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Abstract. The growing convergence among mobile comput-
ing device and smart sensors boosts the development of 
ubiquitous computing and smart spaces, where localization 
is an essential part to realize the big vision. The general 
localization methods based on GPS and cellular techniques 
are not suitable for tracking numerous small size and lim-
ited power objects in the indoor case. In this paper, we 
propose and demonstrate a new localization method, this 
method is an easy-setup and cost-effective indoor localiza-
tion system based on off-the-shelf active RFID technology. 
Our system is not only compatible with the future smart 
spaces and ubiquitous computing systems, but also suitable 
for large-scale indoor localization. The use of low-com-
plexity Gaussian Filter (GF), Wheel Graph Model (WGM) 
and Probabilistic Localization Algorithm (PLA) make the 
proposed algorithm robust and suitable for large-scale in-
door positioning from uncertainty, self-adjective to varying 
indoor environment. Using MATLAB simulation, we study 
the system performances, especially the dependence on 
a number of system and environment parameters, and their 
statistical properties. The simulation results prove that our 
proposed system is an accurate and cost-effective candi-
date for indoor localization. 
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1. Introduction 
The growing of wireless communications, portable 

computers, and smart sensors has generated much commer-
cial and research interests in statistical methods to track 
people and things inside stores, hospitals, warehouses, and 
factories, where Global Positioning System (GPS) [1] de-
vices generally do not work and Indoor Positioning System 
(IPS) [2], [3], [4] aims to provide location estimation for 
wireless devices, such as handheld devices and electronic 
badges. In this paper, we propose and study a new method 
for indoor localization, which is cost-effective for tracking 
objects. 

Nowadays, due to advantages such as small size, low 
power, low cost and easy deployment, the Radio Frequency 
Identification (RFID) [5] sensors are widely used to imple-
ment ubiquitous computing and smart space. We have suc-
cessfully applied this technique to the 2010 Shanghai 
World Expo [6]. With the capability of providing RSS 
(Received Signal Strength) information, current advanced 
RFID systems are one of the potential candidates for indoor 
localization. Several RFID based systems have been pro-
posed for tracking objects in indoor environments. As we 
know, SpotON [2], [7] uses an aggregation algorithm for 
three-dimensional localization. The tags use RSS informa-
tion to obtain inter-tag distances based on empirical map-
ping between the two. SpotON assumes deterministic map-
ping between RSS and distance and does not account for 
the range measurement uncertainty caused by the varying 
environment. LANDMARC [2], [8] utilizes RSS measure-
ment information to locate objects using k nearest reference 
tags. To diminish the uncertainty of the detected range 
caused by the varying environments, a large number of 
reference tags must be distributed in the environment. This 
limits its applications for most indoor scenarios, such as 
people tracking, fire disaster site, and so on. 

In this paper, we present a new method based on 
off-the-shelf active RFID technology, Gaussian Filter (GF), 
Wheel Graph Model (WGM) and Probabilistic Localization 
Algorithm (PLA). It is easy to deploy and cost-effective for 
indoor localization. Considering the uncertainties caused 
by the varying environment, we incorporate a probabilistic 
scheme based on Gaussian filter pretreatment, on-site cali-
bration and Bayesian inference to improve the localization 
accuracy. Bayesian inference was also used for traditional 
cellular and WLAN-based localization system. But with an 
additional WGM, our proposed system can be applied to 
large-scale indoor localization. 

The rest of the paper is organized as follows: Section 
2 describes our method, including the basic system archi-
tecture, system overview, GF pretreatment, path loss model, 
WGM and the PLA. In Section 3, the method of perform-
ance metric is introduced, followed by simulation results 
and discussions. And finally in Section 4 we conclude the 
paper.  
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2. System Architecture 
In our localization system the off-the-shelf long dis-

tance active RFID system [9] is used. The system works at 
the range of 2.4 GHz frequency [10], with a minimal range 
of 0.5 meter and maximum range of 80 meters. The reader 
can receive Received Signal Strength Indicator (RSSI) 
from every tag within its range. Each reader can detect up 
to 200 tags simultaneously. Each RFID tag is pre-program-
med with a unique 9-character ID (Identity) for identifica-
tion by readers. In the next section, we will discuss the net-
work layout of the system. 

