addi-
tive white Gaussian noise (AWGN) component and k is the 
time index. The channel is assumed quasi-static in (1), for 
which the fading channel coefficients are constant over 
duration of one frame and changed independently from one 
frame to the next frame. The carrier frequency offset effect 
is also ignored in (1). 

2.1 Non-Blind Equalization 

The ISI of (1) is cancelled by a time domain equalizer 
filter. Linear Transversal Equalizer (LTE) and Decision 
Feedback Equalizer (DFE) filter can be used for this aim. 
When LTE filter is employed, its output, )(ˆ kx , is given by 
[4], [5] 
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where N + 1 is the tap number of LTE and w(i) is the ith 
LTE coefficient. For an ordinary training case, the error 
function of an equalizer is calculated by 

 )(ˆ)()(ˆ kxLkxke offset   (3) 

where training is supervised which means the training 
sequence is known by the receiver. The number indicated 
by Loffset is attained for the adjustment of the center tap of 
equalizer filter. The coefficient update equation of the 
LMS algorithm for an equalizer filter is given by 

 Niikvkekiwiw LMS ...,1,0),()(ˆ)()()1( *   .(4) 

In (4), µLMS(k) is the step size of the LMS algorithm and 
v*(k – i) is the complex conjugate of kth incoming sample 
v(k) with the shift number i for ith equalizer coefficients.  
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2.2 Blind Equalization 

If a training sequence is not issued in the transmis-
sion, one of the blind algorithms has to be applied. For the 
adaptive blind training, the CMA algorithm is one of the 
best training techniques, which uses the cost function [6], 
[24] 

 }))(ˆ{()( 2
2

2  kxEwJCMA . (5) 

Here  E  is the expectation operator, )(ˆ kx  is the kth esti-
mation of the equalizer filter given by (2), and 2  is a real 
positive constant calculated by })({/})({

24
2 kxEkxE  

using the transmitted data. 

The error function to verify CMA criterion is 

 ))(ˆ)((ˆ)(ˆ
2

2 kxkxke  . (6) 

Using a stochastic gradient descent (SGD) algorithm 
to define the update equation, the coefficient vector is 
adapted by [6], [24] 

 Niikvkekiwiw CMA ...,1,0),()(ˆ)()()1( *    (7) 

where µCMA(k) is the step size parameter of CMA, )(ˆ ke is 
the kth estimate of error function using CMA criterion. In 
order to guarantee a stable operation in all VSS-CMA and 
VSS-LMS algorithms, a sufficient condition for the step 
size parameter is [4], [5] 
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where tr[R] is the trace of the input signal x(k) autocorrela-
tion matrix R.  

3. VSS-CMA Algorithms 
VSS-CMA algorithms have been used extensively in 

blind adaptive filtering to improve the performance of the 
fixed step size conventional CMA. Common aspects of 
several VSS-CMA algorithms are summarized in this sec-
tion. The VSS-LMS algorithms are explained in detail in 
[19], [20]. 

3.1 VSS-CMA – 1 

Xiong’s algorithm [13] uses the autocorrelation be-
tween )(ˆ ke  and )1(ˆ ke  in order to adjust the step size 
parameter. In this way, the algorithm can effectively 
maintain a reasonable immunity to uncorrelated additive 
noise. To update the variable step size Xiong’s approach 
[13] considers the square of the error signal autocorrelation 
estimate obtained through a low-pass filter given by 

 )1(ˆ)(ˆ)1()1()(  kekekckc   (9) 

where c(k) is the estimate value of autocorrelation of error  

signal and   is positive control parameter. The setting of 
the step size parameter is 

 )()( 2 kck    (10) 

where   is a scale factor used for controlling the bounds 
of the step size )(k . 

3.2 VSS-CMA – 2 

Liyi’s algorithm [14] utilizes a nonlinear function of 
remainder error to control the step size. The remaining 
errors should be properly transformed, and then control the 
step size, that is 

  ))(ˆexp(1)( kek    (11) 

where   is the proportionality factor and   is positive 
control parameter. It is used to control the value scope of 

)(k . When 1])(ˆexp[10  ke , therefore the value 
scope of )(k satisfies   )(0 k . 

