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Abstract. The pattern synthesis of sparse antenna arrays
has many practical applications in situations where the
weights, size, and cost of antennas are limited. In this work
the antenna array synthesis problem, with minimum number
of elements, is studied from the new perspective of sparse-
ness constrained optimization. The number of antenna ele-
ments in the array can be efficiently reduced by casting the
pattern synthesis problem into the compressive sensing (CS)
framework of sparseness constrained optimization and solv-
ing with the reweighted `1-norm minimization algorithm.
Besides, the proposed method allows exploitation of the ar-
ray orientation diversity in the CS framework to address left-
right radiation pattern ambiguity problem. Numerical exam-
ples are presented to show the high efficiency of achieving
the desired radiation pattern with the minimum number of
antenna elements.
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1. Introduction
The goal of array pattern synthesis (APS) is to calcu-

late the excitations and positions for all antenna elements
that produce a radiation pattern as closely as possible to the
desired one. Reducing of the number of antenna elements in
the array is particularly useful in many applications where
the weight, size and cost of the antennas are limited, such
as phased array radar, satellite communication and MIMO
radar system [1], [2], [3], [4]. Up to present many analyt-
ical formulations have been derived for the antenna array
synthesis problem, such as the Dolph-Chebyshev and Tay-
lor methods for uniformly spaced antenna arrays [5]. These
methods are generally based on the assumption that the ar-
ray elements are equally spaced with uniform distribution
which results in a large number of antenna elements to syn-
thesis the desired radiation pattern. To reduce the number
of elements in the array, An alternative strategy is to use un-
equally spaced and non-uniform excitation for APS. Actu-

ally, the unequally spaced non-uniform antenna array syn-
thesis problem is complex and generally could not be effi-
ciently solved with analytical methods. Fortunately, some
existing global optimization methods, such as genetic algo-
rithm (GA), particle swarm optimization (PSO) method and
simulated annealing (SA), can been successfully used for the
synthesis of non-uniform linear, planar and circular arrays
[3], [6], [7], [8], [9].

Convex optimization technique has also been pro-
posed to solve the APS problem, which can be formulated
as a second-order cone programming (SOCP) problem or,
more generally, a semi-definite programming (SDP) prob-
lem. Though SOCP and SDP can be readily solved by the
SOCP solver and SDP solver, respectively, a general non-
uniform array design problem cannot be directly formulated
as a convex problem [10]. Wang et al. [10] proposed an
iterative procedure to optimize the array pattern at each it-
eration by solving an SDP problem. To design the optimal
non-uniform array, all the above mentioned approaches try
to construct an objective function to minimize the peaks of
sidelobes, or more generally the synthesis error. When the
number and positions of elements are known, nonuniformly
spaced arrays can be optimized using convex programming
in essentially the same way as that for uniformly spaced ar-
rays. The required changes are rather trivial. It is impos-
sible to solve the APS problem by complex programming
if the positions of the non-uniformly spaced array elements
are unknown. In addition, more elements are usually re-
quired to obtain the desired array performance. Recently,
a novel non-iterative synthesis algorithm based on the ma-
trix pencil method has been proposed that efficiently reduces
the number of elements in a linear antenna array with very
short computation time [2],[4], and Zhang et al. [11] cast
the array synthesis problem into the framework of sparse-
ness constrained optimization and solved the problem by the
Bayesian compressive sensing (BCS) inversion algorithm.

In this paper, we extend our method [12] to a new ver-
sion by using reweighted `1-norm minimization [13], array
orientation diversity and convex optimization [14]. Merits of
the algorithm include 1) it does not need a thorough search in
the multidimensional parameter space, and 2) it can achieve
the same array performance with fewer antenna elements,
and thus reduces the array cost significantly.
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2. Array Pattern Synthesis with
Reweighted `1-Norm Minimiza-
tion and Orientation Diversity

2.1 Problem Formulation
We assume that transmit signals and the array are

coplanar, so the antenna array synthesis problem can be de-
scribed as follows:

min(DM) s.t.