2.1 Network Layout 

The system consists of three network layers: sensing 
network layer, data collection layer, processing layer. The 
sensing network layer is used to measure the RSSI infor-
mation from the readers to objects (active tags) and to 
transmit the information to next layer. The data collection 
layer is used to collect RSSI information and to transmit 
the data to next layer. The processing layer receives RSSI 
information and processes the location information. In 
practice, the whole detection area may be covered by sev-
eral servers. For simplicity, in Fig. 1, we show the hierar-
chical architecture within the coverage of one server. Fig. 4 
shows the reader and tags used in our experiments.  

 
Fig. 1.  System structure. 

   
    Fig. 2.  Reader.        Fig. 3.  Tags.     Fig. 4.  Reader and tags. 

RFID tags: We use the active tags in our system, as 
shown in Fig. 3. They are deployed in the sensing network 
layer, and are divided into two categories: object tags and 
reference tags. Each tracked object will be attached with 
a unique active RFID tag, called "object tag", used for 
identifying and tracking objects. Each tag has a unique ID, 
hence, we can distinguish objects by the corresponding ID 
number. Reference tags are the active RFID tags used for 
calibrating environment parameters. The active tags will 
periodically emit signals with their IDs. 

RFID readers: The data collection layer consists of 
readers. Each reader, as shown in Fig. 2, also has a unique 
ID number. Every small detection area contains three read-

ers. The whole detection area is covered by the data collec-
tion layer. Every object tag should be within the readable 
range of readers. The principle of readers’ deployment 
should be satisfied that the distribution of the readers is not 
in one line in the space, and all readers’ locations are 
known. A reader is responsible for: 1) Collecting and de-
coding the signals emitted by the active tag in its coverage; 
2) Measuring the RSSI for each tag within its range; 3) Re-
porting tag ID, corresponding RSSI, and its own ID num-
ber to the server. To realize these functions, each reader is 
equipped with two interfaces: a RF interface that detects 
tags within its range, and a communication interface that 
transmits data to servers. 

Servers: Each reader should be within the reach of at 
least one server. We can see this from Fig. 1. Readers com-
municate the measured RSSIs of the tags with the server. 
A server is responsible for: 1) Collection of RSSIs and IDs 
coming from readers. 2) Calculating the location of the 
object tags according to the positioning algorithm. 
 

 Reader Tag 

working frequency 2.4 GHz 

modulation mode MSK 

communication distance 0.5 meter~80 meter 

communication rate 250 kbps 

working voltage 12 V 1.5 V 

communication interface RJ45, RS232, RS485 - 

working temperature -40°C~+80°C 

Manufacturer: Shanghai Zhen Zhuo Electrical Technology Ltd. Co 

Tab. 1.  Manufacturer and parameters of reader and tag. 

Fig. 2-4 show readers and tags used in the experiment, 
Tab. 1 gives the Manufacturer and parameters of them. 

The principles of the system are as follows. After the 
system is setup, the RFID readers will begin to detect sig-
nals sent by RFID tags. If any tag is located within its cov-
erage, the reader will collect and report the RSSIs of the tag 
and IDs both of the tag and the reader to the server. All the 
data reported by the RFID readers will be processed at the 
server. The server will estimate the locations of the objects 
according to the localization algorithm using the RSS infor-
mation and the readers’ locations. 

2.2 Gaussian Filter Pretreatment 

As we know, RSSI is very sensitive to the environ-
ment. This will limit the accuracy of the measurement. In 
fact, the relationship between the signal strength and the 
distance is not very clear, and there is a lot of volatility of 
RSSI in the environment. During a certain period of time, 
the RFID readers can read a series of RSSI values. How-
ever, the non-line-of-sight and multipath effects cause these 
RSSI values with a lot of volatility. Hence, filtering of 
RSSI is necessary to obtain a group of highly credible RSSI 
values. 
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In the data collection stage, due to the volatility of 
RSSI, we usually repeat the experiments. Supposing that 
each experiment is independent, we can assume that the 
distribution of RSSI values is a normal distribution. 
Through Gaussian filter [11] processing, we can obtain 
a set of relatively smooth values of RSSI with improved 
reliability, and improved positioning accuracy. 