3.3 VSS-CMA – 3 

Zhao et al. proposed a new VSS-CMA based on cross 
correlation estimation between the input signal )(kx  and 
error signal )(ˆ ke to control the step size of CMA [16]. The 
step size parameter is calculated as in (12) in Zhao’s algo-
rithm. 
 )()( kACCk    (12) 

where  is the step size factor, to guarantee convergence 
the value of   must make the maximum of )(k is smaller 
than µmax. )(kACC  is average cross correlation coefficient 
estimation between the input signal and the error signal, 
calculated by 
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where Ci(k) is the cross correlation coefficient estimation 
between )1( kx  and )(ˆ ke . Ci(k) is decided by the follow-
ing formulas 

 )(ˆ)1()1()( 2 kekpkp ee   , (14) 
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where   is the positive control parameter. At first the 
cross correlation of )(kx  and )(ˆ ke  is strong, )(kACC  is 
large, )(k  is large too, the algorithm convergences 
quickly. After convergence, the cross correlation of )(kx  
and )(ˆ ke  is weak, )(kACC  is small, )(k  is small too. 
Therefore, )(kACC  can meet the need of the algorithm 
with variable step size. 
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4. The Proposed Variable Step Size 
Constant Modulus Algorithm 
The block diagram of the proposed VSS-CMA algo-

rithm based on cross correlation between channel output 
)(kv  and error signal )(ˆ ke  is given in Fig. 1. 
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Fig. 1.  The proposed VSS-CMA algorithm based on cross 

correlation of channel output and error signal with soft 
decision feedback equalizer. 

The proposed method, inspired by [16], [20] and [21], 
considers the cross correlation function between the chan-
nel output and error signal, improving the convergence 
speed and performance. The greatest novelty of this study 
is different from [16] that the channel output signal is used 
in cross correlation. Zhao’s technique needs the transmitted 
signal in the receiver. However, since the proposed method 
employs the channel output signal, it does not require the 
transmitted signal. Moreover, the proposed VSS method 
provides both noise and ISI immunity since the channel 
output signal (1) includes both ISI and noise information. 
So far there are no any published works on the proposed 
method, as far as author’s concern. Thus, this contribution, 
inspired by [16], [20] and [21], investigates the proposed 
technique in the context of blind and non-blind channel 
equalizations. 

Let us consider )(kQ  as a smooth estimation of the 
cross correlation function between error signal, )(ˆ ke  and 
channel output, )(kv  given by 
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Thereafter the step-size update equation is calculated 
by 
 )()()1( kQkk    (19) 

where α,  and γ are positive control parameters.  

In order to illustrate the accuracy of the proposed 
method Soft Decision Feedback Equalizer (SDFE) filter 
has been employed for simulated communication channels 
in this study. The output of SDFE filter, )(ˆ kx is calculated 
by 
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where Lff and Lsfb is the number of feed forward filter (FFF) 
and soft feedback filter (SFBF) taps of the SDFE. The 
update equations of the CMA algorithm for FFF and SFBF 
components of the SDFE are given by 

0...,1,),()(ˆ)()()1( *  ffff LLiikvkekiwiw  , (21) 

sfbLiikxkekiwiw ...,2,1),(ˆ)(ˆ)()()1( *   . (22) 

The step size update equations and computational 
complexities of subjected VSS-CMA algorithms are given 
by Tab. 1 in simulation studies. 

The comparison of the computational complexities of 
the step size update equations required for per weight up-
date is given by Tab. 1. Here, N is the tap number of the 
SDFE filter. The greatest advantage of the CMA algorithm 
is the fact that it requires far less computational complexity 
as for the other blind algorithms. 
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Tab. 1.  The step size update equations and computational 
complexities of VSS-CMA algorithms. 

