
448 M. KUMNGERN, F. KHATEB, P. PHASUKKIT, S. TUNGJITKUSOLMUN, K. DEJHAN, VOLTAGE-MODE MULTIFUNCTION…... 

Voltage-Mode Multifunction Biquadratic Filters Using 
New Ultra-Low-Power Differential Difference Current 

Conveyors 

Montree KUMNGERN 1, Fabian KHATEB 2, Kobchai DEJHAN 1, 
Pattarapong PHASUKKIT 1, Supan TUNGJITKUSOLMUN 1 

1 Faculty of Engineering, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 1520 Thailand 
2 Department of Microelectronics, Brno University of Technology, Technická 10, Brno, Czech Republic 

kkmontre@kkmontre.kmitl.ac.th, khateb@feec.vutbr.cz, kobchai@telecom.kmitl.ac.th, 
kppattar@kmitl.ac.th, ktsupan@kmitl.ac.th 

 
Abstract. This paper presents two low-power voltage-
mode multifunction biquadratic filters using differential 
difference current conveyors. Each proposed circuit 
employs three differential difference current conveyors, 
two grounded capacitors and two grounded resistors. The 
low-voltage ultra-low-power differential difference current 
conveyor is used to provide low-power consumption of the 
proposed filters. By appropriately connecting the input and 
output terminals, the proposed filters can provide low-
pass, band-pass, high-pass, band-stop and all-pass voltage 
responses at high-input terminals, which is a desirable 
feature for voltage-mode operations. The natural frequency 
and the quality factor can be orthogonally set by adjusting 
the circuit components. For realizing all the filter 
responses, no inverting-type input signal requirements as 
well as no component-matching conditional requirements 
are imposed. The incremental parameter sensitivities are 
also low. The characteristics of the proposed circuits are 
simulated by using PSPICE simulators to confirm the 
presented theory. 
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1. Introduction 
At present, there is growing interest in designing of 

low-voltage (LV) supply and consuming low-power (LP) 
analog signal processing [1]-[5]. This is due to the demand 
that portable equipments, biomedical devices, embedded 
sensor interfaces are increasingly needed. Several LV LP 
active elements have been reported in the technical litera-
ture [6]-[15]. These active elements can be used to design 
LP consumption analog signal processing circuits. For this 
paper, floating-gate (FG) active element in [12] is inter-
esting, because this device has the features of low power 
supply (±0.5 V), ultra-low-power consumption (10 W) 

and rail-to-rail input voltage swing. Therefore, LP analog 
signal processing applications can be achieved by using 
this device as active element. 

Active filters are ones of analog signal processing that 
can apply in telecommunication, electronic and control 
systems. They can be widely used in the implementation of 
phase-locked loop (PLL) frequency modulation (FM) ste-
reo demodulation, touch-tone telephone tone decode, 
cross-over network used in a three-way high-fidelity loud-
speaker [16]-[18]. In addition, LV and LP active filters can 
also be used in biomedical systems [19]-[23] and wireless 
systems [24], [25]. Besides, voltage-mode active filters 
with high-input impedance are great of interest because 
several cells of this kind can be directly connected in cas-
cade to implement higher order filters [26]. Also, the cir-
cuits are attractive for monolithic integrated circuit (IC) 
implementation, if it employs grounded capacitors [27]. 
Over the past few decades, many voltage-mode universal 
biquadratic filters based on different design techniques 
have been developed in the literature, see, for example 
[28]-[35]. It is well-known that the main problem of the 
voltage-mode filters is the arithmetic operation (addition 
and subtraction) of voltage signals. Therefore, voltage-
mode universal filters in [28]-[35] suffer from one or more 
of the following disadvantages: (a) they cannot provide 
high-input impedance for realizing five standard filter 
responses [28]-[30], [34], (b) for realizing five standard 
filter responses, they require the component-matching 
condition [28]-[30], [32]-[34], (c) they use an excessive 
number of active or passive components [32], [33], [35], 
(d) they use floating capacitors or floating resistors in the 
circuit design [28]-[31], (e) they require inverting-type 
input signals for realizing some filtering functions, i.e. all-
pass filter response [31], [34]. Recently, Chiu et al. [36] 
proposed a new current conveyor circuit so-called differ-
ential difference current conveyor (DDCC). The DDCC 
has the advantages of both the CCII and the differential 
difference amplifier (DDA) (such as high input impedance 
and arithmetic operation capability) [36]. Thus, the arith-
metic operation of voltage signals can easily be achieved 
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by using DDCC as active elements. Many voltage-mode 
filters using DDCC as active building block have been 
reported in technical literature [37]-[56]. Nevertheless, 
some of these filters still suffer from one or more of the 
following weaknesses: (i) cannot provide all the five stan-
dard biquadratic filtering functions, namely, low-pass (LP), 
band-pass (BP), high-pass (HP), band-stop (BS), all-pass 
(AP) responses from the same configuration [38], [39], 
[40], [45], [52], (ii) use of floating passive elements (ca-
pacitor and/or resistor) which is not desirable for integrated 
circuit (IC) implementation [37], [39], [42], [44], [47], 
[49], [50], [51], [52], [53], (iii) cannot offer high-input 
impedance, which is not desirable for cascading in voltage-
mode operation [42], [44], [47], [49], (iv) need of compo-
nent-matching conditions for realizing all the five standard 
biquadratic filtering functions [39], [47], [49], [51], [52], 
(v) use two kinds of active elements [44], [48], (vi) provide 
only a first-order all-pass filtering function [54]-[56]. 

