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Abstract. The memory elements, memristor being the best 
known of them, driven by a periodical waveform exhibit the 
well-known pinched hysteresis loops. The hysteresis is 
caused by a memory effect which results in a nonzero area 
closed within the loop. This paper presents an analytical 
formula for the loop area. This formula is then applied to 
memory elements whose parameter-vs.-state maps are 
modeled in the polynomial form. The TiO2 memristor, 
a special subset of the above elements, is analyzed as 
a demonstration example. 
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1. Introduction 
The memory elements, namely memristors, memca-

pacitors and meminductors [1], driven by periodical wave-
forms, exhibit the well-known pinched hysteresis loops 
(PHLs). These loops can be observed in the current-voltage 
(i-v) coordinates for the memristor, in the charge-voltage 
(q-v) coordinates for the memcapacitor, and in the flux-
current (i-) coordinates for the meminductor. Since the 
areas bordered by the loops are specific measures of the 
memory effect of a device, their evaluation was proposed 
in several papers [2], [3]. However, the analysis given 
there is limited to ideal memristors. Note that ideal mem-
ristors are defined axiomatically in [4] via unambiguous 
the charge-flux constitutive relation (CR), which is a ge-
neric memristor characteristic, not depending on the way 
the memristor interacts with other elements in the applica-
tion network. We should discriminate such memristors 
from more general memristive systems [5], which can 
exhibit more complex behavior, violating the basic finger-
prints of “ideal” memristors. Analogously, the memca-
pacitors are defined by their unambiguous TIQ-flux con-
stitutive relations, where TIQ is the abbreviation for time-
domain integral of charge [6], [7], also denoted by the  

symbol  [8]. Such memcapacitors form a subset of more 
general memcapacitive systems [9]. The meminductors are 
characterized by their charge-TIF CRs, where TIF, also 
denoted by the symbol  [8], means time-domain integral 
of flux [10]. Meminductors are idealized versions of more 
general meminductive systems [9]. 

It is shown in [11] that the CR and the so-called pa-
rameter-vs.-state map (PSM) are equivalent memristor 
characteristics. The couples [parameter, state] are [mem-
ristance, charge] for the current-controlled memristor, and 
[memductance, flux] for the voltage-controlled memristor. 
As shown below, this concept can also be easily extended 
to other mem-elements. Than the PSM can serve as a uni-
versal characteristic for computing the areas of PHLs of 
memristors, memcapacitors, and meminductors. 

In spite of the fact that the areas bordered by pinched 
hysteresis loops are of various natures, depending on the 
type of the mem-system, three following reasons for their 
computation do not depend on their physical interpretation 
[12]: 1. The area is a specific measure of the memory effect 
of a system, and its evaluation is useful. 2. Via comparison 
of the lobe areas, located in the first and third quadrants, 
such cases can be identified when the systems are not ideal 
memory elements (then these areas are not equal). 3. If the 
area does not tend to zero when the frequency of the exci-
tation increases ad infinitum, then we do not have dealings 
with mem-system [11]. 

This paper deals with analytical computation of the 
areas of PHLs of memristors, memcapacitors, and memin-
ductors in the sense of ideal memory elements. That is why 
the results presented below cannot be generally applied to 
all memristive, memcapacitive and meminductive systems. 
The methodology of computing the area of memristor PHL 
from [3] is utilized. It is extended to all three types of 
mem-elements, focusing on the cases when the PSM of the 
element can be approximated by a polynomial. However, 
the starting procedure of the area computation enables 
working with arbitrary possible modeling of the PSM [3]. 
Finally, an example of the computation of the PHL area of 
the well-known TiO2 memristor is given. 
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2. Characteristics of Memory 
Elements for Computing the PHL 
Areas 
As summarized in [13], the memristors, memcapaci-

tors and meminductors can be described by the uniform 
equations: 

         ., utx
dt

d
tuxgty   (1) 

Here the variable y represents the element response to 
the excitation u, and x is the state variable. Tab. 1 summa-
rizes these variables for the voltage-controlled and current-
controlled memristors (VCMR and CCMR), voltage-con-
trolled and charge-controlled memcapacitors (VCMC and 
QCMC), and current-controlled and flux-controlled mem-
inductors (CCML and FCML). The constitutive relation of 
each element is a single-valued dependence of yI variable 
on the state variable, where yI represents the time-domain 
integral of the output variable. The element parameters in 
the PSM function in the last column of Tab. 1 are the mem-
ductance GM, memristance RM, memcapacitance CM, in-
verse memcapacitance DM, meminductance LM, and inverse 
meminductance M. 
 

element output 
y 

input 
u 

state 
x 

CR 
yI(x) 

PSM 
g(x) 

VCMR i v  q() GM() 
CCMR v i q (q) RM(q) 
VCMC q v  () CM() 
QCMC v q =TIQ () DM() 
CCML  i q (q) LM(q) 
FCML i  =TIF q() M() 

Tab. 1. Specification of the variables in (1) for memristors 
(MR), memcapacitors (MC), and meminductors (ML). 

