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Abstract. Designing integrated circuits able to work under 
low-voltage (LV) low-power (LP) condition is currently 
undergoing a very considerable boom. Reducing voltage 
supply and power consumption of integrated circuits is 
crucial factor since in general it ensures the device reli-
ability, prevents overheating of the circuits and in particu-
lar prolongs the operation period for battery powered 
devices. Recently, non-conventional techniques i.e. bulk-
driven (BD), floating-gate (FG) and quasi-floating-gate 
(QFG) techniques have been proposed as powerful ways to 
reduce the design complexity and push the voltage supply 
towards threshold voltage of the MOS transistors (MOST). 
Therefore, this paper presents the operation principle, the 
advantages and disadvantages of each of these techniques, 
enabling circuit designers to choose the proper design 
technique based on application requirements. As an exam-
ple of application three operational transconductance 
amplifiers (OTA) based on these non-conventional tech-
niques are presented, the voltage supply is only ±0.4 V and 
the power consumption is 23.5 μW. PSpice simulation 
results using the 0.18 μm CMOS technology from TSMC 
are included to verify the design functionality and corre-
spondence with theory.  

Keywords 
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1. Introduction  
Over the last decade reducing the voltage supply and 

minimizing the power consumption become the most 
important priority particularly for portable electronics and 
battery-powered implantable and wearable medical de-
vices. The LV LP capability of portable electronics and 
battery-powered medical devices is essential demand since 
it enables increasing the battery lifetime and/or decreasing 
the size and weight of the devices by using battery with 
smaller size and weight which is demanded and important 
in modern devices [51]. 

Integrated circuit (IC) technologies trend toward re-
duction of the minimum feature size of MOS transistors, 

thus more electronic functions per unit area are achieved. 
However, increasing the device density of single IC means 
in its turn higher power dissipation and overheating. Hence 
it is very important to decrease the power dissipation of the 
integrated circuits to ensure device function and reliability 
[1].  

Achievement of LV LP operation could be obtained 
either by technologies or by design techniques. The main 
advantages and disadvantages of the LV LP technologies 
and some of the most popular techniques are discussed in 
this paper; three main technologies are used for low-volt-
age low-power IC design: 

� BiCMOS technology is advanced semiconductor tech-
nology, which integrates bipolar junction transistor 
and CMOS transistor in a single integrated circuit, 
and combines the advantages of both transistor types. 
This technology improves speed over purely bipolar 
technology, offers lower power dissipation over 
purely CMOS, high analog performance, smaller IC 
size and more reliable IC. However, this technology 
requires extra fabrication steps which increase the 
process cost [9]. 

� SOI (Silicon on insulator) technology: In this technol-
ogy a layer of silicon dioxide is implanted below the 
surface by oxidation of Si or by oxygen implantation 
into Si. This implanted silicon dioxide is called buried 
oxide (BOX) which helps to reduce parasitic capaci-
tances, and as a result improves the performances of 
the device. This technology offers ideal device isola-
tion and smaller layout area, high switching speed and 
lower-power consumption. However, fabrication of 
this technology is more expensive featuring also 
higher self-heating because of poor thermal conduc-
tivity of the insulator [2]. 

� CMOS Technology: In CMOS (complementary metal 
oxide semiconductor) technology both kinds of tran-
sistors are used p-channel MOSFET and n-channel 
MOSFET in a complementary way on the same sub-
strate. Besides, CMOS technology is used in the fab-
rication of conventional microchip, since it is less 
expensive than BiCMOS and SOI technologies and 
offers high performance, high density and low-power 
dissipation.  
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While the MOS transistor dimensions are shrunk, the 
power supply voltage is reduced to ensure the device reli-
ability. However, the threshold voltage is not scaled down 
by the same ratio since devices with higher threshold volt-
age value have higher noise margin and smaller leakages 
[7]. This rather high value of the threshold voltage is the 
main limitation in LV LP analog circuit design. In order to 
overcome this restriction many techniques have been intro-
duced based on CMOS technology. By utilizing these tech-
niques, the threshold voltage is decreased or even removed. 
The most widely used techniques for LV LP analog circuits 
design are:  
� Circuits with rail-to-rail operating range [49, 50]. 
� MOSTs operating in weak inversion [26]. 
� Level shifter techniques [7]. 
� Floating-gate approach [4, 7, 12, 13, 14, 15, 29, 33, 

34, 35, 37, 39, 44]. 
� Quasi-floating-gate approach [16, 17, 18, 19, 20, 38, 

41, 42, 43]. 
� Bulk-driven MOST [3, 5, 7, 8, 10, 11, 12, 21, 23, 24, 

25, 27, 28, 31, 32, 36, 40]. 

