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Abstract. In this paper, Operational Trans-Resistance 
Amplifier (OTRA) based wave active filter structures are 
presented. They are flexible and modular, making them 
suitable to implement higher order filters. The passive 
resistors in the proposed circuit can be implemented using 
matched transistors, operating in linear region, making 
them fully integrable. They are insensitive to parasitic 
input capacitances and input resistances due to the 
internally grounded input terminals of OTRA. As an 
application, a doubly terminated third order Butterworth 
low pass filter has been implemented, by substituting OTRA 
based wave equivalents of passive elements. PSPICE 
simulations are given to verify the theoretical analysis. 
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1. Introduction 
There are many advantages of higher order filters 

using doubly terminated lossless ladders, like, low 
sensitivity to component tolerances, ample design 
information and design tables that can be readily applied 
[1]. However, inductor realization in an integrated circuit is 
a challenging task.  

There are various techniques that circumvent these 
shortcomings like element replacement and operational 
simulation. If operational simulation is employed, Signal 
Flow Graphs are used to emulate the relationship between 
various passive elements. These are then physically 
realized using lossy and lossless integrators [1]. Realizing 
lossless integrators is difficult because of non-ideal 
characteristics of passive components used. Besides, 
floating capacitors are used in this topology, which are not 
very favorable in IC implementation. In the case of element 
replacement approach, inductors are replaced by gyrators. 
Although this practice leads to good results with low noise 
sensitivity, realizing high quality floating inductors proves 
to be difficult [2]. Another element replacement method 
using Frequency Dependent Negative Resistance (FDNR) 

was proposed by Bruton [1], and works well with low pass 
filters. LC ladder filters can also be emulated using Linear 
Transformation approach wherein every section of the 
original ladder prototype can be realized using active 
elements individually [3]. One drawback of this method is 
that it uses lossless integrators. 

Apart from these approaches, the wave method [2] is 
also used for realizing higher order resistively terminated 
LC ladder filter which gives excellent results. It uses wave 
equivalents for different passive elements which can be 
readily substituted to realize a filter. In this approach, the 
filter realization is based on modeling the forward and 
reflected voltage waves. The available wave active filters 
[2], [4]-[10] use various active blocks such as OTA [4], 
current amplifier [5], CMOS cascode current mirrors [6], 
FPAA [7], OPAMP [2], [8], CFOA [9], and DVCCCTA 
[10] and operate in current [3]-[7] and voltage [2], [8]-[10] 
mode. 

This paper presents design approach for realization of 
OTRA based higher order wave filter. OTRA being 
a current mode building block does not suffer from low 
slew rate and fixed gain bandwidth product [11] unlike 
conventional voltage mode op-amps. Additionally it has 
a unique feature of low impedance voltage output and is 
also free from the effects of parasitic capacitances and 
resistances at the input due to internally grounded input 
terminals [12], [13]. 

OTRA also allows the implementation of linear MOS 
based resistors [13], which is a huge advantage when going 
for IC fabrication. This property is also exploited to make 
the filters tunable. Although a number of tunable ladder 
circuits based on current-mode approach have been 
reported in open literature [14]-[16], they do not provide 
voltage output. Some of the features of the proposed work 
are: 

� Modular structures which can be easily substituted to 
LC-ladder filter circuits. Provides an easy ‘ready to 
use’ method to realize ladders. 

� Only lossy integrators are employed, which are easy 
to realize, and since OTRA inputs are virtually 
grounded, it is free from effect of parasitic elements. 
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� It doesn’t employ passive resistors; instead it uses 
linear MOSFET based resistors which are voltage 
controlled thus making circuits electronically tunable.  

Section 2 elaborates on the concept of wave filter. 
Section 3 elaborates on how OTRA can be employed for 
this application. Simulation results for a third order 
Butterworth filter are shown in Section 4 and Section 5 
concludes the paper. 