Due to the RSSIs’ distribution is a normal distribution 
model, its mean is μ, and standard deviation is σ. For a spe-
cific set of RSSI values, expressed as {RSSIt,t = 1,2,3,…n}, 
which is received at a fixed position from time slot 1 to slot 
n. Assume that x  RSSIt, we use f(x) to represent Probabil-
ity Density Function (PDF) of x, given by: 
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We choose the high probability zone as P > 0.6 [12], which 
is an experiment value. Through the above analysis, the 
select interval of RSSI is [0.26σ + μ, 3.09σ + μ]. Fig. 5 
gives the PDF and probability distribution of one set of 
RSSIs’ sampling value.  

 
Fig. 5.  RSSIs’ probability distribution function (PDF). 

 
Fig. 6.  RSSI Sampled values (2 meter). 

 
Fig. 7.  RSSI Sampled values (3 meter). 

Fig. 6 and Fig. 7 denote two sets of RSSI values for 
which the distances from tags to readers are 2 meters and 
3 meters, respectively. The number n of RSSI values in 
each set is 200. 

Above two kinds of circumstances each have two 
hundred set of values, these values are unfiltered data. Our 
filtering process is to eliminate those values which do not 
meet the interval [0.26σ + μ, 3.09σ + μ]. This interval is to 
use unfiltered data calculated out. After filtering, the rest of 
data is filtered data.  

We calculate respectively the arithmetic mean, its 
estimated distance and estimation error of the two sets of 
values. Tab. 2 shows the result of the calculation. Tab. 2 
shows the comparison of the estimated distance in two 
cases: filtered data and unfiltered data. From Tab. 2, we can 
see that the reliability of RSSI has improved significantly 
after Gaussian filtering. 
 

Actual distance 
(meter) 

Mean of RSSI 
(dBm) 

Estimated distance 
(meter) 

Estimation 
error 

Unfiltered data 

2.0 -67.0073 1.744379 12.78% 

3.0 -72.4887 2.656766 11.44% 

Filtered data 

2.0 -68.2239 1.915108 4.24% 

3.0 -73.7295 2.922223 2.59% 

Tab. 2.  Comparisons of two types of data. 

2.3 Probability Model of Path Loss 

We choose log-distance path loss model [13] as ideal 
free space propagation path loss formula: 

      00 /log10 ddndPLdPL  . (2) 

In (2), PL(d) is propagation path loss, d is the actual dis-
tance from tags to readers, d0 is reference distance and usu-
ally the value of d0 is 1, n is the path loss exponent of the 
environment.  

However, there are a lot of interferences from outside 
in the practical propagation, for example, walls, elevators, 
furniture, human activities, multipath effects, shadow ef-
fects, etc. Hence equation (2) can be modified as: 

 ),0()log(10)()( 2
00 NddndPLdPL   (3) 

where N(0, σ) denotes a Gaussian distribution with mean of 
0 and variance of σ. Assume that Pr is the received power, 
Pt is the constant transmit power, we have 

 )(dPLPP tr  . (4) 

From the above, d0 = 1, the expression 10n log(d/d0) 
in (3) changes to 10n log(d), so (3) changes to (5) 

 ),0()log(10)( 2
0 NdndPLPP tr  . (5) 
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As we know, Pt - PL(d0) is a constant, so we can set it 
as a constant of α. PL(d0) = 10n log(d0), so 10n log(d0) is 
a part of constant α. 

Then, equation (5) can be changed as:  

 ),0(log10 2 NdnPr    (6) 

where Pr is RSSI, it could be regarded as a Gaussian distri-
bution with the mean of (α - 10nlogd) and variance of σ2. 
The PDF of RSSI is given by: 
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Through (6), we have 
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Fig. 8 depicts the PDF of the estimated distance. 
From Fig. 8 it can be concluded that: 

1) If keeping variance σ2 and actual distance dactual un-
changed, the curve becomes concentrated and steep with 
the path loss exponent n increasing. 

2) If keeping variance σ2 and path loss factor n un-
changed, the dispersion and smoothness with the actual 
distance  dactual  increase. 

3) If keeping actual distance dactual  and path loss fac-
tor n unchanged, the curve shows that dispersion and 
smoothness with the variance σ2 is increasing. 

 
Fig. 8. PDF of the estimated distance. 