However, the last three techniques are considered as 
non-conventional; they offer mainly design simplicity and 
capability to work under ultra LV LP condition with suffi-
cient circuit’s performances. Circuits based on these tech-
niques are suitable for ultra LV LP application as battery-
powered implantable and wearable medical devices.  

Based on our survey a variety of recent publications 
describe various attractive implementations of the non-con-
ventional techniques in LV LP applications such as opera-
tional amplifier [16, 28, 29], operational transconductance 
amplifier OTA [30-35], second generation current con-
veyor CCII [19, 36, 37, 38], class AB output stage for 
CMOS op-amps [39], transconductors [41-44], current 
differencing external transconductance amplifier (CDeTA) 
[40], differential-input buffered, external transconductance 
amplifier (DBeTA) [11], differential voltage current con-
veyor DVCC [27], and many others. 

This paper is organized as follows. In Section 2, the 
non-conventional techniques based on bulk CMOS tech-
nology are presented, including principle of operation, 
small signal models and main advantages and disadvan-
tages of each technique. Section 3 presents OTA design as 
an application example based on these techniques, simula-
tion results and their evaluations are also included. Finally, 
Section 4 concludes the paper. 

2. Non-conventional Techniques Based 
on Bulk CMOS Technology 

2.1 Bulk-driven MOST (BD-MOST) 
MOS transistor is a four terminals device namely: 

drain “D”, gate “G”, source “S” and bulk “B” as shown in 

Fig. 1(a) and in its cross section (b) which is presented with 
substrate terminal “Sub”. Depending on the type of used 
technology (i.e. N-, P-well or twin-tub) the bulk terminal is 
normally connected either to positive/negative supply volt-
age for PMOS/NMOS transistor, respectively, or to the 
transistor source terminal. In other words, the bulk terminal 
is ignored and not used as a signal terminal and hence 
many applications are overlooked. The principle of the 
bulk-driven technique was firstly presented in [10].  

 
Fig. 1. Bulk-driven N-MOST: a) symbolic and b) cross-

section. 

To demonstrate the principle of operation of the bulk-
driven technique in comparison with the conventional gate-
driven MOST (GD-MOST) the common source amplifier 
as an example of application is shown in Fig. 2. In the 
bulk-driven technique the gate-source voltage must be set 
to a proper bias voltage Vbias to form an inversion layer 
under the gate oxide, permitting the operation in the con-
ductance region. 

inV

outV

inV

outV

 
Fig. 2. Common source amplifier based on a) gate-driven 

NMOST and b) bulk-driven NMOST.  

Unlike the conventional gate-driven technique the in-
put signal in the bulk-driven technique is applied to the 
bulk terminal Vin = Vbs rather than the gate terminal. The 
operation of the BD-MOST is much like a JFET where the 
channel width is constant as long as the input and bias 
voltages don’t change. 

Fig. 3 shows the drain current versus bulk-source 
voltage of BD-NMOST in Fig. 2(b) with three different 
dimensions, it is clear that by scaling up the transistor di-
mensions W/L the transconductance steadily increases, as it 
is discussed later. As well the relationship between drain 
current and gate-source voltage of the gate-driven NMOST 
in Fig. 2(a) is shown in Fig. 3. The simulation has been 
done with the following characteristics: VDD = 0.8 V, 
Vss= 0 V, Vbias= 0.5 V, RD = 15 k�, W/L = (5μ/0.5μ, 
10μ/0.5μ and 20μ/0.5μ) for BD-NMOST and 
W/L = 5μ/0.5μ for GD-NMOST, 0.18 μm CMOS process. 
It is evident from Fig. 3 that the drain current of the GD-
NMOST appears when the input voltage exceeds the 



RADIOENGINEERING, VOL. 22, NO. 2, JUNE 2013 417 

threshold voltage value (VT � 400 mV); while in BD-
NMOST the threshold voltage has been removed. Further-
more, the BD-NMOST operates under negative input 
voltage and has a wide operating range stretches to slightly 
positive input voltage. Conversely, the BD-PMOST oper-
ates under positive, zero and slightly negative input volt-
age. Hence BD-MOST is a very attractive technique in rail-
to-rail applications [21], [11].  