The total computational complexity of the conven-
tional CMA algorithm is 8N + 6 multiplications and 8N 
additions at each iteration [18]. The additional computa-
tional complexity brought by the proposed VSS-CMA 
method to the CMA algorithm is 2N + 7 multiplications 
and 2N + 2 additions. The complexity incurred by the pro-
posed technique does not prevent its application. However, 
the proposed method requires 3N + 5 multiplications and N 
additions less computational complexity than whom is 
using the VSS-CMA [16], proposed by Zhao et al. On the 
other hand, it can be seen from Tab. 1 that the computa-
tional complexity of the proposed method is the same as 
our prior work [21]. Although these complexities are the 
same, the proposed technique is more successful than our 
prior work [21] since the proposed VSS method provides 
both noise and ISI immunity. Thus, a more robust version 
of CMA algorithm is developed with a very small com-
plexity concern. 

5. Computer Simulation Results 
In this section, simulation results are illustrated to 

verify the performance of the proposed VSS-CMA and 
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VSS-LMS algorithms in frequency selective Rayleigh 
fading channels.  

The simulation studies have composed of two stages. 
In the first stage of the studies are performed using the 
blind channel equalization. In the second stage of the 
studies are implemented employing the non-blind channel 
equalization.  

5.1 Simulation Results of the Blind Channel 
Equalization 

The simulation studies of the blind channel equalizers 
are performed via 1000 Monte Carlo type iterations using 
the QPSK modulation. In this simulation, a three taps 
channel profile with average coefficient amplitudes given 
by (0.407, 0.815, 0.407), which is defined by Proakis and 
corresponds to an RMS delay spread of approximately 
42 ns, is used [5]. A nine taps SDFE filter, composed of 
a feed forward filter (FFF) of five taps and soft feedback 
filter (SFBF) of four taps, is used in both blind and non-
blind channel equalization. The proposed method is com-
pared with Zhao’s VSS-CMA [16], Demir’s VSS-CMA 
[21] and fixed step size conventional CMA for blind 
equalization, and conventional LMS algorithm for non-
blind equalization. The step size parameter for conven-
tional CMA was equal to 0.005. The step size factor  was 
equal to 0.63 and the positive control parameter   was 
equal to 0.75 for Zhao’s VSS-CMA. Positive control pa-
rameters,  was equal to 0.978,  was equal to 0.996 and 
 was equal to 0.85 for Demir’s VSS-CMA. The step size 
parameter was equal to 0.045 for conventional LMS algo-
rithm. Positive control parameters,  was equal to 0.995, 
 was equal to 0.822 and  was equal to 0.984 for the 
proposed VSS-CMA. Maximum and minimum step size 
values are limited to 0.01 and 5E-7 respectively for all 
simulated VSS-CMA algorithms. Equalizer coefficients are 
initialized to zero value, except the central tap which is set 
to unit value before blind adaptation. 

Two performance criteria were used to assess the 
convergence rate of blind and non-blind equalizers in 
simulation studies. The first criterion was a decision-based 
estimated mean square error (MSE) metric and the second 
criterion was the bit error rate (BER) metric in this study. 

Blind learning curves of the conventional CMA, 
Zhao’s VSS-CMA [16], Demir’s VSS-CMA [21] and the 
proposed VSS-CMA equalizers are obtained in the value of 
Signal to Noise Ratio (SNR) of 20 dB illustrated in Fig. 2 
for a stationary environment. The length of iteration is 
4096 QPSK symbols for the MSE performance compari-
sons in all simulated algorithms.  

Fig. 2 shows that Zhao’s VSS-CMA [16] algorithm 
has faster convergence speed and lower MSE floor than the 
conventional CMA. It is observed that the performance of 
the VSS-CMA [21] is exceeding to the performance of the 
conventional CMA and VSS-CMA [16] and converges to 
the lower MSE floor. However, the proposed technique 

outperforms the performance of all blind equalization algo-
rithms and converges to the lowest steady state MSE floor. 
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Fig. 2.  Comparison of the MSE convergence performances of 

the blind adaptive channel equalizers for a stationary 
environment. 

Performances of the blind learning curves of the four 
equalizers, namely, the conventional CMA, VSS-CMA 
[16], [21] and the proposed VSS-CMA, are compared in 
Fig. 3 in the value of SNR of 20 dB for a non-stationary 
environment. In this study, a three taps channel profile with 
average coefficient amplitudes given by (0.407, 0.815, 
0.407), which is defined by Proakis, is used [5] in the first 
region as can be seen in Fig. 3. When the iteration number 
is 2000, channel profile abruptly changes to an exponential 
decay in the second region. 