2. Wave Filter Approach 
The concept of wave filter is introduced in [2], [8]. 

This approach talks of applying scattering parameters to 
ladder filters. It uses voltage waves instead of power 
waves. Scattering matrix of a two port network is given as: 
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In a two port network having a series branch 
admittance Y, as shown in Fig. 1, the scattering parameters, 
assuming the normalization resistance as Rn, are obtained 
as: 
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Fig. 1. Series branch admittance Y. 

For a series branch inductance L, using (2), (3), (4) 
and (5), (1) reduces to 
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This can be further simplified to: 
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In (9), τL = L/2Rn is the time constant. Fig. 2 shows 
the symbolic representation of the wave equivalent of 
series branch inductor L. 

 
Fig. 2. Wave equivalent of series branch inductance L,  

τL = L/2Rn. 

To calculate the S-matrix for series branch capaci-
tance C, (1) reduces to: 
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(10) and (11) can be further simplified to: 

 ),(
1

1
2121 AA

s
AB

C

�




	
�

 (12) 

 ).(
1

1
2112 AA

s
AB

C

�



�	
�

 (13) 

In (12) and (13), τC = 2CRn is the time constant. It is 
observed that (8) and (9) are similar to (12) and (13) 
respectively, and can be obtained from each other by 
interchanging the output terminals B1 and B2. 

This result can be generalized to show that for a series 
branch admittance Y, its dual admittance (Y`) can be 
obtained by using the following equation [2]: 
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Accordingly the wave equivalent symbol of series 
branch capacitance C, as shown in Fig. 3, indicates this 
fact. 

 
Fig. 3. Wave equivalent of series branch capacitance C,  

τC = 2CRn. 

For an inductor L connected in series with capacitance 
C in a series arm the wave equivalent can be obtained by 
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cascading the wave equivalents of L and C. If the terminals 
are interchanged, the wave equivalent for a tank circuit 
connected in series branch can be obtained. Tab. 1 [2], [8] 
gives wave equivalents for all the series branch elements. 

Proceeding in a similar manner, wave equivalents for 
shunt branch elements can also be derived. Tab. 2 [2], [8] 
lists the results for shunt branch elements. 
 

Series Branch Elements Wave Equivalents 

  

  

  

  
Tab. 1. Wave equivalents of series branch elements [2], [8]. 

 

Shunt Branch 
Elements Wave Equivalents 

  

  

  

  
Tab. 2. Wave equivalents of shunt branch elements [2], [8]. 

3. OTRA Based Wave Active Filter 
Fig. 4 shows an OTRA circuit symbol. Its transfer 

matrix is given in (15) [12]. It has low impedance input and 
output terminals. Ideally the trans-resistance gain Rm 
approaches infinity and when negative feedback is used 
then I1 = I2 [13].  
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Fig. 4. OTRA circuit symbol. 

A closer study of (8), (9), Tabs. 1 and 2 would reveal 
that the realization of wave equivalents would require 
a summer, subtractor, a subtracting lossy integrator and an 
inverter. 

An OTRA based summer is shown in Fig. 5. The 
circuit makes use of three resistors and one OTRA. 
Equation (16) can be obtained by equating the current at 
the inverting and the non-inverting terminal, which can be 
further simplified to (17). 
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Similar analysis of a subtractor, shown in Fig. 6, gives 

 .21 ININO VVV �	 (18) 

 
Fig. 5. Summer. 

Fig. 6. Subtractor. 

 
Fig. 7. Inverter. 

Fig. 7 shows an inverter. In this case, since the non-
inverting terminal has been left open, there would be no 
current flowing into the inverting terminal as well. It can be 
described by the following equation: 

 .INO VV �	  (19) 
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Fig. 8 shows a subtracting lossy integrator. Its output 
can be described by: 
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Fig. 8. Lossy integrator. 

The current differencing property of the OTRA makes 
it possible to implement the resistors connected to the input 
terminals of OTRA, using MOS transistors with complete 
non linearity cancellation [13]. Fig. 9 shows the MOS 
based linear resistor using OTRA. Each resistor requires 
two matched n-MOSFETs connected in a manner as shown 
in Fig 9. 