 
Fig. 3. Drain currents versus gate-source voltage of GD-

MOST and bulk-source voltage of BD-MOST with 
various W/L ratios. 

 
Fig. 4. Bulk current versus bulk-source voltage of the BD-

NMOST for temperatures of -10, 27 and 70°C. 

However, the operating range of the BD-MOST must 
be limited to avoid latch up problem, since the bulk-source 
voltage must be smaller than the turn-on voltage of the 
bulk-source PN junction diode [11], which causes a re-
markable current through the bulk terminal and the tran-
sistor is latch up. It is relatively safe to use BD-MOST at 
low-voltage applications more than other applications. 
Fig. 4 shows the current through bulk terminal versus the 

bulk-source voltage for various temperatures of -10, 27 and 
70°C. 

The cross section of BD-NMOST is shown in 
Fig. 1(b) in the aim to ease understanding the small signal 
model of the common source BD amplifier and the influ-
ence of the parasitic capacitances on BD-MOST's parame-
ters, as it is discussed below.  

Fig. 5(a) and (b) show the small signal equivalent cir-
cuit at high frequencies of the common source amplifier 
based on GD-NMOST and BD-NMOST, respectively. The 
capacitances Cbd, Cbs, Cbsub are bulk-drain, bulk-source and 
bulk-substrate parasitic capacitance, respectively. These 
parasitic capacitances are a result of well and substrate 
structure of the transistor. 

 
Fig. 5. Small signal equivalent circuit of the common source 

amplifier based on: a) Gate-driven NMOST, b) Bulk-
driven NMOST.  

The transconductance of GD-MOST which operates 
in strong inversion is given by: 

 
)( Tgsm Vv

L
WKg ��    (1)

 
where W, L are channel width and channel length, respec-
tively. Vgs is gate-source voltage, VT is the threshold 
voltage, K is the current gain factor of the used process. 
Nevertheless the transconductance of BD- MOST is [11]: 
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where CBC is the total bulk-channel capacitance, CGC is the 
total gate channel capacitance, � is the body effect coeffi-
cient, and �F the Fermi potential, VBS is the quiescent bulk-
source voltage. From previous equation it is clear that gmb is 
smaller than gm, the same result understandable from 
Fig. 3. The relatively small transconductance of the BD-
MOST is considered as one of its drawbacks in comparison 
with GD-MOST, since high value of transconductance is 
widely desired in analog circuit design. However, smaller 
transconductance is attractive in several applications such 
as biomedical applications. A practical example is the Gm-
C filter [22, 33, 34, 48], where the positions of poles are 
determined by the ratio gm/C, because biological signals 
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frequencies are substantially small, the poles must be at 
very low values and this can be achieved either by in-
creasing the capacitance value or decreasing the transcon-
ductance. Factually decreasing transconductance is more 
practical; smaller transconductance was introduced in a lot 
of works such as in [45, 46]. Nevertheless the BD-MOST's 
transconductance can be increased by increasing the W\L 
ratio as it was discussed previously. 

To determine the frequency performance of a BD-
MOST, transition frequency fT must be calculated. This 
frequency is defined as the frequency where the magnitude 
of the short circuit, common-source current gain falls to 
unity [47]. To calculate the transition frequency, consider 
the ac circuit of Fig. 6(a) and the small signal equivalent of 
Fig. 6(b), whereas the parasitic capacitances have been 
described in Fig. 5.  

ini outi
outi

ini

 
Fig. 6. Circuits for calculating transition frequency of BD- 

MOST: a) ac schematic, b) small signal equivalent 
circuit.   