2.4 Wheel Graph Model 

In this section, we mainly discuss the positioning 
environment and the choice of location area. The actual 
positioning environment is too complex to use just three 
readers for large-scale indoor localization. So we divide 
a large area into many small square areas [14], as shown in 

Fig. 9. Each small area is covered by three readers and each 
reader’s location is known. Tags will periodically broadcast 
the information to all readers around them, readers will 
collect information (all tags ID and RSSI) from tags and 
upload data (all readers ID, tags ID and RSSI) to the server. 
Then, the server processes the uploaded data. The data in-
clude three types of number, if the data can’t be effectively 
paired, it is very easy to create chaos in the post-processing 
stage, i.e., we can’t distinguish which RSSI is uploaded by 
which reader. We propose a new method, called wheel 
graph, to solve the problem of the positioning region selec-
tion. 

 
Fig. 9. Deployment of readers and tag. 

 
Fig. 10. Wheel network of environment. 

From the previous section, we know that every reader 
will transmit RSSI information to the server. The server can 
estimate the distance from tags to readers using (8). n1 is 
the number of readers, the above situation can be described 
by the following formula, this formula can be expressed as: 

3 11 2 4

_ 3 _ 1_1 _ 2 _ 4
     

n

Reader Reader nReader Reader Reader

d dd d d

 
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 
. 

After acquiring the distance information, we can establish 
the wheel graph model in our environment. Fig. 10 shows 
the wheel network of Fig. 9. As shown in Fig. 10, we con-
nect all readers together. Each black or red dot represents 
a reader node.  

Then, range Dc = {d1 d2 d3 d4 … d5} from small value 
to large one. And choose the smallest four values from it, 

and meet the condition of d1，d2，d3，d4  Dc, given as 

1 2 3 4

_1 _ 2 _ 3 _ 4
    

w w w w

Reader w Reader w Reader w Reader w

d d d d

 
 
 

, 

and d1w ≤ d2w ≤ d3w ≤ d4w. The following are the absolute 
coordinates of the four readers, 

1 1_1 (x , )w wReader w y , 2 2_ 2 (x , )w wReader w y ,

3 3_ 3 (x , )w wReader w y , 4 4_ 4 (x , )w wReader w y . 

We can utilize the two shortest distances, d1w and d2w , 
to determine two closest readers near the object. Then we 
regard the two readers as two vertices of the triangle. Next, 
we use Reader_3w and Reader_4w respectively as the third 
vertex to form a triangle, and judged by using the following 
rules (Low of Cosines). 
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When above formulas simultaneously satisfy the fol-
lowing conditions: cosθ1 > 0 & cosθ2 > 0, we take the point 
as the third vertex. Using wheel graph method, we can de-
termine the small area covered by three readers. And our 
positioning region is a square area containing the triangle, 
while the horizontal side of the triangle is the square area’s 
one side. Fig. 11 displays the wheel graph of the whole 
process. Fig. 12 shows the small square positioning area. 

 
Fig. 11. Wheel graph of the whole process. 

 

Fig. 12. Positioning area. 

2.5 Bayesian Localization Scheme 

2.5.1 Calibration of the Propagation Parameters 

In the previous section, we have determined the posi-
tioning area. In order to calculate the probability in (7) or 
(9), and the estimated distance in (8), we need to know the 
propagation parameters α, n and σ. In our Bayesian local-
ization algorithm, the on site reference tags and object tags 
are used to calibrate the propagation parameters during the 
process of localization. Every reader has a reference tag 
deployed in the environment within its range. The reference 
tags are static with known locations. After detection, the 
readers report the values of RSSIs of tags to the server; the 
server will process the received data and calibrate the pro-
pagation parameters. In the following part, we will explain 
this process in detail. 

The actual situation is shown in Fig. 12. There are 
three readers in the specific area, reader_1, reader_2 and  

reader_3. There are four tags in the space, three reference 
tags and one object tag. Suppose that during a period of 
time, time slot 1 to time slot w, received signal strength 
recorded as {RSSIt

j(i)} , j = 1,2,3, i = 1,2,3,4, t = 1,2,3…w. 
Here, the {RSSIt

j(i)} denotes reader_j report the RSSIs 
coming from tag_i during time slot 1 to time slot w. We can 
calculate the average value of RSSIs, ( )jRSSI i  denoted 

as: 

 ( ) 10 log( ( , ))j j jRSSI i n dist i j  . (10) 

From (6) and (10), we can get the following formula. 