Therefore, two new high-input impedance voltage-
mode multifunction biquadratic filters with four inputs and 
two/three outputs using three DDCCs and all grounded 
passive components are presented. The proposed circuits 
employ ultra-low-power active building block by Khateb et 
al. [12] as active building block, hence micro-power filter 
can be obtained, which is suitable for biological signal 
processing applications. The use of all grounded passive 
elements makes the circuits highly suitable for IC imple-
mentation. By appropriately connecting the input and out-
put terminals, the circuit can realize all the five standard 
biquadratic filtering functions. For realizing these filtering 
responses, no component-matching conditions and no in-
verting-type input signals are required. The circuit also 
offers high-input impedance, which is desirable for cas-
cading in voltage-mode operation. Low active and low 
passive sensitivities are possessed. The parameters o and 
Q can be set orthogonally by adjusting the circuit compo-
nents. The comparison between the proposed circuits and 
some previously DDCC-based filters is summarized in 
Tab. 1. 

2. Proposed Circuits 
Fig. 1 shows the electrical symbol of DDCC. It was 

proposed in 1996 by Chiu et al. [36]. This device, the 
addition and subtraction operations can be obtained by 
appropriately applying the voltages at terminals y1, y2 and 
y3. This property makes it different from conventional 
current conveyors. 

DDCC
y1

z
Vy1

Vz

Izx

Vx

Ix

y3Vy3

y2Vy2

 
Fig. 1. Electrical symbol of DDCC. 

 
Fig. 2. First proposed multifunction filter. 

The DDCC enjoys the advantages of CCII and DDA 
such as larger signal bandwidth, greater linearity, wider 
dynamic range, simple circuitry, low power consumption 
and high-input impedance. The characteristics of the 
DDCC is described as 
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The DDCC has three voltage input terminals: y1, y2 and y3, 
which possesses high-input impedance. Terminal x is 
a low-impedance current output terminal. Thus, if the reali-
zation is connected the input signal at y terminal and the 
output signal at x terminal, it will be possessed high-input 
and low-output impedance, which is a desirable feature for 
voltage-mode circuits. 

The first proposed multifunction biquadratic filter 
employing three DDCCs, two grounded capacitors and two 
grounded resistors is shown in Fig. 2. Using equation (1), 
the output signals Vo1 and Vo2 of Fig. 2 can be obtained as 
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It is clearly seen from (2) and (3) that: 

 The non-inverting LP response can be obtained when 
V2=Vin, V1=V3=V4=0 (grounded) and Vo1 or Vo2 = Vout. 
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Circuits Number of active 
elements 

Number of 
resistor (R) & 
capacitor (C) 