The small signal input current ini : 
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If the current through Cbd is neglected then iout: 
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From (3) and (4) we can find the current gain: 
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Put s = j
 to find the frequency response, then: 
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The magnitude of the small signal current gain is unity 
when: 

  
bdbsubbs

mb
CCC

g
T 		
��

 .  (7) 

Then the transition frequency of the BD-MOST is: 
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Assume that (Cbs + Cbsub) is much greater than Cbd, that 
gives: 
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whereas fT is transition frequency of GD-MOST which can 
be calculated by the same steps: 
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From (9) it is obvious that the transition frequency of 
BD-MOST is smaller than the transition frequency of GD-
MOST, since the transition frequency is proportional to the 
transconductance, as well as the effect of the parasitic 
capacitances.  

The input referred noise power spectral density of 
GD-MOST is expressed by: 

 2

2
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where 2
nii  is the total drain current generated by noise 

sources and its unit is A2. The input referred noise power 
spectral density of BD-MOST can be expressed by [11]: 
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BD-MOST suffer from higher referred noise as it is clear 
from (12), since gmb inherently smaller than gm. 

BD-MOST and GD-MOST have identical output 
resistance ro Fig. 5: 
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Many advantages can be obtained by using the BD-
MOST in analog circuit design: 
� The threshold voltage requirements are removed. 
� A wider input common mode range under negative, 

zero and slightly positive input voltage (BD-
NMOST). 

� Suitable for rail-to-rail applications. 
� Can be modeled using the conventional MOS 

transistor. 
� Can process DC and AC over the FG-MOST and 

QFG-MOST which process AC only, as it is dis-
cussed below. 

In the other hand some drawbacks come with the BD-
MOST technique: 
� Smaller transconductance and transition frequency in 

comparison with GD-MOST. 
� Higher input referred noise than conventional GD-

MOST. 
� In the applications where both PMOS and NMOS are 

needed to use as bulk-driven transistors, twin well 
process is needed, that can be achieved at the expense 
of higher cost process and larger chip area. 

� Analog circuits with tight matching between BD-
MOSTs are difficult to be fabricated, since BD-
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MOSTs are fabricated in differential wells to have 
isolated bulk.  

� Latch-up maybe occurs. 

2.2 Floating-gate MOST (FG-MOST) 
The first well-known application of the FG-MOST 

was to store data in digital EEPROMs, EPROMs and flash 
memories [37]. Recently, many new and important LV LP 
applications were designed using the floating gate tech-
nique [13, 14, 15, 29, 33, 34, 35, 37, 39, 44], since the 
threshold voltage is tunable as it is discussed below. The 
symbol of the FG-MOST with two control gates is shown 
in Fig. 7(a), its equivalent circuit in (b), its layout in (c) and 
the cross-sectional views in (d). The gate in FG-MOST is 
fabricated using the poly1 layer and is left floating, since it 
is surrounded by insulator layers (SiO2). Two or more con-
trol gates (Gin, Gbias) are formed using the second poly layer 
and capacitively coupled to the floating gate.  
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n+n+

(c) (d)
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Fig. 7. Two-input floating gate NMOST: a) symbolic, b) 

equivalent circuit, c) layout and d) cross-sectional 
views. 

The floating gate voltage is given by: 

Total

FGBfgbSfgsDfgdbiasbiasinin
FG C

QVCVCVCVCVC
V

					
� (14)

 
where the capacitances Cin and Cbias are the control gates 
capacitances at which the input signal Vin and the bias volt-
age Vbias is applied, respectively. Cfgb, Cfgd and Cfgs denote 
the floating gate-bulk, -drain and -source capacitances. 
CTotal is the sum of these capacitances: 

 fgbfgsfgdbiasinTotal CCCCCC 				�   (15) 

and QFG is the initial charge trapped at the floating gate 
during fabrication; Since floating gate is surrounded by 
high-quality isolation any electrical charge injected onto 
this gate is retained for several years, causing DC offsets. 
However, this charge can be eliminated by several ways 
such as cleaning with ultraviolet (UV) light, hot electron 
injection [4, 7, 12], Fowler-Nordheim (FN) tunneling [4, 
12], forcing an initial condition with a switch [4] or by  
fabrication process solution which is based on a novel 
layout technique that takes advantage of the fabrication 
process itself [56].  