 ( ) ( ( , ))j rRSSI i P dist i j .  (11) 

First, we calibrate the path loss exponent nj. We can 
derive equation (12), (13) from (10) and (11). dist(i,j) 
means the distance from tag_i to reader_j. We have: 

 ( ) 10 ( ( , ))j j jRSSI j a n log dist j j  ,  (12) 

 ( ) 10 ( ( , ))j j jRSSI i a n log dist i j  .  (13) 

Then the difference of two equations, (12) and (13) is 

 ( , )
( ) ( ) 10 log

( , )j j j

dist i j
RSSI i RSSI j n

dist j j
  .  (14) 

Then we can get the path loss exponent nj(i), which 
denotes one calibration from reader_j to tag_i, and i  j. In 
this section, j = 1,2,3, and i = 1,2,3. 
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For reader_j, the path loss factor is calculated twice, 
we use its average value in our system.  
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nj denotes reader_j’s path loss factor to the environment. 
Because there are three readers in our space, the path loss 
factor should be calculated three times. Secondly, we cali-
brate the αj, from (10), we have 

 (i) ( ) 10 ( ( , ))j j jRSSI i n log dist i j   ,  (17) 
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Finally, we calibrate the value of σ, as in formula (19). 
Nr and Nt are the numbers of readers and tags. In our preset 
situation, Nr = 3, Nt = 3, and std(RSSIj(i)) denotes the 
standard deviation for vector [RSSI1

j(i), RSSI2
j(i),…, 

RSSIw
j(i)].  
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2.5.2 Probability Localization Algorithm 

As we know, the key of tracking and positioning is to 
get location information. In our system, we define the loca-
tion information x as a series of coordinate points. Accord-
ing to the Bayesian inference [15], we can obtain the fol-
lowing formula. 

     
   

| ( | ) ( )
|

( )|

t t
t

tt

p RSSI x p x p RSSI x p x
p x RSSI

p RSSIp RSSI x p x dx
 


(20) 

where p(x) is the priori probability of the object’s location. 
p(RSSIt|x) can be derived from (7), which means the PDF 
of RSSI under the situation of location information known. 
p(RSSIt) is the marginal PDF of p(RSSIt,x). p(x|RSSIt) is the 
key equation, we can obtain the location from it. Through 
equation (20), we have following formula [16] 

( | ) ( | ) ( )t tp x RSSI p RSSI x p x . 

We assume that Bel(x) is the probability of object at 
location x. Bel-(x) is the initial probability of object at 
location x. β is a constant, to normalize the Bel(x) we have 

      xBelxRSSIpxBel k
t   .  (21) 

Bel－(x) can be computed from equation (22). 

       111 
  k

t
kkk dxRSSIxpxxpxBel   (22) 

where xk is the location of object at time k and xk-1 is the 
location of front moment. p(xk|xk-1) is the Dynamic Model 
of system.  
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For a static system, equation (22) can be converted 
into equation (24). 

    1
  kk xBelxBel .  (24) 

Then we can get our Bayesian estimation model. 

      1 kk
t

k xBelxRSSIpxBel  .  (25) 

 
Fig. 13. Deployment environment. 

As shown in Fig. 12, we divide the location area into 
N grids. In our simulation, the grid size is 40 cm × 40 cm, 
just like the size of a tile. Each grid has a coordinate corre-

sponding to the center of the grid’s coordinate, which is 
defined as C(gxi,gyi), i  (1,2,3…N). In this area, small dots 
represent tags, green ones are inference tags and red one is 
object tag. Three big red circles are readers. A 2-dimensio-
nal or 3-dimensional map can be shown in Fig. 12 and 
Fig. 13 respectively. 

 
Fig. 14. Fit Model of one tracked tag. 

As described above, the initial p(x) could be set as 1/N, 
thus the initial value of Bel(xk) is 1/N. The p(RSSIt|xk) is a 
Fit Model, which can be calculated by the following 
formula. Fig. 14 shows the Fit Model of a tracked point. 

 
3

1

( | ) ( | )t t
k j k

j

p RSSI x p RSSI x


 .  (26) 

There are two pictures in Fig. 14, the precondition of 
this model is that RSSIs are known and unchanged. The 
upper one represents the probability of the distance from 
tag to one reader. The lower one represents the distances 
from tag to the other two readers. From Fig. 14, we can 
know that with the Fit Model relatively large values are 
achieved, when the estimated locations are close to the 
actual location. The maximum value is obtained when the 
estimated location is actual location. 

