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Abstract. In this paper, we investigate the noncoherent it-
erative demodulation of coded continuous phase modulation
(CPM) in frequency hopped (FH) systems. In this field, one
important problem is that the complexity of the optimal de-
modulator is prohibitive unless the number of symbols per
hop duration is very small. To solve this problem, we propose
a novel demodulator, which reduces the complexity by apply-
ing phase quantization and exploiting the phase rotational
invariance property of CPM signals. As shown by compu-
tational complexity analysis and numerical results, the pro-
posed demodulator approaches the performance of the op-
timal demodulator, and provides considerable performance
improvement over the existing solutions with the same com-
putational complexity.
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1. Introduction
Frequency hopping (FH) is a widely used technique

in wireless communication systems, e.g., military anti-
jamming communication system and cognitive radio system.
One characteristic of FH system is the phase discontinuity
between adjacent hop intervals. Consequently, compared
with coherent demodulation that requires additional over-
head for channel estimation, noncoherent demodulation is
more preferred in practical systems, since it does not require
explicit knowledge or estimation of channel phase. More-
over, next generation FH communication requires a spec-
trum efficient transmission waveform that allows the use of
low-cost power-efficient amplifiers. In this context, contin-
uous phase modulation (CPM) [1] serves as a good candi-
date due to its high spectral efficiency and constant envelope
property.

In this paper, we investigate the noncoherent iterative
demodulation of coded CPM in FH systems. In this field,
one important problem is that the complexity of the opti-

mal demodulator is exponential to the hop length (i.e., the
number of symbols per hop duration) and thus become pro-
hibitive even for moderate hop length [2]. In order to reduce
the complexity, several suboptimal demodulators have been
proposed in previous literatures. In [2], a suboptimal demod-
ulator is proposed based on multiple symbol differential de-
tection (MSDD) [3], which evaluates soft symbol decisions
over an observation window. However, the performance of
the demodulator suffers significant losses as the window size
is much smaller than the hop length, at the same time its
complexity increases exponentially with the window size.
Another suboptimal demodulator [4], [5] is proposed based
on the iterative tree search (ITS) and employs M-algorithm
[6] to limit the number of paths through the tree. However,
the performance of the demodulator suffers significant losses
due to two reasons, i.e., only part of the symbols over the
hop duration is used to evaluate the soft symbol decisions
and the correct path through the tree may be discarded by
M-algorithm.

In this paper, a novel noncoherent iterative CPM de-
modulator for FH communication is proposed. We reduce
the complexity by the following three steps. First, we intro-
duce phase quantization [7] into noncoherent demodulation
of CPM. In such way, the complexity of noncoherent de-
modulation is reduced to a level that is comparable to coher-
ent receivers. Second, the phase invariance property of CPM
signals [8] is exploited to further reduce the complexity of
the proposed demodulator. Furthermore, the phase branch
pruning approach [7] is integrated into the proposed demod-
ulator to offer a good trade-off between the complexity and
performance. We analyze the computational complexity of
our proposed demodulator and evaluate its performance by
numerical simulations. It is shown that the proposed demod-
ulator approaches the performance of the optimal noncoher-
ent demodulator, while its complexity grows linearly with
the hop length. Moreover, compared with the demodulators
presented in [2] and [4], [5], the proposed scheme achieves
considerable performance improvement with the same com-
putational complexity.

The rest of the paper is organized as follows. The sys-
tem model is described in Section 2. The proposed low-
complexity demodulator is derived in Section 3. Compu-
tational complexity analysis and numerical results are pre-
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Fig. 1. Schematic block diagram of the system.

sented in Section 4 and Section 5, respectively. Finally, con-
clusions are drawn in Section 6.