The g(x) function, describing the parameter-vs.-state 
map, together with the waveform of the input signal u(t), is 
necessary for computing the area of the PHL described 
below. The procedure is universal for an arbitrary type of 
the memory element from Tab. 1. 

3. Area Computation from Parameter-
vs.-State Map 
Consider that the mem-element defined by (1) is 

driven by a signal 

 )sin()( max tUtu   (2) 

where Umax,  = 2/T, and T are the amplitude, angular 
frequency, and repeating period, respectively. The hystere-
sis loop of a memristor driven in this way is formed by 
a closed odd-symmetrical curve  in the y-u plane [13], 
which can be divided into two loops 

1  and 
1  as illus-

trated in Fig. 1.  

It follows from the odd symmetry of the pinched hys-
teresis loop of the mem-element [13] that the areas S1 and 
S2 of the loops are identical but their signs are different. 
Note that the sign belonging to the area is positive (nega-
tive) if the curve surrounding the area is in the clockwise 
(counter-clockwise) direction. It can be written for the area 
S1 
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Fig. 1.  An example of pinched hysteresis loop of mem-

element. 

where x is derived via the second equation (1) as follows: 

  )cos(1)( 0 tXxtx  . (4) 

Here x0 is the state at time t = 0, and X = Umax/ is the 
change of the state variable within one quarter of the re-
peating period, caused by the input signal. Via integration 
by parts, the rightmost integral in (3) can be modified to the 
form 
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Since u(t) is zero at the beginning and also at the end 
of the half-period, the first right-side term of (5) is zero. 
A simple arrangement yields the final formula for the loop 
area 
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1
 . (6) 

Note that (6) represents a compact formula for com-
puting the area of the pinched hysteresis loop of the mem-
element from its universal characteristic (PSM) and from 
the waveform of the exciting current. Equation (6) holds on 
the assumption that the function g(x) is differentiable. For-
mula (6) can also be used if the function g(x) exhibits step 
discontinuity points. A simple modification for this case is 
shown in [3]. 

1

1
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4. A Case of Mem-Elements with PSM 
in the Polynomial Form 
Consider a mem-element with the PSM in the poly-

nomial form 

 






1

00 )()()(
i

i
i xxaxgxg

 
(7) 

where ai, i = 1, 2,… are real coefficients. Note that the 
well-known model of TiO2 memristor with linear dopant 
drift is a subset of this case defined as [14] 

 a1 = – (ROFF – RON)k, ai = 0 for i > 1,  (8) 

where ROFF and RON are the maximum and minimum 
resistances of the memristor, and k is a material constant 
[14], [15]. The model is true if the memristor is excited by 
current, thus u(t) = i(t). 

Substituting (7) and (2) into (6) and re-arranging yield 
the loop area 
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Considering the equalities 
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(10) 

and X = Umax/, the universal formula of the loop area of 
the mem-element with the characteristic g(x) of type (7), 
driven by signal (2), is as follows: 
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5. Experimental Verification 
In order to verify the above method, formula (11) has 

been used for evaluating the area of the PHL of TiO2 mem-
ristor (8), which is driven by a sinusoidal current 

 )sin()( max tIti  . (12) 

Considering (8), equation (11) is as follows: 

 

3
max

1 )(
3

2 I
kRRS ONOFF  , (13) 

i.e. the area is directly proportional to the third power of 
the amplitude of the driving current and this area dimin-
ishes hyperbolically with increasing frequency. This result 
is in conformity with [3]. Note that the loop area does not 
depend on the initial charge q0 or on the initial value of the 
memristance at the beginning of memristor excitation. The 
reason consists in the linear dependence of the memris-
tance on the charge. Then the polynomial approximation 
(7) does not depend on the central point x0 of the expansion 
of g(x) function. 

The above results, obtained analytically, were verified 
via SPICE simulations. The TiO2 memristor with linear 
dopant drift was modeled as in [15] but with rectangular 
window function. The simulation results are shown in 
Fig. 2, together with the simulation conditions specified in 
the figure caption. The areas of the 1st quadrant loops were 
computed via a special measuring function in PROBE [12] 
and compared to the exact result from (13). For all the 
loops in Fig. 2, the measuring functions provided the same 
area value 1.0498 VA, which slightly differs from the 
theoretical value 1.0504 VA due to numerical errors. 

 
Fig. 2.  The loop area of the TiO2 memristor does not depend 

on the initial memristance. 
Simulation conditions: Imax = 10 µA, f = 1 Hz, RON = 1 k, 
ROFF = 100 k, k = 105 C-1. Initial value of the memristance 
is stepped from 50 k (green loop) to 90 k (magenta 
loop) with a linear step of 10 k. 

6. Conclusion 
Analytical formula (11) for computing the area of the 

hysteresis loop, derived from general equation (6), is useful 
for those memory elements whose parameter-vs.-state map 
can be approximated via polynomial functions. This as-
sumption is true, for example, for the well-known model 
[14] of the TiO2 memristor. Based on the specifications in 
Tab. 1, the procedure described in the paper can easily be 
applied to arbitrary memory elements listed in this table. 
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