 min
{Rαi,dαi}α=1...D

i=1...M

‖Fd(θ)−F(θ)‖`2

≤ ε

(1)
where F(θ) =

D
∑

α=1

M
∑
i

Rαie jkdαi cos(θ−θα), Fd(θ) is the desired

radiation pattern, M is the number of identical antenna ele-
ments in each linear array, Rαi is the excitation coefficient
of the ith element located at dαi in the αth array, k is the
wavenumber in the freespace, and D array orientations θα (α
= 1,...,D). The objective of the problem is to synthesize the
desired radiation pattern Fd(θ) with the minimum number of
elements under a small tolerance error ε. For one linear array
at orientation θα to the incident plane wave from the bearing
θ, the array factor is given by

Fα(θ) =
M

∑
i

Rαie jkdαi cos(θ−θα). (2)

Suppose that all the antenna elements in each array orien-
tation θα (α ∈ 1, ...,D) are symmetrically distributed within
a range of −ds to ds along the array orientation θα, respec-
tively, the combination pattern of all the linear orientation
arrays can be written as

F(θ) =
D

∑
α=1

Fα(θ). (3)

In order to solve the equations (2) and (3), we can as-
sume that all the antenna elements are equally spaced from
−ds to ds with a small interelement spacing ∆d. Although
it is supposed that there is one element at each position, not
each antenna element is necessarily radiating waves or ex-
cited with current. All the antenna elements can be in two
states: “on” states (when the element is in the supposed po-
sition or has an excitation) or “off” state (when there is no
element in the supposed position or without an excitation).
Through discretization, (3) can be written in a matrix form

[F(θ)]h×1=[H]h×n [r]n×1 (4)

where h is the number of sampled antenna radiation pattern,
n=D

⌈
2ds
∆d

⌉
, the vector F [F(θ1),F(θ1),...,F(θh)]

T contains
the sampled radiation pattern at different angles, H is an
h× n matrix with the (i, l)-th element Hil=e jkdαl cos(θi−θα),
l ∈

(
(α−1) n

D+1∼ n
D α
)
, and α ∈ [1,2,...,D]. Choosing

h < n, matrix H forms an overcomplete dictionary. r is the
excitation vector, Rαl=0 means the antenna in the lth position
of the αth array is not excited or is absent from the supposed
position, and the antenna location space in practice is sparse,

thus we can exploit this priori information for APS, which
can be casted as the following convex optimization problem,

min ‖r‖`1
subject to ‖F−Hr‖`∞

<ε. (5)

In (5) we seek to find the smallest number of non-zero ele-
ments in the excitation vector r. Regarding the notation of
this paper, ‖·‖`1

, ‖·‖`2
, ‖·‖`∞

indicate `1 norm, `2 norm, `∞

norm, respectively. And dxe denotes the smallest integer not
less than x.

2.2 Compressive Sensing
Notations and some main results of the compressive

sensing (CS) theory [15], [16], [17], [18], [19], [20] are sum-
marized in this section. The CS theory addresses the follow-
ing underdetermined and noisy problem:

y=Ax+v (6)

where A is a known sensing matrix of the size M × N
with M < N. The main goal of the CS theory is to re-
cover the signal x= [x[1], ...,x[N]]T of length N from mea-
surements y= [y[1], ...,y[M]]T of length M, contaminated by
a white zero-mean Gaussian noise v, with covariance matrix
Gv=Iσ2

v . The solution to this ill-posed problem is possible
only if some of the properties of signal x can be considered.
The CS theory assumes the signal x to be “sparse” or “com-
pressible” in some sparsity basis {bn}N

n=1, providing the fol-
lowing representation:

x=Bd+w (7)

where columns of sparsity basis matrix B are the vectors
from the sparsity bases, vector of sparsity coefficients d of
size N×1 contains only J� N significantly large elements,
and

w = x−xJ (8)

contains a nonsparse part of compressive signal x, where xJ
is a pure J-sparse signal.