2. System Model

2.1 Signal Model
The M-ary CPM signal in the interval nTs ≤ t ≤ (n+

1)Ts is described as

s(t;a,ϕ0,a−L+1,· · ·,a−1)=

√
2Es

Ts
exp[ jϕ(t;a,ϕ0,a−L+1,· · ·,a−1)]

(1)

with

ϕ(t;a,ϕ0,a−L+1,· · ·,a−1) = ϕn+2πh
n

∑
i=n−L+1

aiq(t− iTs) (2)

and

ϕn = (ϕ0 +πh
n−L

∑
i=−L+1

ai) mod 2π (3)

where Es is the symbol energy, Ts is the symbol inter-
val, and a is the input symbol sequence with i-th symbol
ai ∈ {±1,±3, · · · ,±M− 1}. h = Q/P is the modulation in-
dex, where Q and P are relative prime integer. The phase
pulse q(t) is the time-integral of a frequency pulse with
length LTs and area 1/2, where L is the length of phase
pulse. Moreover, ϕ0 ∈ {2π/P,4π/P, · · · ,2π(P− 1)/P} and
a−L+1, · · · ,a−1 ∈ {±1,±3, · · · ,±M − 1} denote the initial
parameters for the CPM modulator.

According to the well known Rimoldi decomposition
[9], the CPM modulator can be represented as a cascade of
a continuous phase encoder (CPE) and a memoryless modu-
lator. The CPE, in general, is a time-invariant convolutional
encoder operating on a ring of integers modulo P. There-
fore, by adding an outer convolutional encoder connected to
the CPE through an interleaver, a serial concatenated convo-
lutional encoder system [10], [11] is formed. Subsequently,
iterative demodulation and decoding can be performed based
on maximum a posteriori detection at the receiver.

2.2 Channel Model
Usually, at the baseband, the FH channel is modeled

as an additive white Gaussian noise (AWGN) channel where
the phase offset is assumed to remain constant over each hop
and independent from one hop to the next [2]. After de-
hopped and filtered, the baseband received signal of the k-th
hop is described as

rk(t) = sk(t;ak,ϕ0,k,a−L+1,k, · · · ,a−1,k)exp( jθk)+w(t)
(4)

over the interval iTs ≤ t ≤ (i+ 1)Ts. Here, k = bi/Nc, and
the function bxc rounds x down to an integer value. N is the
number of symbols per hop and defined as hop length. The
symbols of the k-th hop, i.e., {akN ,akN+1, · · ·,akN+N−1}, are
denoted as ak =

{
a0,k,a1,k, · · ·,aN−1,k

}
, and the last L− 1

symbols of the (k− 1)-th hop, i.e., akN−L+1, · · ·,akN−1, are
denoted as a−L+1,k, · · · ,a−1,k. The initial phase of the k-th
hop, i.e., ϕkN , is denoted as ϕ0,k. Moreover, w(t) denotes
the additive white Gaussian noise with power spectral den-
sity N0 W/Hz, and θk represents the phase offset for the k-th
hop. θk is uniformly distributed over the range [0,2π), and
is modeled as independent from one hop to the next.

2.3 System Description
Fig. 1 shows a schematic block diagram of the overall

system. The channel encoder encodes a sequence of infor-
mation bits b into a sequence of coded bits c. The resulting
coded sequence is interleaved by a random permutation and
is then mapped to a sequence of M-ary symbols. The M-ary
sequence is then passed to the CPM modulator, which acts as
an inner recursive encoder. Subsequently, a frequency hop-
per hops the carrier over different frequencies.

At the receiver end, a frequency de-hopper drives the
CPM signal back to base band. Subsequently, for each hop
of received samples, the hop-wise demodulator computes
a posteriori probabilities (APPs) ζs of the input CPM sym-
bols. These symbol APPs are then used to compute bit-wise
APPs ζb. The extrinsic part of these bit-wise APPs ζb,e are
then de-interleaved and passed to the channel decoder. The
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channel decoder performs one decoding iteration and gener-
ates the bit-wise extrinsic information ηb,e. Then the inter-
leaved bit-wise extrinsic information λb are fed back to the
demodulator, which update the prior symbol probabilities λs.
After a fixed number of iterations, decisions are made at the
output of the channel decoder to generate the decoded bits b̂.