To demonstrate the operation principle of the FG-
MOST, a common source amplifier based on the FG-
NMOST with two control gates is shown in Fig. 8(a), its 
small signal equivalent circuit is depicted in Fig. 8(b). As it 
is clarified in Fig. 8, a proper bias voltage Vbias is applied at 
one of the control gates Gbias through large value capaci-
tance, which is able to shift the threshold voltage. The input 
signal is applied at the second control gate Gin and modu-
lates the inversion layer, thus controls the drain current. 
The threshold voltage of the FG-MOST is expressed by: 

                  

                  
1

2
K

KVV
V biasT
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where VT is the threshold voltage of a conventional GD-
MOST, K1 and K2 are given by: 
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It is obvious from (16) that the threshold voltage of 
FG-MOST is smaller than the threshold voltage of conven-
tional GD-MOST; it can be even removed with proper 
values of the bias voltage, K1 and K2. 

 
Fig. 8. Floating-gate MOST: a) common source amplifier and 

b) small signal model equivalent circuit. 

For example, assume the common source amplifier in 
Fig. 8(a) with a FG-NMOST has W/L = 10/0.5μm, 
RD = 15 k�, Cin = Cbias= 0.1 pF, Cfgs = Cfgd= 0.8 fF, thus 
K1 = K2 � 0.5 and the threshold voltage is removed for 
Vbias= 0.7 V. The same result is illustrated in Fig. 9 where 

Fig. 8(a) with a FG-NMOST has W/L = 10/0.5μm/μm,
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the drain current of the previous FG-NMOST is compared 
with the drain current of the GD-NMOST in Fig. 2(a). 
Whereas the GD-NMOST has W/L = 10/0.5μm and 
RD = 15 k�. From Fig. 9 it is obvious that the threshold 
voltage requirement is removed from the signal path using 
FG-MOST. 

 
Fig. 9. Drain currents versus gate-source voltages of FG-

MOST and GD-MOST. 

Actually, the designers face a problem with simula-
tion of the FG-MOST, because the simulators don't accept 
a floating node. Many solutions have been proposed to 
overcome the simulation problem and are presented in [4], 
[52-55]. The most popular solution is to connect extremely 
high resistor in parallel with the floating gate input capaci-
tors [53]; this method was used to simulate FG-MOST in 
this paper. 

The effective transconductance of combined structure 
of the FG-MOST is given by: 

 m
Total

in
meffm g

C
C

gKg �� 1,  .   (18) 

It's clear from this equation that the effective transconduc-
tance gm,eff is smaller than the gate transconductance gm. 
The effective transconductance can be increased propor-
tionally with gm and Cin/CTotal ratio. That can be done at the 
expense of increasing the power consumption and the oc-
cupied chip area.  

To calculate transition frequency, let’s consider the ac 
circuit and its small signal equivalent circuit in Fig. 10: 

outi
ini outiini

 
Fig. 10. Circuit for calculating transition frequency of FG- 

MOST: a) ac schematic, b) small signal equivalent 
circuit. 

The small signal input current is: 
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If the current through fgdC  is neglected then: 
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From (19) and (20), the current gain can be written: 
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By following the same steps that were done to find transi-
tion frequency of BD-MOST at the previous subsection, 
the transition frequency equation of FG-MOST will be 
given by: 
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Assuming Cfgs is much greater than Cfgd and substituting the 
effective transconductance value from (18), then: 
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It is clear that the transition frequency of FG-MOST is 
smaller than the transition frequency of GD-MOST; hence 
FG-MOST has smaller bandwidth than GD-MOST.  

The relationship between the input referred noise 
power spectral density of FG-MOST and GD-MOST is 
given by [4]: 
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It is evident that the input referred noise increases at the 
effective input of the FG-MOST. 

The effective output conductance of the FG-MOST is 
larger than the output conductance of the GD-MOST, be-
cause of DC and AC feedback from drain to floating gate 
through Cfgd [7]. The output conductance of FG-MOST is 
given by [4]: 

 dsm
Total
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C
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r
g 	��

,
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where gds is output conductance of GD-MOST transistor 
operates at the same biasing conditions.  

Many advantages can be obtained using FG-MOST 
technique, such as: 
� Possibility of multi-input terminals. 
� Threshold voltage can be shifted according to the 

application’s requirements. 
� Can be used in ultra-low power ultra-low voltage 

applications. 