At the end of the algorithm, we evaluate the credibil-
ity of output by defining a confidence function Bel’(xk). 

    
   kkk

k
k

yxxBel

xBel
xlBe

,max 
 . (27) 

We set a threshold T(0 ≤ T ≤ 1) and only choose those 
grids with Bel’(xk) > T. After one recursion, an estimated 
area is obtained. We can achieve one more precise esti-
mated area, if increasing the recursion times R. 

3. System Performance Analysis  
This section is divided into three parts. First we dis-

cuss the average positioning distance error. Then we will 
discuss the performance of the system with changing pa-
rameters. At last, we evaluate the system performance. As 
we know, the performance will be affected by several unde-
termined parameters, for example, recursion time R, win-
dow size w and threshold T.  



RADIOENGINEERING, VOL. 22, NO. 1, APRIL 2013 377 

3.1 Average Localization Distance Error 

In this part, we define ALE (Average Localization 
Distance Error) to evaluate our system’s positioning error, 
which is given by 

      
  







gykgxkk

gykgxkkgykgxk

CxlBe

CxlBeCD
ALE

,

,, . (28) 

The estimated points are in the estimated area, de-
noted as (gxk,gyk), k = 1,2,3,…E . E is the number of grids 
covered by the estimated area. (x0,y0) is the actual coordi-
nate of object tag. The D(C(gxk,gyk)) is denoted as the Euclid 
Distance from estimated point to the object’s actual point. 
We have  

       2 2

0 0, = k kgxk gykD C gx x gy y   .  (29) 

ALE is the average error distance between the object 
and grid points in the estimated area. It represents the 
accuracy of positioning. When the ALE is the minimum 
value of zero, the system has the highest accuracy. The 
greater the ALE value, the worse the position accuracy.  

3.2 Impact of System Parameters  

In this part, we will investigate the system perform-
ance depending on a number of system and environment 
parameters and then simulate the experiment. We use 
MATLAB to simulate the impact of the following parame-
ters on the localization accuracy, which is represented by 
average localization distance error (ALE): filtered data and 
unfiltered data, recursion time R, threshold T, path loss 
exponent n, standard deviation σ, and window size w, etc. 

3.2.1 Impact of Filtered Data, Unfiltered Data and 
Recursion Time 

We study the impact of filtered data and unfiltered 
data on average positioning error through experiment 1.  

Experiment 1: We assume two scenarios: 1) the input 
RSSI values are unfiltered data; 2) the input RSSI values 
are filtered data. The system is based on the following con-
figuration: grid size = 40 cm, threshold T = 0.5, path loss 
exponent n = 3, standard deviation σ = 1.45, α = -59.7581, 
window size w = 200.  

Fig. 15 depicts ALE as a function of the recursion 
time for the two scenarios. In the first scenario, we observe 
that the decrease of ALE’s rate is very slow as we increase 
the recursion time. After several rounds of recursion, ALE 
is still large. But in the second scenario, we observe that 
ALE decreases after increasing the recursion time. This is 
due to the use of the Gaussian Filter which significantly 
improves the reliability of RSSI values.  

Fig. 16 illustrates ALE as a function of the recursion 
time for different objects in the above second scenarios. 
From Fig. 16, we observe that ALE reduced speed is 
a function of the object locations within the basic detection 

area. For object 2 and object 3, the localization accuracy 
increases much faster than that of object 1, with increasing 
of the recursion time. Generally speaking, the position ac-
curacy is increased with the increasing of the recursion 
time. 

 
Fig. 15. Impact of Gaussian filter. 

 
Fig. 16. Tracked three objects. 

3.2.2 Impact of Window Size 

Experiment 2: The following system is configured as: 
grid size = 40 cm, threshold T = 0.5, path loss exponent 
n = 3, standard deviation σ = 1.45, α = -59.7581. Fig. 17 
plots ALE as a function of the window size w. In this part, 
we plan to evaluate the impact of window size on the local-
ization accuracy. We perform the simulation for object 1, 
object 2 and object 3 as depicted in Fig. 17.  

From Fig. 17, we observe that ALE decreases as the 
window size w increases. In other words, the greater the 
window size w, the higher the localization accuracy. We 
also find that the ALE decrease rate depends on the window 
size. The ALE decrease rate will be very high when the 
window size is relatively large.  