3. Proposed Low-complexity Non-
coherent Iterative CPM Demodula-
tor for FH Communication
As we have mentioned, the noncoherent iterative de-

modulator operates hop-wise. Therefore, without loss of
generality, we drop the subscript k for simplification in the
following. Notice that a−L+1, · · · ,a−1 are the last L−1 sym-
bols of the previous hop. Here, we use the temporary hard
decisions of a−L+1, · · · ,a−1 as the their values. Without loss
of generality, we assume that a−L+1 = · · · = a−1 = 1 and
hide the condition a−L+1 = · · ·= a−1 = 1 for simplification.
Consequently, (4) turns out to be

r(t) = s(t;a,ϕ0)exp( jθ)+w(t) (5)

Here, we introduce some notations that we will use
throughout this paper. We restrict our attentions to the case
where M is a power of two, and define m = log2 M as the
number of bits in each CPM symbol. Denote the input vec-
tor for the CPM modulator by a = {a0, · · · ,aN−1}. For each
i = 0, · · · ,N − 1, ai ∈ {±1,±3, · · · ,±M− 1} represents an
input CPM symbol encoding m bits. The bits encoded in ai

are denoted by {a j
i , j = 1, · · · ,m}.

For each bit a j
i , 0≤ i≤ N−1, 1≤ j ≤m, let λb

i, j(w) =

Pr(a j
i = w),w = 0,1 denote the input bit-wise priors pro-

vided by the channel decoder. We assume that these bit-wise
priors associated with the same block are independent due to
the presence of channel interleaver. Based on this indepen-
dency assumption, the demodulator takes the following three
steps to compute the output bit-wise extrinsic information to
be passed back to the channel decoder.

1) For each symbol ai, the demodulator generates
symbol-wise priors λs

i (ai) from input bit-wise priors λb
i, j(a

j
i )

as
λ

s
i (ai) =

m

∏
j=1

λ
b
i, j(a

j
i ). (6)

2) For each symbol ai, the demodulator com-
putes symbol-wise APPs ζs

i (u) = Pr(ai = u), u =
±1,±3, · · · ,±M−1 as

ζs
i (u) = Pr[ai = u |r(t) ]

= ∑
ϕ0∈Φ

∑
a:ai=u

Pr[s(t;a,ϕ0) |r(t) ]

∝ ∑
ϕ0∈Φ

∑
a:ai=u

Pr[r(t) |s(t;a,ϕ0) ]Pr(a)Pr(ϕ0)

= ∑
ϕ0∈Φ

∑
a:ai=u

Pr[r(t) |s(t;a,ϕ0) ]
N
∏
i=1

λs
i (ai)Pr(ϕ0)

(7)

where Φ = {2π/P,4π/P, · · · ,2π(P−1)/P}.

Moreover, the temporary hard decisions of ai, i = N−
L+ 1, · · · ,N− 1, to be used in the demodulation of the next
hop, are obtained by ai = argmax

u
[ζs

i (u)].

3) For each bit a j
i , the demodulator generates updated

bit-wise APPs ζb
i, j(w),w = 0,1 and bit-wise extrinsic infor-

mation ζ
b,e
i, j (w),w = 0,1. The latter is then passed back to

the channel decoder.

Using the symbol-wise APPs, we have

ζ
b
i, j(w) = ∑

ai:a
j
i =w

ζ
s
i (ai), w = 0,1. (8)

Then the bit wise extrinsic information ζ
b,e
i, j (w) is ob-

tained by removing bit-wise priors λb
i, j(w) from ζb

i, j(w), i.e.,

ζ
b,e
i, j (w) =

ζb
i, j(w)

λb
i, j(w)

ζb
i, j(w)

λb
i, j(w)

+
ζb

i, j(1−w)

λb
i, j(1−w)

. (9)

3.1 Optimal Noncoherent Iterative CPM
Demodulator for FH Communication
From (6)-(9), it can be seen that computing

Pr[r(t) |s(t;a ,ϕ0)] turns out to be the bottleneck in terms of
computational efficiency. For optimal noncoherent demodu-
lation, Pr[r(t) |s(t;a ,ϕ0)] is described as [2]

Pr[r(t) |s(t;a ,ϕ0)] ∝ I0


2
∣∣∣∣NTs∫

0
r∗(t)s(t;a,ϕ0)dt

∣∣∣∣
N0

 (10)

where I0(•) represents the modified zero order Bessel func-
tion of the first kind.

As is seen, the number of the terms in the sum-
mation of (7) is equal to MN , which increases exponen-
tially with the hop length. In contrast to the coherent set-
ting where θ is known, the noncoherent conditional density
Pr[r(t) |s(t;a ,ϕ0)] shown in (10) cannot be computed recur-
sively, because it does not decompose into a product of suit-
able individual terms. Therefore, when (10) is used to com-
pute symbol APPs, the resulting complexity is prohibitive,
even for moderate hop length.