Offer five 
standard 

filters 

All-
grounded 
passive 

elements 

Offer high-
input & low- 
impedance 

No need 
matching-
condition 

Only a kind 
of active 
element 

Proposed filters 3 DDCCs 2-R & 2-C Yes Yes Yes & Yes Yes Yes 

Ref. [37] in 2003 2 DDCCs 2-R & 2-C Yes No No & No Yes Yes 

Ref. [38] in 2004 2 DDCCs 2-R & 2-C No Yes Yes & No Yes Yes 

Ref. [39] in 2005 (Fig.5) 1 DDCC 2-R & 2-C No No Yes & No No Yes 

Ref. [40] in 2007 (Fig.1) 2 DDCCs 2-R & 2-C No Yes Yes Yes Yes 

Ref. [41] in 2007 1 DDCC 3-R & 2-C No No No & No No Yes 

Ref. [42] in 2007 2 DDCCs 3-R & 2-C Yes No No & No No Yes 

Ref. [43] in 2007 3 DDCCs 2-R & 2-C Yes Yes Yes & Yes Yes Yes 

Ref. [44] in 2008 1 DDCC, 2 OTAs 2-C Yes No No & No Yes No 

Ref. [45] in 2008 1 DDCC, 2 OTAs 2-C No Yes Yes & No Yes No 

Ref. [46] in 2008 3 DDCCs 2-R & 2-C Yes Yes Yes & No Yes Yes 

Ref. [47] in 2009 2 DDCCs 3-R & 2-C Yes No No No Yes 

Ref. [48] in 2010 1 DDCC, 1 FDCCII 2-R & 2-C Yes Yes Yes & No Yes No 

Ref. [49] in 2011 3 DDCCs 3-R & 2-C Yes No No & No No Yes 

Ref. [50] in 2011 3 DDCCs 2-R & 2-C Yes No Yes & No Yes Yes 

Ref. [51] in 2012 (Fig.2) 3 DDCCs 4-R & 2-C Yes Yes Yes & No No Yes 

Ref. [52] in 2012 1 DDCC 3-R & 2-C No No No & No No Yes 

Ref. [53] in 2012 3 DDCCs 3-R & 2-C Yes No Yes & No Yes Yes 

Tab. 1. Comparison of proposed filters with those of previous circuits. 
 

 The non-inverting BP response can be obtained when 
V1=Vin, V2=V3=V4=0 (grounded) and Vo1 or Vo2 = Vout. 

 The inverting HP response can be obtained when 
V1=V2=V3=Vin, V4=0 (grounded) and Vo2=Vout. 

 The inverting BS response can be obtained when 
V1=V3=Vin, V2=V4=0 (grounded) and Vo2=Vout. 

 The inverting AP response can be obtained when 
V1=V3=Vin, V3=0 (grounded), V4 and Vo1 are 
connected, and Vo2=Vout. 

Thus, the proposed filter can realize all the standard types 
of the biquadratic filtering function without component-
matching condition requirements as well as without in-
verting-type voltage input signals requirements. Since all 
the passive components are grounded, thus the circuit is 
beneficial to an IC implementation [27]. It should be noted 
that the input signals V3 and V4 of the proposed filter are 
applied to the y2 and y3 terminals, respectively, of the 
DDCC3 while the input signals V1 and V2 of the proposed 
filter are applied to the y1 terminal of the DDCC1 and 
DDCC2, respectively. Thus, the circuit enjoys of high-input 
impedance, which is suitable for cascading in voltage-
mode operation. Moreover, the output signal Vo2 of the 
proposed filter is connected to the x terminal of the 
DDCC3. Then, the output voltage Vo2 has the feature of 
low-output impedance, which makes the output voltage Vo2 
easily connected to the next stage without any buffer. The 
parameters o and Q of Fig. 2 can be given by 
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Letting R1 = R2 = R, the circuit parameters can be simply 
rewritten as 
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From (6) and (7) the parameter Q can be set by C1 and C2 
and parameter o can be set by resistor R without disturb-
ing Q. Thus, the biquadratic filter has also orthogonal tun-
ing capability for the circuit parameters Q and o. Note 
from the proposed filter in Fig. 2 that it requires no com-
ponent-matching condition for realizing all filter responses. 
In fact, for the case of R1 = R2, the component-matching 
condition is imposed. This problem can be solved by using 
two JFETs or two MOSFETs to replace R1 and R2 with its 
gate connected by the same voltage control [57], [58]. 
Then, the tracking problems inherent dual-element con-
trolled can be avoided. Also, a voltage-controlled universal 
filter can be obtained. 