0 500 1000 1500 2000 2500 3000 3500
0.4

0.5

0.6

0.7

0.8

0.9

1

Iteration Number

M
SE

    VSS-CMA
Zhao et al.-2010

Conventional CMA

 Proposed VSS-CMA

Second RegionFirst Region

Simulated channel profile,
Proakis, {0.407, 0.815, 0.407}

Simulated Exponential Decay
channel profile

     VSS-CMA
Demir et al.-2012

 
Fig. 3.  Comparison of the MSE convergence performances of 

the blind adaptive channel equalizers for a non-station-
ary environment. 

Fig. 3 shows that Zhao’s VSS-CMA [16] algorithm 
has faster convergence and tracking speed than the con-
ventional CMA in both regions. It can be easily seen that 
Demir’s VSS-CMA [21] performs better performance than 
the conventional CMA and VSS-CMA [16] in both re-
gions. However, the proposed technique outperforms the 
performance of the three blind equalization algorithms and 
converges to the lowest steady state MSE floor in both 
regions. 
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The obtained comparative BER performances of non-
blind training, the conventional LMS algorithm, and blind 
trainings, the conventional CMA, the VSS-CMA [16], [21] 
and the proposed VSS-CMA are given in Fig. 4. In this 
simulation, the same conditions are valid as in Fig. 2 for all 
blind training algorithms, except the length of the payload 
data after blind training was 4096 symbols of QPSK 
modulation. It should be mentioned here that the BER 
performance samples are obtained after 4096 iterations of 
blind training and 450 iterations of non-blind training. 
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Fig. 4.  Comparison of the BER performances of the blind and 

non-blind adaptive channel equalizers. 

The obtained BER performances agree with the MSE 
performances given in Fig. 2. It is observed that the VSS-
CMA [16], proposed by Zhao et al., performs better than 
the conventional CMA and it also converges to the lower 
BER floor. On the other hand, the VSS-CMA [21], pro-
posed by Demir et al., has more superior performance than 
the conventional CMA, VSS-CMA [16] and conventional 
LMS algorithm. However, the BER performance of the 
proposed VSS-CMA algorithm outperforms the perform-
ance of the three blind equalizers, the conventional CMA 
and the VSS-CMA [16], [21], and conventional LMS non-
blind equalizer. While the LMS algorithm converges to 5E-
3 BER floor, the proposed method converges to 3E-3 BER 
floor. Thus, the proposed method improves the perform-
ance of the conventional CMA algorithm significantly. The 
controlled training by the proposed technique has become 
faster, very accurate and more stable. 

5.2 Simulation Results of the Non-Blind 
Channel Equalization 

The simulation studies of the non-blind channel 
equalizers are performed via 1000 Monte Carlo type itera-
tions using the QPSK modulation. In this simulation, a five 
taps channel profile with average coefficient amplitudes 
given by (0.227, 0.46, 0.688, 0.46, 0.227), which is defined 
by Proakis and corresponds to an RMS delay spread of 
approximately 42 ns, is used [5]. A thirteen taps SDFE 
filter, composed of a FFF of nine taps and a SFBF of four 
taps, is used in non-blind channel equalization. The pro-

posed method is compared with Zhao’s VSS-LMS [16], 
Demir’s VSS-LMS [21], fixed step size conventional LMS 
and conventional RLS algorithm for non-blind equaliza-
tion. The step size parameter for conventional LMS algo-
rithm was equal to 0.045 and the forgetting factor for con-
ventional RLS algorithm was equal to 0.999. The step size 
factor  was equal to 0.8 and the positive control parame-
ter   was equal to 0.968 for Zhao’s VSS-LMS algorithm. 
Positive control parameters,  was equal to 0.896,  was 
equal to 0.955 and  was equal to 0.832 for Demir’s VSS-
LMS algorithm. Positive control parameters,  was equal 
to 0.988,  was equal to 0.725 and  was equal to 0.996 
for the proposed VSS-LMS algorithm. Maximum and 
minimum step size values are limited to 0.1 and 5E-5 re-
spectively for all simulated VSS-LMS algorithms. Equal-
izer coefficients are initialized to zero value before non-
blind adaptation. 