3.2 Proposed Low-complexity Demodulator
Based on Phase Quantization
In this subsection, we introduce a phase quantization

approach, which was previously used in the noncoherent de-
modulation of quadrature amplitude modulation (QAM) in
[7], into the demodulation of CPM signals. The main idea of
this approach is to approximate the noncoherent channel by
a set of coherent channels. It is achieved by discretizing the
unknown channel with the phase shift θ.
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First, we assume that θ takes only K discrete values in
the interval [0,2π), i.e.,

θ ∈ {0, 1
K

2π, · · · , K−1
K

2π}. (11)

Next, we approximate Pr[r(t) |s(t;a ,ϕ0)] as

Pr[r(t) |s(t;a,ϕ0) ]≈
K−1
∑

k=0
Pr[θ = 2πk/K,r(t) |s(t;a,ϕ0 )]

=
K−1
∑

k=0
Pr[θ=2πk/K|s(t;a,ϕ0)]Pr[r(t) |s(t;a,ϕ0),θ=2πk/K]

∝

K−1

∑
k=0

N

∏
i=1

exp{
2Re[

iTs∫
(i−1)Ts

r∗(t)s(t;a,ϕ0)e− j2πk/Kdt]

N0
}.

(12)

Finally, we substitute (12) into (7) to approximate
Pr[r(t) |s(t;a,ϕ0) ] and get the result shown in (13) at the top
of the page.

Based on (13), we can compute ζs
i (u) recursively using

the BCJR algorithm [12]. The overall computation require-
ment is equivalent to K times the complexity of a BCJR al-
gorithm applied to the coherent demodulation.

3.3 Complexity Reduction by Exploiting
the Phase Rotational Invariance
Property of CPM Signals

In this subsection, further complexity reduction is
achieved by exploiting the phase rotational invariance prop-
erty of CPM signals for the proposed demodulator. This ap-
proach involves following three steps.

1) It has been known that CPM is rotational invariant to
P− 1 phase ambiguities including {2π/P,4π/P, · · · ,2π(P−
1)/P} [8], i.e.,

s(t;a,ϕ0)e j2πv/P ∣∣
ϕ0=φ = s(t;a,ϕ0)

∣∣
ϕ0=φ+2πv/P (14)

where φ ∈ {0,2π/P, · · · ,2π(P−1)/P} and v = 0,1, · · · ,(P−
1).

2) According to (1)-(3), s(t;a,ϕ0) can be described as

s(t;a,ϕ0) = Γ(t;a)exp( jϕ0) (15)

where Γ(t;a) = s(t;a,ϕ0)exp(− jϕ0) is a function unrelated
to ϕ0. Substituting (10) and (15) into (7), we have

ζ
s
i (u) ∝ ∑

a:ai=u
I0[

2
∣∣∣∣NTs∫

0
r∗(t)Γ(t;a)dt

∣∣∣∣
N0

]
N

∏
i=1

λ
s
i (ai). (16)

According to (16), the output APPs do not depend
on the value of ϕ0 for noncoherent demodulation. There-
fore, without loss of generality, we assume that ϕ0 takes
any value in {0,2π/P, · · · ,2π(P− 1)/P} with equal proba-
bility. As a result, we have

Pr(ϕ0 = 0) = · · ·= Pr(ϕ0 = 2π(P−1)/P) = 1/P. (17)

3) We show that, when the quantization level K is an in-
teger multiple of P, (13) can be simplified. Instead of quan-
tizing the phase shift θ in the interval [0,2π), we quantize
it in the subinterval [0,2π/P), thus reducing the number of
quantization levels. The reduced phase quantization level K′

is equal to K/P. Writing any number k, 0 ≤ k < K in the
form k = p′K′+ k′, where 0 ≤ p′ < P and 0 ≤ k′ < K′, we
rewrite (13) as (18), as shown at the bottom of the page.

Define Φ(p′) = {2πp′/P,2π(1+ p′)/P, · · · ,2π(P−1+
p′)/P}, p′ = 0,1, · · ·P− 1. Substituting (14) and (17) into
(18), we obtain the result shown in (19) at the bottom of the
page.