By slightly modifying the proposed circuit in Fig. 2, 
the second proposed filter is shown in Fig. 3. The voltage 
across the capacitor C2 (Vo2) is additional output signal. 
DDCC3 is used for summing and subtracting the voltage 
signals from any terminals. Thus, this configuration can be 
confirmed that the addition and subtraction voltage can 
easily be achieved by using DDCC as active elements. It 
should be noted that the filter in Fig. 3 is employed equally 
active and passive elements with Fig. 2. Using (1), the 
output signals Vo1, Vo2 and Vo3 of the second proposed 
circuit can be obtained as 
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Fig. 3. Second proposed multifunction filter. 

It is clearly seen from (8) to (10) that: 

 The non-inverting LP response can be obtained when 
V2 = Vin, V1 = V3 = V4 = 0 (grounded) and Vo1= Vout. 

 The inverting LP response can be obtained when 
V1 = Vin, V2 = V3 = V4 = 0 (grounded), and Vo2= Vout. 

 The non-inverting BP response can be obtained when 
V1 = Vin, V2 = V3 = V4 = 0 (grounded), and Vo1= Vout. 

 The inverting HP response can be obtained when 
V1 = V2 = Vin, V4 = 0 (grounded), V3 = Vo1 (connected) 
and Vo3 = Vout. 

 The inverting BS response can be obtained when 
V1 = Vin, V2 = V4 = 0 (grounded), V3 = Vo1 (connected) 
and Vo3 = Vout. 

 The inverting AP response can be obtained when 
V2 = 0 (grounded), V1 = Vin, V3 = V4 = Vo1 (connected) 
and Vo3 = Vout. 

Thus, the second proposed filter can realize all the standard 
types of the biquadratic filtering functions, i.e. LP, BP, HP, 
BS and AP filters. For realizing these filtering functions, it 
requires no component-matching condition requirements as 
well as no inverting-type voltage input signal requirements. 
In addition, the four input signals V1, V2, V3 and V4, are 
connected to the high-input impedance level of the DDCCs 
(y terminals). Then, the second proposed circuit enjoys the 

advantage of having high-input impedance. Also, the out-
put voltage Vo3 has the feature of low-output impedance. 
The parameters o and Q of Fig. 3 are expressed by 
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From (11) and (12), if letting R1 = R2 = R, the parameter Q 
can be given by (C1/C2)

1/2 and parameter o can be set by 
resistor R without disturbing Q. Thus, the second biquad-
ratic filter has orthogonal tuning capability for the circuit 
parameters Q and o. 

3. Non-ideal Effects 
The ideal circuit performance so far has been based 

on the assumptions that the DDCC has no tracking errors 
and parasitic parameters. Thus, tracking errors and para-
sitic parameters of DDCC will be considered in this sec-
tion. To consider the non-ideal effect of a DDCC, taking 
the non-idealities of the DDCCs into account, the relation-
ship of the terminal voltages and currents can be rewritten 
as: 
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where k1 = 1 - k1v and k1v (k1v << 1) denotes the voltage 
tracking error from Vy1 terminal to Vx terminal of the k-th 
DDCC, k2 = 1 - k2v and k2v (k2v << 1) denotes the 
voltage tracking error from Vy2 terminal to Vx terminal of 
the k-th DDCC, k3 = 1 - k3v and k3v (k3v << 1) denotes 
the voltage tracking error from Vy3 terminal to Vx terminal 
of the k-th DDCC and k = 1 - i and i (i << 1) denotes the 
output current tracking error of the k-th DDCC. Re-analy-
zing the proposed configuration of Figs. 2 and 3 with equa-
tion (13), the modified parameters on1 and Qn2 are 
obtained by 

 
2121

212213
1

CCRR
on

  , (14) 

 
1

22213

22

11

12
1

1




 CR

CR
Qn  . (15) 

From (14) and (15), the tracking errors slightly change the 
parameters o and Q. 