 
Fig. 9. MOS based resistor. 

Symbols ‘+’ and ‘-’ represent the non-inverting and 
the inverting terminals of the OTRA. As shown in the 
figure, the voltages at the drain and the source terminals for 
both MOSFETs are equal. On taking the difference of the 
currents flowing in the two transistors, the non-linearity 
gets cancelled out. The following equation defines the 
resistor that has been realized. 
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KN needs to be determined for the transistors being 
used to implement the resistors. μ, COX and W/L  represent 
standard transistor parameters. The choice of voltages VA 
and VB is important. The circuit shown in Fig. 9 realizes 
a resistor of value expressed in (21) at the inverting 
terminal. If it is desired to realize a resistor of the same 
value at the non-inverting terminal, then VA and VB must be 
interchanged. 

Using the blocks defined by (17), (18), (19) and (20), 
the wave equivalent for a series branch inductor, defined by 
(8) and (9), can be drawn and is shown in Fig. 10. The 
dashed blocks indicate the individual blocks which 

constitute the entire wave equivalent. It represents the 
symbol shown in Fig. 2. This can now be used as the 
elementary block to synthesize the wave equivalents for all 
the elements listed in Tab. 1 and Tab. 2.  

By introducing inverters and interchanging output 
terminals, all other wave equivalents can be obtained. The 
circuit in Fig. 10 can be described by the following 
equations: 
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Fig. 10.  Equivalent circuit for series branch inductance. 

 
Fig. 11. MOS- C equivalent of circuit of Fig. 10. 

Fig. 11 shows the circuit of Fig. 10 with MOS based 
linear resistors. The actual value of inductance LA realized 
by circuit of Fig. 11 would be obtained by comparing (22) 
and (23) with (8) and (9). The realized value is 

 .2 CRRL nA 	  (24) 

Similarly, comparing (22) and (23) with (12) and 
(13), the realized value of C is: 

 .
2 n

A R
CRC 	  (25) 
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Resistor R can be controlled through voltages VA and 
VB. If C is assumed to be of some constant value, then the 
value of LA and CA can be controlled using R. This forms 
the basis of tunability of the circuit. Similarly, the actual 
values of L and C for wave equivalents of shunt branch 
elements, as presented in Tab. 2, are given by: 
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For a filter, if Ln and Cn are the normalized inductor 
and capacitor values respectively, ω0 is the normalizing 
pole frequency and Rn is the normalizing resistance, then to 
de-normalize Ln and Cn we make use of the following 
expressions: 
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Restating (24) and (25), such that different values of 
C are used for LA and CA, i.e. CL and CC respectively, we 
get: 
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Equating (28) and (29) with (30) and (31) respec-
tively, we get: 
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The expression, for controlling ω0 using R, needs to 
be worked out for each circuit. A simple algorithm can be 
worked out to achieve the exact expression and range of 
tunability. For the frequency ω0, CL and CC are calculated 
in terms of R, as per the Ln and Cn values. For a suitable R 
value, once CL and CC have been fixed, either (32) or (33) 
can be used to describe the relationship between R and ω0 
as: 

 .0 R
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Using (32) and (33), K can be described as follows: 
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Combining (21) and (34) one may get: 
 � �.0 BAN VVKK �	�  (36) 

Equation (34) describes how ω0 can be controlled 
using R. R in turn is controlled by (21) and the overall 
relationship is described by (36).  

4. Simulation Results 
To demonstrate the wave filter approach using 

OTRA, a doubly terminated third order Butterworth low 
pass filter, as shown in Fig. 12, has been implemented. The 
wave equivalent circuit of the same is shown in Fig. 13 in 
which the reflected waves are available at VOL and VOH. 
These outputs complement each other by virtue of wave 
theory [8].Thus as the VOL represents the low pass filter 
response, its complementary high pass output is available 
at VOH. The normalized values of components are Ln1 = 2, 
Cn1 = 1 and Cn2 = 1. OTRA is realized using the CMOS 
circuit schematic given in Fig. 14 [17]. The filter 
specifications are as follows: fP = 200 kHz and maximum 
attenuation in pass band αMAX is 3 dB. 