Finally, using the fact that s(t;a,ϕ0)
∣∣
ϕ0=φ =

s(t;a,ϕ0)
∣∣
ϕ0=φ+2π , φ ∈ {0,2π/P, · · · ,2π(P− 1)/P}, we ob-

tain the result shown in (20) at the bottom of the page.

ζ
s
i (u) ∝

K−1

∑
k=0

∑
ϕ0∈Φ

∑
a:ai=u

N

∏
i=1

exp{
2Re[

iTs∫
(i−1)Ts

r∗(t)s(t;a,ϕ0)e− j2πk/Kdt]

N0
}λs

i (ai)Pr(ϕ0) (13)

ζ
s
i (u) ∝

K′−1

∑
k′=0

P−1

∑
p′=0

∑
ϕ0∈Φ

∑
a:ai=u

N

∏
i=1

exp{
2Re[

iTs∫
(i−1)Ts

r∗(t)s(t;a,ϕ0)e− j2π(p′+(k′/K′))/Pdt]

N0
}λs

i (ai)Pr(ϕ0) (18)

ζ
s
i (u) ∝

1
P

K′−1

∑
k′=0

P−1

∑
p′=0

∑
ϕ0∈Φ(p′)

∑
a:ai=u

N

∏
i=1

exp{
2Re[

iTs∫
(i−1)Ts

r∗(t)s(t;a,ϕ0)e− j2πk′/Kdt]

N0
}λs

i (ai) (19)

ζ
s
i (u) ∝

K′−1

∑
k′=0

∑
ϕ0∈Φ

∑
a:ai=u

N

∏
i=1

exp{
2Re[

iTs∫
(i−1)Ts

r∗(t)s(t;a,ϕ0)e− j2πk′/Kdt]

N0
}λs

i (ai) (20)



RADIOENGINEERING, VOL. 22, NO. 1, APRIL 2013 385

max
a

Pr(r(t)
∣∣s(t;a,ϕ0),θ = 2πk′/K ) = max

a ∑
ϕ0∈Φ

N

∏
i=1

exp{
2Re[

iTs∫
(i−1)Ts

r∗(t)s(t;a,ϕ0)e− j2πk′/Kdt]

N0
}λs

i (ai), k′ = 0,1, · · · ,K′

(21)

Demodulator Additions Multiplications Comparisons Nonlinear
functions

PQ demodulator, without 4K′NS 16K′NS 0 4K′N
phase branch pruning
PQ demodulator, with 4K′N+ 16K′N+ 2N 4K′N
phase branch pruning 4GN(S−1) 16GN(S−1)
MSDD demodulator 2W NS+ W2W NS+ 0 2W N

(4W −2)2W N (4W +1)2W N
ITS demodulator 7BNS 9BNS BNS 3BNS

N, S, K′, G, W , B denote the hop length, the number of iterations, the number of phase quant-
ization levels for the PQ demodulator, the number of phase quantization levels after first iter-
ation for the PQ demodulator with phase branch pruning, window size for the MSDD demod-
ulator, the number of surviving paths limited by M-algorithm for the ITS demodulator, respe-
ctively.

Tab. 1. Approximated computational complexity per hop for the proposed PQ demodulator, the MSDD demodulator and the ITS demodulator
with MSK.

From (14) – (20), it is seen that, by exploiting the phase
rotational invariance property of CPM signals, the overall
computation requirement is further reduced to K′ times the
complexity of a BCJR algorithm applied to the coherent de-
modulation.

3.4 Complexity Reduction by Pruning
the Phase Branch
The proposed demodulator implemented using coher-

ent demodulation over K′ phase bins incurs a K′-fold com-
plexity increase relative to coherent systems. Numerical re-
sults show, however, that a genie-based system, which uses
only the phase bins which are closest to the true channel
phase, yield comparable performance to K′-fold averaging.
We thus investigate a reduced-complexity implementation,
which prunes the number of phase branches, especially in
later iterations when we have the soft information from the
channel decoder. For this purpose, a generalized likelihood
ratio test (GLRT) approach, which has been proposed previ-
ously in [7], is applied to estimate the phase bins which are
closest to the true channel phase.