Whereas the GD-NMOST has W/L = 10/0.5μm/μm and
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� Can be fabricated in any MOS technology, although 
for better performance double poly technology is 
recommended. 

There are some disadvantages coming with this 
technique: 
� Larger area is occupied on the chip over the conven-

tional GD-MOST, since the bias and input capacitan-
ces have relatively high values [42, 19]. 

� Uncertain amount of cumulative initial charge in the 
floating gate. 

� Reduction of the effective transconductance and out-
put impedance in comparison with the conventional 
GD-MOST. 

� Smaller transition frequency, hence smaller band-
width than the GD-MOST. 

� Shortage of simulation models, as well the simulators 
don’t accept the floating node. 

2.3 Quasi-Floating-gate MOST (QFG-MOST) 
Many recent publications describe interesting and im-

portant implementations of the QFG-MOST in LV LP 
applications [16, 17, 18, 19, 20, 38, 41, 42, 43]. The QFG-
MOST appears as a developed version of the FG-MOST to 
overcome some of its drawbacks. It has been discussed 
previously that the relatively high bias capacitance value of 
the FG-MOST leads to an increase in the silicon area and 
a reduction of the effective transconductance and GBW. 
Besides, FG-MOST has uncertain residual charge trapped 
at the floating gate. Using the QFG-MOST, the occupied 
chip area is minimized and the initial charge is no longer 
an issue [4]. Since the floating gate is tied through a large 
value resistor to a proper bias voltage, depending on the 
transistor type. Practically, a leakage resistance Rlkg of 
a reverse biased P-N junction of a diode connected MOS 
transistor MR is implemented rather than a typical resistor, 
as it is obvious in Fig. 11 which shows the symbolic of the 
QFG-MOST (a), its equivalent circuit (b) and layout (c) 
with single input terminal. 

QFG-MOST may have a multiple input terminals like 
the FG-MOST. Besides, it can be fabricated in any MOS 
technology, nevertheless, the double poly technology is 
recommended to obtain better results. As it is shown in 
Fig. 11 the input terminal is capacitively connected to the 
floating gate as FG-MOST case. The quasi-floating gate 
DC voltage value is set to Vbias independently of the DC 
component of the input voltage while the quasi-floating 
gate AC voltage can be expressed by [19]: 
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QFG VCVCVCVC
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where CTotal is:  
 gdfgbfgdfgsinTotal CCCCCC 				�  . (27) 

The capacitors Cin, Cfgs , Cfgb and Cfgd are input, floating 
gate-source, -bulk and -drain capacitor, respectively. Cgd is 

the gate-drain capacitor of the diode connected transistor 
MR. Fig. 12 shows the common source amplifier based on 
QFG-MOST in (a) and its small signal equivalent circuit in 
(b), where the previous capacitors are shown, however the 
floating gate-bulk capacitance is ignored, because it has no 
influence on signal path. The operation principle of the 
QFG-MOST is similar to the FG-MOST. 

 
Fig. 11. One-input Quasi-Floating gate NMOST: a) symbolic, 

b) its equivalent circuit and c) layout. 

 
Fig. 12. Quasi-Floating gate MOST: a) common source ampli-

fier with single input terminal, b) small signal model 
equivalent of (a). 

The drain current of the common source amplifier in 
Fig. 12 versus its gate-source voltage, in comparison with 
the drain current of the common source amplifier in 
Fig. 2(a) is shown in Fig. 13. It is notable that the threshold 
voltage requirements have been removed from the signal 
way using the QFG-MOST.  

Attention must be attracted to the floating gate volt-
age VQFG level; this voltage should be at the range where 
the p-n junction of the diode connected transistor MR is still 
reverse biased [4]. 
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Fig. 13. Drain currents versus gate-source voltages of QFG-

MOST and GD-MOST. 

The effective transconductance of the QFG-MOST is 
given by: 

  m
Total

in
effm g

C
Cg �,    (28) 

where gm is the transconductance seen from the floating 
gate. The effective transconductance of QFG-MOST is 
larger than the effective transconductance of FG-MOST, 
however still smaller than the transconductance of 
conventional GD-MOST as it is obvious from Fig. 13.  