 
Fig. 17. Impact of window size. 
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3.2.3 Impact of Threshold, Path Loss Exponent and 
Standard Deviation 

Experiment 3: The system is configured as: grid 
size = 40 cm, path loss exponent n = 3, standard deviation 
σ = 1.45, α = -59.7581. In this experiment, we aim to 
evaluate the impact of threshold on the localization accu-
racy. We perform the simulation for object 1, object 2 and 
object 3. Fig. 18 plots ALE as a function of the threshold T.  

From Fig. 18, it implies zero error for T = 1, this is 
true only if no tags are found, i.e., with high threshold, the 
error is low but almost no tags are identified. So, we must 
have a principle, tags should be identified at the current 
threshold, if no tags are found at the current threshold, we 
discard the value. 

 
Fig. 18. Impact of threshold. 

Experiment 4: The system is configured as: grid 
size = 40 cm, threshold T = 0.5, standard deviation 
σ = 1.45, α = -59.7581. In this part, we plan to evaluate the 
impact of path loss exponent on the localization accuracy. 
We perform the simulation for object 1, object 2 and 
object 3. Fig. 19 plots ALE as a function of the path loss 
exponent n. 

From (15) and (16), we can know that the path loss 
exponent is not constant for the environment but a function 
of both reader and tag position. 

From Fig. 19, we can see that localization accuracy 
increases with the increase of path loss exponent n. In 
practical applications, the path loss exponent shouldn’t be 
set manually but be set according to the environment. 
When the environment path loss exponent is bigger, the 
system positioning accuracy is higher. 

 
Fig. 19. Impact of path loss exponent. 

Experiment 5: The system configuration: grid 
size = 40 cm, path loss exponent n = 3, threshold T = 0.5, 

α = -59.7581. In this part, we evaluate the impact of stan-
dard deviation on the localization accuracy. Fig. 20 plots 
ALE as a function of standard deviation σ.  

From Fig. 20, we can see that localization accuracy 
decreases with standard deviation σ increasing. The loca-
lization accuracy with small standard deviation is better. 

 
Fig. 20. Impact of standard deviation. 

3.3 System Performance 

In this section, we test the system performance using 
the following experiment.  

Experiment 6: This experiment is designed to 
probabilistically evaluate the system localization 
performance under the following settings: Using the same 
reader network topology as shown in Fig. 12, we track 169 
objects which are uniformly distributed within the basic 
detection area. The other simulation parameters are: grid 
size = 40 cm, path loss exponent n = 3, standard deviation 
σ = 1.45, α = -59.7581, threshold T = 0.5, 0.7, 0.9. We test 
the system performance for two scenarios: 1) recursion 
time R = 10; 2) recursion time R = 20.  

Fig. 21 shows the cumulative Average Error Distance 
distribution obtained from scenarios 1 and 2. We notice that 
in over 90% percent of the objects the localization ALE 
falls from within 50 cm. As expected, the increasing recur-
sion time R will lead to higher localization accuracy. Fur-
thermore, from Fig. 18, we also can get the conclusion that 
in most of the situation, localization accuracy with large T 
is better. 

4. Conclusion 
In this paper, we presented a new method, an 

easy-setup and cost-effective indoor localization method 
based on off-the-shelf active RFID technology combined 
with GF, WGM and PLA. Our system relies on a hierarchi-
cal architecture to cover an indoor environment. The pro-
posed approach can calibrate the propagation parameters 
according to the environment, reduce the uncertainty of 
localization, and at the same time obtain high positioning 
accuracy under conditions of large-scale indoor positioning. 
Using MATLAB simulations we have evaluated the per-
formance of our proposal. In the destined system settings, 
the simulation results show that in 90% percent of the loca- 
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Fig. 21. 169 objects’ cumulative probability distribution. 

 
lization estimation, the system provides objects location 
with the ALE less than 50 cm, and in 70% percent of the 
localization estimation, the system provides objects loca-
tion with the ALE less than 20 cm. The simulation also 
shows that the system performance improves with the 
higher values of recursion time, window size, path loss 
exponent and with the lower propagation standard devia-
tion. The simulation results can prove that the proposed 
system is an accuracy and cost-effective candidate for 
indoor localization. 
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