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Abstract. A pressure sensor with high resolution is of key 
importance for precise measurements in the low-pressure 
range. The intrinsic resolution of piezoresistive ceramic 
pressure sensors (CPSs) mainly depends on their func-
tional sensitivity and the electronic noise in the thick-film 
resistors. Both the sensitivity and the noise level depend on 
the material and the structural properties, and the dimen-
sions of the sensing structure. In general, the sensitivity 
can be increased and the noise can be reduced by using 
additional electronics for the signal processing, but this 
makes the sensor bigger, more complex and more expen-
sive. In this study we discuss the technological limits for 
downscaling the sensor’s pressure range without any 
processing of the sensor’s signal. The intrinsic resolution 
of the piezoresistive pressure sensors designed for the 
pressure range 0 to ±100 mbar and realized in LTCC (Low 
Temperature Cofired Ceramic) technology was evaluated 
and compared to the resolution of a commercial 100-mbar 
silicon pressure sensor. Considering their different typical 
sensitivities, the resolutions of about 0.02 mbar and 
0.08 mbar were obtained for the CPS and the silicon sen-
sors, respectively. The low-frequency noise measurements 
showed that the noise characteristics of both sensors were 
not influenced by the pressure loads. 
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1. Introduction 
Ceramic pressure sensors (CPSs) made using LTCC 

(Low Temperature Cofired Ceramic) technology have 
proven to be appropriate for applications in the low-pres-
sure ranges [1-3]. A key requirement for measurements in 

the low-pressure range is a fine resolution of the whole 
sensor system. The intrinsic resolution of any pressure 
sensor is defined by the smallest changes in the pressure 
that can be detected and accurately measured, and depends 
on the sensitivity and stability of the sensing elements, both 
of which are influenced by a certain level of electronic 
noise. In this sense the finest resolution can be achieved for 
the highest sensitivity and the lowest noise level. The sen-
sitivity of a piezoresitive CPS is limited by the sensor’s 
maximum dimensions and the material properties of the 
ceramic structure as well as the functional thick-film re-
sistors, i.e., the Young’s modulus of the LTCC material 
and the piezoresistive properties of the thick-film resistors. 
The noise in thick-film resistors depends on the resistor 
material, the contacts and the geometry/dimensions [4], [5]. 
The exploitation of the low-frequency noise for the quality 
and reliability evaluation of the electronic components, 
namely the sensors, was studied by many authors [6-11]. 
After optimizing the sensor geometry and selecting the 
most appropriate resistor and conductor materials, the noise 
of the sensor system can be further reduced only by adding 
additional electronics for the signal processing, such as 
filtering, usually achieved at the expense of the dynamic 
behavior of the sensor. This results in a further increase of 
the sensor’s complexity and the final cost. An example of 
the design optimization of silicon piezoresistive pressure 
sensors considering the output signal-to-noise ratio is dis-
cussed in [14]. 

In this work we present the results of an investigation 
of the technological limits for downscaling a sensor’s pres-
sure range without any further processing of the sensor’s 
signal. The piezoresistive LTCC pressure sensors [5] de-
signed for the pressure range 0 to ± 100 mbar were manu-
factured and characterized. The measurements of the noise 
spectral density of the sensor’s output-voltage fluctuation 
and calculations of the background sensitivity are dis-
cussed. The CPS’s intrinsic resolution was compared to the 
resolution of a commercial, 100-mbar, silicon pressure-
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sensor die AC3030-100 (Acuity Incorporated). The influ-
ence of the pressure load on the low-frequency noise level 
was studied for both the LTCC-based and silicon pressure 
sensors. 

2. Experimental 

2.1 Sensor Prototypes 

The piezoresistive CPSs considered in this case study 
were made using DuPont 951 tapes and 2041 thick-film 
resistor material. Four thick-film resistors were realized 
onto a deformable diaphragm. Each of these resistors acts 
as a strain gauge [7]. These four sensing resistors are elec-
trically connected in a Wheatstone-bridge configuration 
and excited with a stabilized bridge voltage (Vs). The 
prototypes were designed for the relatively low-pressure 
range of 0- 100 mbar. A representative sample and the 
electrical circuit with the functional thick-film piezoresis-
tors R1-R4 in the bridge connection and the resistors R5 and 
R6 aimed at balancing the bridge are presented in Fig. 1. 
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Fig. 1. a) A prototype of the LTCC-based CPS used for the 
evaluation of the intrinsic sensitivity, b) the 
Wheatstone-bridge connection of the sensing resistors 
R1-R4 and the resistors R5 and R6 aimed at balancing 
the bridge. 

The CPS’s characteristics were compared with the 
characteristics of the silicon pressure-sensor die AC3030-
100 glued and wire bonded on the Al2O3 substrate. The test 
silicon pressure sensors with AC3030 dies were prepared 
in the HYB Company using their standard technological 
procedure (Fig. 2.). 