Non-blind learning curves of the conventional LMS, 
conventional RLS, Zhao’s VSS-LMS [16], Demir’s VSS-
LMS [21] and the proposed VSS-LMS equalizers are ob-
tained in the value of SNR of 15 dB demonstrated in Fig. 5 
for a stationary environment. The length of iteration is 450 
QPSK symbols for the MSE performance comparisons in 
all simulated algorithms.  
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Fig. 5.  Comparison of the MSE convergence performances of 

the non-blind adaptive channel equalizers for a station-
ary environment. 

It is shown in Fig. 5 that Zhao’s VSS-LMS algorithm 
little accelerates the LMS, but it converges to the LMS 
algorithm at the end of the training. It is observed that the 
performance of the proposed VSS-LMS algorithm outper-
forms to the performance of the conventional LMS, VSS-
LMS algorithm published by Zhao et al. [16] and Demir’s 
VSS-LMS [21] algorithm and converges to the lower MSE 
floor and comes closer to the performance obtained by the 
conventional RLS algorithm. 

The performances of the non-blind learning curves of 
the five equalizers, namely, the conventional LMS, con-
ventional RLS, VSS-LMS [16], [21] and the proposed 
VSS-LMS, are compared in Fig. 6 in the value of SNR of 
15 dB for a non-stationary environment. In this study, 
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a five taps channel profile with average coefficient ampli-
tudes given by (0.227, 0.46, 0.688, 0.46, 0.227), which is 
defined by Proakis, is used [5] in the first region as can be 
seen from Fig. 6. When the iteration number is 450, chan-
nel profile abruptly changes to an exponential decay in the 
second region. 
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Fig. 6.  Comparison of the MSE convergence performances of 

the non-blind adaptive channel equalizers for a non-
stationary environment. 

The performances of the aforementioned algorithms 
are the same as stationary environment performances 
(Fig. 5) in the first region as can be seen from Fig. 6. How-
ever, the proposed technique outperforms the performance 
of the four non-blind equalization algorithms and con-
verges to the lowest steady state MSE floor in the second 
regions. 

The obtained BER performances of non-blind train-
ing, the conventional LMS, conventional RLS, normalized 
LMS (N-LMS) [25], the VSS-LMS [16], [21] and the pro-
posed VSS-LMS are given in Fig. 7. In this simulation, the 
same conditions are valid as in Fig. 5 for all non-blind 
training algorithms, except the length of the payload data 
after non-blind training was 450 symbols of QPSK modu-
lation. It should be mentioned here that the BER perform-
ance samples are obtained after 450 iterations of non-blind 
training. 
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Fig. 7.  Comparison of the BER performances of the non-blind 

adaptive channel equalizers. 

The obtained BER performances agree with the MSE 
performances given in Fig. . It can be easily seen that the 
proposed technique outperforms the performances of four 
non-blind equalization algorithms and comes closer to the 
performance obtained by the RLS algorithm. The perform-
ance of the proposed technique has also reduced approxi-
mately till 1 dB performance difference with RLS algo-
rithm and also cancelled the error floor. Thus, the proposed 
method improves the performance of the conventional 
LMS algorithm significantly.  

6. Conclusions 
In this paper, a new VSS-CMA blind and VSS-LMS 

non-blind equalizer based on cross correlation of channel 
output and error signal has been proposed as a solution to 
the problem of slow convergence of the fixed step size 
conventional CMA blind and LMS non-blind equalizer. 
Thus, the conflict is removed between the convergence rate 
and low steady state error of the fixed step-size conven-
tional CMA and LMS algorithm. Compared with a state of 
art low complexity blind and non-blind training schemes, 
the proposed method has simpler in computational re-
quirements, faster convergence and lower steady state 
error. It has been shown that a combination of conventional 
CMA and LMS with the proposed VSS technique provides 
an effective and robust way for adaptive blind and non-
blind equalization. So, the simple CMA and LMS has be-
come with a high performance blind and non-blind adap-
tive channel equalizer technique. The results of this study 
show that the proposed VSS-CMA and VSS-LMS is also 
demonstrated to be very suitable for high speed blind and 
non-blind trainings and channel tracking. 
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