GLRT operates with the joint probability density func-
tion Pr(r(t) |s(t;a,ϕ0) ,θ), and involves following two steps.

1) After first iteration, we maximize the joint likelihood
function over the transmitted symbol sequence a on all K′

phase bins, respectively, as shown in (21) at the top of the
page.

From (21), it is seen that this step can be viewed as the
maximum likelihood sequence estimation (MLSE) and thus

can be computed with Viterbi algorithm.

2) G phase bins which maximize the function
max

a
Pr(r(t) |s(t;a,ϕ0) ,θ = 2πk′/K) are regarded as the

phase bins closest to the true channel phase, where G is a de-
sign parameter and 0 < G < K′.

Consequently, after the first iteration, BCJR are com-
puted only on G phase bins instead of K′ phase bins with
the aid of GLRT. Though this approach will result in per-
formance degradation, it offers a good trade-off between the
complexity and performance by varying the value of G.

4. Computational Complexity
Analysis
For simplification, in what follows, the proposed de-

modulator, the demodulator presented in [2], and the demod-
ulator presented in [4], [5] are called PQ (phase quantization)
demodulator, MSDD demodulator and ITS demodulator, re-
spectively.

In Tab. 1, the computational complexity analysis for
the proposed PQ demodulator with minimum shift keying
(MSK) is presented, along with those of the MSDD demod-
ulator and the ITS demodulator. As described in the table, S,
W , and B denote the number of iterations, the window size
for the MSDD demodulator, and the number of surviving
paths limited by M-algorithm for the ITS demodulator, re-
spectively. From the figure, it is seen that the complexity of
the MSDD demodulator is exponential to the window size,
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while the complexity of the proposed PQ demodulator and
the ITS demodulator grows linearly with the hop length.

In order to perform a fair comparison between the de-
modulators, two cases are considered in which the complex-
ity of the demodulators is at the same level, i.e.,
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PQ demodulator, without phase branch pruing, K’=16
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PQ demodulator, with phase branch pruing, K’=8, G=4
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Fig. 2. Effects of K′ and G on the performance of the proposed
PQ demodulator.
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PQ demodulator, without phase pruning, K’=8, N=10
PQ demodulator, without phase pruning, K’=8, N=20
PQ demodulator, without phase pruning, K’=8, N=50

Fig. 3. Effect of N on the performance of the proposed PQ de-
modulator.

Case 1: K′ = 8 for the PQ demodulator without phase
branch pruning, W = 4 for the MSDD demodulator, and
B = 12 for the ITS demodulator.

Case 2: K′ = 8, G = 2 for the PQ demodulator with
phase branch pruning, and B = 4 for the ITS demodulator.

Furthermore, as shown in Section 5, the proposed de-
modulator outperforms the other demodulators in both two
cases.

5. Numerical Results
In this section, we give the numerical results by Monte

Carlo simulations. Here, the performance of the proposed
PQ demodulator is investigated in terms of bit error rate
(BER) by simulating the system shown in Fig. 1. More-
over, as described in Subsection 2.2, the simulation channel

is modeled as the AWGN channel where the phase offset is
assumed to remain constant over each hop and independent
from one hop to the next. As in [2] and [4], MSK is con-
sidered, and rate 1/2 non-recursive convolutional code with
generator polynomial [7 5] is used as the channel code. The
length of uncoded bit sequence b is set to be 500, the max-
imum number of iterations is restricted to 7, and BJCR al-
gorithm [12] is used to decode the convolutional code. The
hop length N is set to be 20 to provide a good tradeoff be-
tween bandwidth-efficiency and power-efficiency of wave-
forms [2], unless stated otherwise.

Figs. 2 and 3 investigate the effects of the parameters
K′, G and N on the performance of the proposed PQ demod-
ulator. From the figures, it is seen that

• As expected, the performance of the proposed PQ de-
modulator improves as the number of quantization lev-
els K′ increases. However, increasing K′ beyond 8 does
not lead to significant performance improvement.

• As G is 4 and 2, the loss in performance due to phase
branch pruning at the BER of 10−4 is approximately
0.15 dB and 0.45 dB, respectively.