 
Fig. 2. The silicon pressure-sensor die glued and bonded on 

the Al2O3 substrate. 

2.2 Characterization 

The sensors were normally characterized in the pres-
sure range 0- 100 mbar at a DC supply voltage (Vs) of 5 V. 
All the measurements were performed under controlled 
conditions in a temperature/humidity chamber. The normal 
conditions were 25°C and 50% RH. The accuracy of the 
Pace 6000 pressure controller used for the evaluation of the 
sensor’s sensitivity is 0.035 mbar. The typical sensitivity of 
the CPSs was 14 μV/V/mbar, while the sensitivity of the 
AC3030-100 sensor dies was typically 65 μV/V/mbar. The 
measured characteristics of the CPSs and the silicon pres-
sure sensors are presented in the same graph in Fig. 3.  
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Fig. 3. The characteristics of the LTCC pressure sensors 

(denoted CPS 04_xx) and the silicon pressure-sensor 
dies glued and bonded on the Al2O3 substrate (Si-1 and 
Si-2). 

Further experimental analyses of the stability, repeat-
ability and hysteresis of the CPS prototypes revealed the 
limitations of the achievable resolution of the sensor, as 
described in the following. The continuous measurements 
of the offset stability within the initial 24 hours after 
switching on the supply voltage revealed noticeably higher 
fluctuations of the offset voltage of the silicon sensors than 
the offset voltage of the CPSs. The continuous measure-
ments of the offset voltage are presented in Fig. 4.  

It is evident that the fluctuations of the offset voltage 
of the silicon pressure sensors are significantly higher. 
However, due to the few-times-higher sensitivity such 
a presentation of the results can distract us from the actual 
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situation. For this reason further tests were performed to 
clarify the situation. 
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Fig. 4. The continuous measurements of the offset voltage of 

the LTCC pressure sensors denoted CPS04_xx and the 
silicon pressure-sensor dies glued and bonded on the 
Al2O3 substrate (Si-1 and Si-2). 

In order to reduce the influence of the measurement 
set-up, which was designed for measurements of several 
sensors at the same time and to improve the accuracy of the 
measurements under the pressure loads set by the control-
ler, the measurements were also performed in a narrow 
segment of the actual pressure range. The results are pre-
sented in Fig. 5, which shows the calibrated output of the 
selected CPSs and silicon pressure sensors, and the devia-
tion of the sensors’ output from the applied pressure in the 
range from -5 to +5 mbar with a step of 0.5 mbar. These 
results show that there is no significant difference between 
the error of the sensor’s output signal between the CPSs 
and the silicon sensors. For both sensors a deviation of less 
than 0.1 mbar was obtained. Since the dynamic nature of  
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Fig. 5. Calibrated output of the sensors (Y axis on the left) 

and the output error, i.e., the deviation of the measured 
pressure from the applied pressure (Y axis on the right) 
evaluated in the pressure range from -5 to +5 mbar. 

the measurements under controlled pressure loads can 
influence the accuracy of the measurement system, further 
measurements of the unloaded sensors, i.e., the offset volt-
ages, were performed, and the noise measurements and 
analysis were carried out to confirm these results. Based on 
these measurements the intrinsic resolution was assessed as 
described in the following. 

2.3 Low-Frequency Noise vs. Resolution 

The fluctuation of the sensor’s output voltage was 
measured for the applied voltage of 5.5 V using a standard 
measurement set-up [3]. The noise spectral density SU of 
the measured signal was calculated in the frequency range 
1 to 1000 Hz (see Figs. 6 and 7). In this frequency range 
the noise spectral density is given by two components, i.e., 
the thermal noise and the 1/f noise spectral density. 
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Fig. 6. Output-voltage noise spectral density SU vs. frequency 

measured for the LTCC pressure sensor CPS 04-24 on 
a log-log scale. SU is given by two components: ther-
mal noise spectral density SUTh = 1.5 10-16 [V2/Hz] and 
1/f noise spectral density SU 1/f = 9.5  10-14/f [V2/Hz]. 

The noise-voltage value uN can be calculated from the 
noise spectral density as: 

 
f

i

f

f

UUN dffSfSu )(    (1) 

where f = ff – fi is the frequency range being 
considered. If we want to determine the background 
resolution of the pressure sensor, it is necessary to 
calculate the noise voltage value in the frequency range 
given by the input RC filter of the DC voltmeter used for 
the sensor’s output-voltage measurement. Considering the 
frequency range 1 to 1000 Hz we calculated the noise 
voltage value for the silicon and LTCC-based sensors. The 
output-voltage noise spectral density SU frequency 
dependence measured for the LTCC pressure sensor, CPS 
04-24, is shown in Fig. 6. We have fitted this dependence 
with the equation SU (f) = 9.5  10-14/f + 1.5  10-16 [V2/Hz], 
where the first component represents the 1/f noise and the 
second component the thermal noise. According to (1) we 
obtain: 
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The output-voltage noise spectral density SU frequency 
dependence measured for the silicon pressure sensor is 
shown in Fig. 7. We fitted this dependence with the 
equation SU (f) = 1.56  10-10/f1.15 + 1.0  10-14 [V2/Hz], 
where the first component represents the 1/f noise and the 
second component the thermal noise. According to (1) we 
obtain: 

Vdffu SiN
5

1000

1

1415.110
, 1061.2)100.1/1056.1(    . 