The incremental sensitivities of the parameters on1 
and Qn1 are calculated as in Tab. 2. From this table, all the 
active and passive sensitivities are equal or less than unity 
in magnitude. 
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Fig. 4. CMOS realization of the DDCC [12]. 

 

X on1ω
xS  

n1Q
xS  

R1 -0.5 0.5 
R2 -0.5 -0.5 
C1 -0.5 0.5 
C2 -0.5 -0.5 
1 0.5 -0.5 
2 0.5 0.5 
12 0.0 -1.0 
13 0.5 -0.5 
22 0.5 0.5 

Tab. 2. Sensitivities of circuit components. 

In case of the filter operating at high frequency the 
parasitic impedances of the DDCCs should be considered. 
The most significant parasitic impedances in the filter are 
the parasitic intrinsic resistances of the x terminals and the 
parasitic capacitances of the y and z. The modified pa-
rameters on2 and Qn2 for the case of the filter operating at 
high frequency can be obtained as 
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where R1= R1+ Rx1, 2R = R2+ Rx2, 1C=C1+ Cz1+ Cy12+ Cy22, 

2C = C1+Cz2+Cy23, Rx1 and Rx2 are the terminal x parasitic 

resistances of DDCC1 and DDCC2, respectively, Cy12 and 
Cy22 are the terminal y2 parasitic capacitances of DDCC1 
and DDCC2, respectively, Cz1 and Cz2 are the terminal z 
parasitic capacitances of DDCC1 and DDCC2, respectively, 
Cy13 is the terminal y3 parasitic capacitances of DDCC1. 
From (16) and (17) it is evident that the influence of the 
parasitic resistances and capacitances affect mainly o 
whereas this influence can be neglected for Q. To eliminate 
the influence of the parasitic impedances on o the para-
sitic intrinsic resistances of x terminals must be taken in 
account during the selection of the values of R1 and R2. 
Also, the values of C1 and C2 should be chosen much 
higher than the values of the parasitic capacitance of y and 

z terminals. All the above mentioned requirements were 
respected and the deviation of o and Q values can be 
neglected. 

4. Simulation Results 
The proposed circuits are verified by using PSPICE 

simulation with the 0.18 m CMOS technology. The 
DDCC is realized by the CMOS implementation of Fig. 2 
in Khateb et al. [12] by un-grounding a floating gate M1 
and treating this as the third y-input y3. The revised version 
is shown in Fig. 4. The transistor aspect ratios are shown as 
Tab. 3. Other component values are CC = 0.4 pF, 
Ibias= 0.5 A, VDD = 0.5 V and VSS= -0.5 V. To verify the 
theoretical prediction of the proposed circuits, only Fig. 2 
has been simulated using PSPICE simulation program, 
because of two proposed circuits are same the basis. As an 
example design, the capacitors C1 = C2= 10 nF and the 
resistors R1 = R2 = 15.9 k are given. This setting has been 
designed to obtain the LP, BP, HP, BS and AP filter 
responses with fo = 1 kHz and Q = 1. 
 

FG-DDCC W/L (m/m) 

M1, M2 1/0.5 
M3, M4 12/1 
M5, Mb1 6/1 
M9c 2/1 
M10c, M12c 3/0.5 
M11c, M13c 4/0.5 
M6, M7 25/1 
M8, M9 2/1 
M10, M12 15/3 
M11, M13 20/3 
Mb2, Mb3 2/1 

Tab. 3. Transistors aspect ratios and component values Fig. 4 
[12]. 

The simulated results for the LP, BP, HP, and BS fil-
ter characteristics are shown in Fig. 5. Fig. 6 shows the 
simulated frequency responses of the gain and phase char-
acteristics of the AP filter. Therefore, it can be observed 
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from Figs. 5 and 6 that the proposed filter performs five 
standard biquadratic filtering functions well. For these 
results, the power consumption of only 29.7 W is 
obtained. 
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Fig. 5. Simulated LP, BP, HP and BS responses. 
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Fig. 6. Simulated gain and phase responses of AP filter. 