 
Fig. 12. 3rd order low pass Butterworth filter. 

The value of normalizing resistance Rn is chosen to be 
2.5 kΩ. De-normalizing the values of Ln1, Cn1 and Cn2 we 
get: 

 ,mH 98.3	AL  (37) 

 pF. 31.31821 		 AA CC  (38) 

Setting the value R initially to 12 kΩ, we can calculate 
the value of CL for LA1 as 66.33 pF and CC for CA1 and CA2 
as 132.66 pF. The value of K, as per (35) is 1.508 × 1010. 
For this simulation exercise, the value of KN was found to 
be 5.25 × 10-4 A/V2. The required VA and VB values for R to 
be 12 kΩ were found to be 0.908 V and 0.75 V as per (21). 
Fig. 15 shows the low pass filter response of the circuit at 
VOL. The complementary high pass output VOH, as 
represented in Fig. 13, has been plotted in Fig.16.  

The performance of the proposed circuit is compared 
with the previous voltage mode structures [2], [8]-[10] in 
terms of power consumption, THD, output noise and 
electronic tunability. It may be noted from Tab. 3 that the 
topology presented in [9] shows best THD result, however 
the structure is not electronically tunable. Although the 
most recently reported literature [10] is having better THD 
performance its simulated power consumption is higher as 
compared to the proposed one. The relevant data for 
structures of [2], [8] which are designed using 
commercially available OPAMPs, is not available in the 
literature. 
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Fig. 13.  Wave equivalent of circuit of Fig.12. 

 
Ref Active block  

and technology used  
Filter structure % THD Power 

consumption 
(mW) 

Output noise 
voltage  

(V/ HZ 1/2) 

Electronic 
tunability 

[9] CFOA 
(Commercially available  

IC AD844 with ± 5 V  
power supply) 

3rd order elliptic Low 
pass 

1 % for 1 Vpp signal N/A N/A No 

[10] DVCCCTA   
(CMOS Technology 

0.25 μm, Power  
supply ± 1.25 V) 

4th order Butterworth 
Low pass 

Less than 5 % up to 
225 mVpp signal 

59.2 8.36 × 10-8 Yes 

proposed OTRA 
CMOS Technology  

(0.5 μm, Power  
supply ±1.5 V) 

3rd order Butterworth 
Low pass 

Less than 5 %  up to  
125 mV pp signal 

10.7 7.26 × 10-8 Yes 

Tab.3. Comparison with the voltage mode filter structures. 

 

 
Fig. 14. CMOS realization of OTRA. 

 

 
Fig. 15. Low pass response VOL. 

 
Fig. 16. Complementary high pass response VOH. 

 
Fig. 17. Comparison curve between theoretical and observed 

frequency. 
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The proposed circuit can be tuned to different cut-off 
frequencies by controlling VA and VB as described by (36). 
Fig. 17 shows the comparison between theoretical and the 
observed frequencies, obtained by variation of control 
voltages VA and VB. All simulations are done using PSPICE 
program using 0.5 μm CMOS technology parameters form 
MOSIS (AGILENT). 

5. Conclusion 
In this paper, the design of tunable wave active filter 

based on OTRA has been presented. It provides an 
alternative form of realizing ladders. Advantages of current 
mode approach have been exploited. The use of OTRA 
allows the simple implementation of linear resistor using 
only two MOSFETs. The controllability of the resistors 
value by a single voltage source allows the parameters of 
the proposed filters to be electronically tunable. On the 
downside, the circuit is slightly cumbersome to realize, 
though it is modular and can easily be implemented using 
the reference design tables. When compared with the 
previous wave active filters reported in [2], [8] and [9], the 
proposed one provides advantages of current mode design 
and is tunable as well. In comparison to the circuit pre-
sented in [10], OTRA as the basic building block is simpler 
to realize and also provides a low impedance voltage out-
put, making it suitable for driving voltage input devices.  
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