We can see that the noise voltage for the LTCC sen-
sor is less than 1 V, while the value calculated for the 
silicon sensor is above 26 V. Considering typical sensi-
tivities of the LTCC sensors of 14 μV/V/mbar and 
65 μV/V/mbar for the silicon sensor we can obtain (for the 
applied voltage of 5.5 V) a resolution of about 0.02 mbar 
for the LTCC sensor (CPS04-24) and about 0.08 mbar for 
the silicon sensor.  
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Fig. 7. Output-voltage noise spectral density SU vs. frequency 

measured for silicon pressure sensor on a log-log scale. 
SU is given by two components: the thermal noise 
spectral density SUTh = 1.0  10-14 [V2/Hz] and the 1/f 
noise spectral density SU 1/f  = 1.56  10-10/f1.15 [V2/Hz]. 

 

 
Fig. 8. Output-voltage noise spectral density SU (1 Hz) at a fre-

quency of 1 Hz for all the samples of LTCC sensors 
(measured for Vs of 5.5 V). 

Fig. 8 shows the values of the output-voltage noise 
spectral density SU (1 Hz) determined at a frequency of 1 Hz 
for all the samples of LTCC sensors (measured for Vs of 
5.5 V). For all these samples the 1/f noise was dominant in 
the frequency range 1 to 1000 Hz. We can see that for all 
the samples the SU (1 Hz) value is in the range 0.7 to  
1.2  10-13 V2/Hz, which is comparable with the value of 
SU (1 Hz) measured for sample CPS 04-24 considered in the 
calculation above. Thus the resolution is about 0.02 mbar 
for all the LTCC sensors. 

2.4 Low-Frequency Noise vs. Pressure 

The influence of the pressure load on the low-fre-
quency noise level was studied for both the LTCC-based 
CPSs and the silicon pressure sensors. The dependencies of 
the spectral density of the output-voltage fluctuation on the 
frequency (applied voltage 5.5 V) are shown in Figs. 9 and 
10 for  a random CPS  sample  and  the  silicon  sensor,  re- 
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Fig. 9. Output-voltage noise spectral density SU vs. frequency 

measured for the LTCC-based pressure sensor (on 
a log-log scale) without the pressure load and under 
overload pressures of 300 mbar and 700 mbar. 
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Fig. 10. Output-voltage noise spectral density SU vs. frequency 

measured for the silicon pressure sensor (on a log-log 
scale) without the pressure load and under the overload 
pressure of  300 mBar. 
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spectively. These dependencies were measured without the 
pressure load and under two overload pressures: a pressure 
of  300 mbar was used for both CPs and the silicon sensor, 
and the pressure of  700 mbar was only applied to the CPS. 

From Figs. 9 and 10 it follows that neither the LTCC-
based CPSs’ nor the silicon sensor’s noise characteristics 
are influenced directly by the pressure load. So the sensor 
resolution does not change with the increased pressure, 
even if the overpressure is applied to the sensor. 

3. Conclusions 
The characterization tests and the noise analyses 

showed that a comparable resolution can be achieved for 
the piezoresistive LTCC-based CPS and the silicon pres-
sure sensor. The measurements in the pressure range -5 to 
+5 mbar with a 0.5-mbar step showed that there was no 
significant difference between the sensors’ output errors 
for the CPSs and the silicon sensors. For both sensors the 
deviation between the pressure measured at the sensor 
output and the applied pressure from the controller was less 
than 0.1 mbar. 

The output-voltage noise measurements of the se-
lected samples for both types of sensors (at a Vs of 5.5 V) 
showed the noise of the output voltage of the CPSs to be 
lower than 1 μV, while the value obtained for the silicon 
sensor was above 26 μV. Considering the typical sensitiv-
ity of the CPSs of 14 μV/V/mbar and the sensitivity of 
65 μV/V/mbar for silicon sensors we calculated a resolu-
tion of about 0.02 mbar for the CPS and 0.08 mbar for the 
silicon sensor. 

The low-frequency noise measurements showed that 
neither the LTCC-based nor the silicon-sensor noise char-
acteristics are influenced directly by the pressure loads. 

Taking into account the limited accuracy of the meas-
urements under the pressure loads these results confirmed 
that the resolution of the LTCC-based CPS is at least com-
parable to that of the silicon sensor. 
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