In order to test the input dynamic range of the pro-
posed filter, the simulation has been repeated for a sinusoi-
dal input signal at fo  1 kHz. Fig. 7 shows that the input 
dynamic range of the BP response with R1 = R2 = 15.9  kΩ 
and C1 = C2 = 10 nF, which extends up to amplitude of 
240 mV (peak) without signification distortion. The THD 
about 0.99 % is informed in this figure. The dependence of 
the output harmonic distortion of BP filter on input voltage 
amplitude is summarized in Fig. 8. One can obtain from 
Fig. 8 that the THD is about 1.66 % when the input signal 
is increased to 260 mV (peak). Fig. 9 shows the simulated 
input and output noise amplitude responses for BP filters 
with INOISE and ONOISE. The simulated equivalent input 
noise and total output noise are 23.03 V/Hz and 
0.22 V/Hz for the frequency between 10 Hz to 100 kHz. 
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Fig. 7. The input and output waveforms of the BP response 

for a 1 kHz sinusoidal input voltage of 240 mV (peak). 
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Fig. 8. Dependence of the output harmonic distortion of BP 

filter on input voltage amplitude. 
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Fig. 9. The equivalence input and output noise against 
frequency. 

Fig. 10 shows the simulated a BP filter response of 
the proposed filter in Fig. 2 using parameter as,  
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C1 = C2 = 10 nF and R = 53 kΩ, 15.9 kΩ and 5.3 kΩ (i.e. 
R = R1 = R2). From this figure, when the resistors are 
53 kΩ, 15.9 kΩ and 5.3 kΩ, the natural frequencies are 
obtained as 0.301 kHz, 0.998 kHz and 2.988 kHz, respect-
tively,  while  the theoretical  value  should  be  0.302 kHz, 

 
Fig. 10. Simulated BP responses when resistors are varied. 
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Fig. 11. Simulated BP response when C1 = 10 nF, C2 = 1 nF, 

R1 = R2 = 50.32 kΩ (Q = 3.16) are given. 

-500 -300 -100 0 100 200 300 400
-500

-400

-300

-200

-100

0

100

200

300

400

500

-200-400 500

Vin, mV

V
o

lta
g

e,
 m

V output
input

 
Fig. 12. DC analysis with input voltage of the proposed filter 

swept from -500 mV to +500 mV. 

1 kHz and 3 kHz, respectively. This result is confirmed by 
(6). Fig. 11 shows the simulated frequency response of BP 
filters with R1 = R2 = 50.32 kΩ, C1 = 10 nF and C2 = 1 nF, 
resulting to a natural frequency fo  1 kHz and Q  3.16. 
This simulation result is confirmed by (7). However, set-
ting of factor Q by the ratio of capacitors maybe difficult in 
the practice, electronic controlling of factor Q via the bias 
current or the bias voltage is easier [59]-[61]. Fig. 12 
shows the DC Vout versus Vin characteristic that clearly 
expresses the limits of linear operation of the filter, which 
can be approximately described as ±400 mV. A DC offset 
is also evident from this figure. 

5. Conclusions 
In this paper, new micropower voltage-mode univer-

sal biquadratic filters are presented. The proposed filters 
are suitable mainly for battery-powered implantable and 
wearable medical devices and as recognized fact these 
devices process biological signals and their characteristics 
are low amplitudes and low frequencies, i.e. they vary from 
a fraction of a hertz to several kilohertz with amplitude in 
range of micro up to millivolts. The proposed circuits use 
three plus-type DDCCs, two grounded capacitors and two 
grounded resistors. The use of only grounded capacitors 
and grounded resistors makes the proposed circuits suitable 
for IC implementation. The proposed circuits can realize 
LP, BP, HP, BS and AP filter responses by appropriately 
connecting the input and output terminals. For realizing 
these filtering functions, no component-matching condition 
requirements and no inverting-type input signal require-
ments are needed. The proposed circuits also offer high-
input impedance terminal, which allows easy cascading in 
voltage-mode operation. Low active and passive sensitivi-
ties of the circuits are possessed. An orthogonal control 
between parameters o and Q can be set by the circuit 
components. 
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