It is notable from Fig. 12(b) that the input is high pass 
filter; its cut-off frequency is given by: 

 
Totallkg
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The cut-off frequency should be extremely small for 
properly operation at the applications where the low 
frequencies are needed. Hence the value of Rlkg must be 
large enough in the order of Giga ohms. 

To calculate transition frequency of QFG-MOST, 
let’s consider the ac circuit and its small signal equivalent 
circuit in Fig. 14: 

Vin
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=Vgs Vgsgm,eff
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CfgsRlkg

(a)
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outi

outi
ini

ini
Cgd Rlkg
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Fig. 14. Circuit to calculate transition frequency of QFG-

MOST: a) ac schematic, b) small signal equivalent 
circuit. 

Assuming that Rlkg is extremely large, then the small 
signal input current is: 
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If the current through fgdC  is neglected then: 

 gseffmout vgi ,�  .  (31) 

From (30) and (31)  the current gain can be found: 
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By following the same steps that were done previously, 
then the transition frequency equation of QFG-MOST is: 
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Assume that Cfgs is much greater than Cfgd and compensate 
the effective transconductance from (28), then the transi-
tion frequency can be expressed by: 
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The input referred noise of the QFG-MOST is similar 
in form to that of FG-MOST, since the input signal path in 
both MOSTs is the same, then: 
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As it is clear QFG-MOST suffer from higher input referred 
noise than GD-MOST, however, the input referred noise of 
QFG-MOST is smaller than it of FG-MOST, since 
CTotal,QFG < CTotal,FG. 

The effective output conductance of QFG-MOST is 
greater than the effective output conductance of FG-
MOST, and it is given by the same form of the FG-MOST 
conductance: 

 dsm
Total

fgd
effds gg

C
C

g 	�.  .  (36) 

The QFG-MOST has almost the same advantages as 
the FG-MOST, besides: 

� There is no initial charge trapped at the floating gate. 

� Smaller occupied chip area than FG-MOST. 

� The effective transconductance and transition fre-
quency are relatively higher than the effective trans-
conductance and transition frequency of FG-MOST, 
but they are still smaller than the transconductance 
and transition frequency of the conventional GD-
MOST. 
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Some drawbacks come with QFG-MOST techniques, 
such as:  
� Greater effective output conductance than the effec-

tive output conductance of FG-MOST and the output 
conductance of GD-MOST. 

� Floating gate voltage must not exceed the cut-in volt-
age of the p-n junction of the diode connected tran-
sistor MR.  

3. Example of Application 
(Operational Transconductance 
Amplifier OTA) 
To illustrate the implementation principle of non-con-

ventional techniques in analog circuit design, these tech-
niques are used in this section to build three LV LP Miller 
OTAs with the same voltage supply, power consumption 
and transistors aspect ratios. However, the differential pair 
transistors are different i.e. BD-PMOST, FG-PMOST and 
QFG-PMOST to clarify the performances of each tech-
nique. A comparison study between the most important 
characteristics of the three OTAs is presented as well.  

Since operational transconductance amplifier is 
an important block used in many applications and struc-
tures, it has been chosen as an example of non-conven-
tional techniques application. Actually, Miller OTA com-
posite of cascade of two stages, first stage is a differential 
amplifier with PMOS input transistors (M1, M2), see 
Fig. 15, and the current mirror (M3, M4) acting as an active 
load. The second stage is a simple common source ampli-
fier with transistor M6 acting as driver and M7 as an active 
load, its output connected to its input through the compen-
sation capacitor Cc and resistor Rc, this capacitor acting as 
Miller capacitance, without it the circuit is not stable [6]. 
The bias current Ib and transistors M8, M5, M7 provide the 
bias currents needed for the first and second stage of 
OTAs. Utilizing the non-conventional techniques as input 
devices of the differential amplifier at the first stage, LV 
LP OTAs can be achieved. 