• The performance of the proposed PQ demodulator is an
increasing function of the hop length N. This result can
be explained as follows. According to (20), the prob-
ability for each symbol is evaluated over N symbols
in a hop for the proposed PQ demodulator. Therefore,
inherently, as N increases, the performance of the pro-
posed PQ demodulator also improves.

As we have mentioned, the complexity of the opti-
mal noncoherent demodulator is prohibitive even for mod-
erate hop length. Therefore, instead of evaluating the per-
formance of the proposed PQ demodulator by the perfor-
mance of the optimal noncoherent demodulator, we evaluate
it by information-theoretic bounds and the performance of
the MSDD demodulator. In Fig. 4, the performance of the
proposed PQ demodulator and corresponding information-
theoretic bound [13] are presented, along with the perfor-
mance of coherent demodulator [14] assuming perfect phase
offset estimation, the information-theoretic bound of coher-
ent demodulation [15], and the performance of the MSDD
demodulator with W = 10. From the figure, it is seen that

• As N = 20, the information-theoretic bound of nonco-
herent demodulation is approximately 0.75 dB from the
information-theoretic bound of coherent demodulation.
Moreover, for the proposed PQ demodulator, the loss in
performance compared to coherent demodulator at the
BER of 10−4 is approximately 0.85 dB. This indicates
that the performance loss compared to the optimal non-
coherent demodulator at the BER of 10−4 is approxi-
mately 0.1 dB for the proposed PQ demodulator.

• As K′ = 8,W = 10, the performances of the proposed
PQ demodulator and the MSDD demodulator are com-
parable. Moreover, increasing W beyond 10 only leads
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to slightly performance improvement [3]. Therefore,
we infer that the performance of the proposed PQ de-
modulator approaches the performance of the optimal
noncoherent demodulator.
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Fig. 4. Performances of the proposed PQ demodulator, coherent
demodulator, the MSDD demodulator with W = 10, and
corresponding information-theoretic bounds.
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Fig. 5. Performance comparison between the proposed PQ de-
modulator, the MSDD demodulator, and the ITS demod-
ulator.

Fig. 5 compares the performance of the proposed PQ
demodulator and the other demodulators in the two cases
mentioned in Section 4. From the figure, it is seen that

• The performance of the proposed PQ demodulator is
better than the MSDD demodulator in Case 1. The per-
formance gain is about 0.7 dB at the BER of 10−4.

• The proposed PQ demodulator outperforms the ITS de-
modulator in both two cases. In Case 1 the perfor-
mance gain of proposed PQ demodulator compared to
the ITS demodulator is about 0.35 dB at the BER of
10−4, while in Case 2 the performance gain is about
0.7 dB at the BER of 10−4.

For the proposed PQ demodulator, the performance im-
provement over the other demodulators can be explained as
follows, i.e.:

• As we have shown, the performance of the proposed
PQ demodulator approaches the performance of the op-
timal noncoherent demodulator.

• For the MSDD demodulator, the probability for each
symbol is evaluated over the observation window in-
stead of being evaluated over the hop duration. Con-
sequently, the performance of the demodulator suffers
significant losses as window size is much smaller than
the hop length.

• The performance of the ITS demodulator suffers sig-
nificant losses due to two reasons, i.e., the demodulator
only exploits part of the symbols over the hop dura-
tion to estimate the probability for each symbol and the
correct path through the tree may be discarded by M-
algorithm.

6. Conclusion
In this paper, a low-complexity noncoherent iterative

CPM demodulator for FH communication has been pro-
posed. The effectiveness of the proposed demodulator has
been verified with comparisons in terms of the computa-
tional complexity analysis and BER simulations. It is clearly
shown that the performance of the proposed demodulator ap-
proaches the performance of the optimal noncoherent de-
modulator, and is better than the existing solutions when
their complexity is at the same level. Moreover, it is shown
that the proposed demodulator also offers a good trade-off
between the complexity and performance. Therefore, the
proposed demodulator provides an important component for
FH-CPM system. Furthermore, though the proposed PQ de-
modulator is proposed for FH system, it can be also used in
many other systems where the phase offset can be assumed
to remain constant over a block of symbols, e.g., timing divi-
sion multiple access (TDMA) system, block-interleaved sys-
tem, etc.
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