Three Miller OTAs based on non-conventional tech-
niques are depicted in Fig. 15, bulk-driven OTA in (a), 
floating-gate OTA in (b) and quasi-floating-gate OTA in 
(c). In the bulk-driven OTA, the gate terminals of BD-
PMOSTs (M1, M2) are tied to Vss to provide sufficient bias 
voltage, the input signals are applied at bulk terminals 
Fig. 15(a). Floating-gate OTA is designed by implementa-
tion of two FG-PMOSTs (M1, M2) with two control gates. 
The bias voltage Vss is applied at one of control gates of 
each transistor. The input signals are applied at the second 
control gate as it is shown in Fig. 15(b). The third OTA has 
two QFG-PMOSTs with single input terminal as input 
devices; the floating gates of the QFG-PMOSTs are tied 
through reversed-biased diode connected transistors (M9 
and M10) to Vss, while input signals applied to the input 
terminals as shown in Fig. 15(c).  

 
Fig. 15. LV LP Miller OTA based on: a) BD-MOST, b) FG-

MOST and c) QFG-MOST. 

The simulation results of the described OTAs are 
summarized in Tab. 1, and the transistors aspect ratios are 
listed in Tab. 2. It is notable that the proposed OTAs offer 
high performance LP LV operation, where the power con-
sumption is reduced to about 23.5 μW and the power sup-
ply is ± 0.4 V. Besides relatively high output impedance, 
wide input voltage range and phase margin higher than 60º 
are obtained, hence the proposed OTAs ensure stability. In 
Fig. 16 the frequency responses for each OTA are depicted; 
as well the GBW, the gain and the phase values at the unity 
gain frequency are shown. The output signals of a voltage 
follower connected OTA are shown in Fig. 17, the input 
sine wave has 100 mV amplitude and 10 kHz frequency. 
By comparing the basic parameters from Tab. 1, it is evi-
dent that the best performances are offered by QFG-OTA 
then FG-OTA. However, due to the input and bias capaci-
tances the chip area of the FG and QFG-OTAs is larger 
than the BD-OTA. 
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Characteristics Bulk-driven OTA Floating-gate OTA Quasi-floating-gate OTA 

Power consumption [μW] 23.5 23.5 23.5 

Phase margin [º] 93 87 84 

Output impedance [k�] 255.9 255.7 255.7 

Offset voltage [mV] 0.7 0.44 0.92 

Dynamic range [mV] -100 to 400 -300 to 395 -237 to 400 

CMRR [dB] 42.4 50.29 49.8 

GBW [MHz] 1.5 3.84 7.47 

Gain [dB] 24  35.94 41.5 

Slew rate [V/�s] 0.28 0.54  0.76 

Measurement conditions: VDD= 0.4V, VSS= -0.4V, Cc=CL=1 pF, Cin=Cbias=1 pF, Rc=7k�, Ib=6 �A 

Tab. 1. The simulation results of three LV LP Miller OTAs. 

 

           

           

           

 
Fig. 16. Frequency response of the OTA based on:  

a) Bulk-driven transistor, b) floating-gate transistor, 
c) quasi-floating gate transistor. 
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Fig. 17. Output voltage and input voltage of the OTA based on: 

a) Bulk-driven transistor, b) floating-gate transistor, 
and c) quasi-floating gate transistor. 

 
Transistor W/L [μm/μm] 

M1, M2 12/0.6 
M3, M4 12/0.6 
M5, M7 8/0.6 

M6 24.9/0.6 
M8 4/0.6 

M9, M10 4/1 

Tab. 2.  The transistors aspect ratios of the OTAs in Fig. 15. 
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Tab. 3.  Main parameters summary of non-conventional techniques. 

 

4. Conclusions 
This paper presents the principle of non-conventional 

techniques for LV LP analog circuit design; the main 
parameters of non-conventional techniques were clarified 
and also summarized in Tab. 3 to make them reachable. 
Furthermore, their advantages and disadvantages were 
listed, thus one can use appropriate technique for intended 
analog circuit design. In spite of that the non-conventional 
techniques offer design simplicity with high performance, 
low voltage and low power operation, some drawbacks 
come with these techniques, mainly, the reduction of the 
gain bandwidth, transconductance and the output imped-
ance (in FG-MOST and QFG-MOST case). 

Finally, to demonstrate the implementation way, 
OTAs based on non-conventional techniques are presented. 
The simulation results of LV LP OTAs in Fig. 15 show 
attractive results such as: low supply voltage ± 0.4 V; low 
power consumption close to 23.5 μW, good stability, and 
high dynamic voltage range. Thus the non-conventional 
techniques are utilized successfully in LV LP applications. 
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