In [19], it was shown that in the noiseless scenario,
when the sensing matrix B obeys the restricted isometry
property (RIP) [16], [19] or the uniform uncertainty princi-
ple (UUP) [20], the sparse signal x can be recovered exactly
from the measurement y via the following linear program-
ming optimization:

min
x̂∈ℜN

‖x̂‖`1
subject to Ax=y. (9)

The matrix A is considered to obey the RIP with the J-
restricted isometry constant δJ , which is the smallest value
that satisfies

(1−δJ)‖x‖2
`2
≤ ‖Φx‖2

`2
≤ (1+δJ)‖x‖2

`2
. (10)

For the noisy scenario in (6), the general estimator that
holds for any signal x, not necessarily sparse, was presented
in [17] as the following convex optimization:

min
x̂∈ℜN

‖x̂‖`1
subject to ‖v‖`2

≤ ς (11)

where the residual power ‖v‖`2
is upperbounded by ς, which
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is small compared with the power of the strong sources. It
was shown that using the assumption that δ2J<

√
2−1, the

performance of this estimator is bounded by

‖x̂−x‖`2
≤ c0J−1/2 ‖xJ−x‖`1

+c1ς (12)

where c0 and c1 are well behaved and small constants. Note
that this results suggests that when the signal x is a pure J-
sparse, the estimation error is bounded only by energy of the
measurement noise v.

Just as it is represented in [13], the regular `1 minimiza-
tion can not obtain exact recovery with substantially fewer
measurements. To deal with this problem, Candes et al. [13]
designed an algorithm which consists of solving a sequence
of weighted `1-minimization problems where the weights
used for the next iteration are computed from the value of
the current solution. And some existing convex optimization
algorithms enforce sparsity by the reweighted `1 minimiza-
tion.

The iterative `1 reweighting is presented in [13]:

w(q+1)
l =

[∣∣∣x(q+1)
l

∣∣∣+δ

]−1
(13)

where xl denotes the lth entry of the recovered signal and wl
is the corresponding weighted value, δ>0 is an application-
dependent parameter and it must be carefully designed, q is
the iteration count number.

2.3 The Proposed Algorithm
In this paper, we outline the new solution of (1) as fol-

lows:

• Creating a Virtual Array and Initializing a Weight Ma-
trix

To obtain more elements than those of a conventional
array with the same array aperture, we first create D vir-
tual uniformly spaced linear orientation arrays with
spacing λ/16 (λ/2 inter-element spacing of the con-
ventional uniformly linear array (ULA)), and initialize
a weight matrix DM×DM Q as an identity matrix.

• Finding the Sparse Weight Vector

A weight vector is chosen to produce a beampattern
specified by F(θ). According to the general problem of
minimizing the peak value of the error between the syn-
thesized pattern and the desired pattern, the weight vec-
tor can be obtained by solving the following weighted
`1-norm minimization convex problem:

min ||Qwww||`1 s.t. ||F(θ)−Fd(θ)||`1 ≤ ξ,

∀θ ∈ [−180◦,180◦]
(14)

where ξ is the fitting error between the synthesized pat-
tern and the desired one. Minimizing ||Qwww||`1 makes
the vector Qwww sparse, which is useful to create D non-
uniformly spaced linear orientation arrays. Here, let
the weight vector www = [w1,w2, ...]

T from (14) be the

original weight vector. Weights of the original weight
vector that are so small that they can be ignored without
significantly changing the array performance.

If the absolute value of an element from the original
weight vector is bigger than a threshold which is de-
termined according to the anticipated purpose, the ele-
ment will be retained as a nonzero value element of the
original weight vector; otherwise, it is assigned zero.
The sparse weight vector wwwsss is thus obtained.

• Updating the Weight Matrix

After obtaining the original weight vector www =
[w1,w2, ...]

T , the weight matrix Q is updated accord-
ing to Q= diag

([
(|w1|+δ)−p,(|w2|+δ)−p, ...

])
(usu-

ally, p is an integer greater than 1), where diag(xxx) indi-
cates the diagonal matrix with main diagonal elements
equaled to the vector xxx. We introduce the parameter
δ>0 in order to ensure that a zero-valued component
in www does not strictly prohibit a nonzero estimate at
the next step. As empirically demonstrated in the next
section, δ should be set slightly smaller than the ex-
pected nonzero magnitudes of www. According to refer-
ence [13], reweighted `1 minimization can improve the
signal reconstruction. Here, it was demonstrated exper-
imentally that p=2 is a better choice.

• Forming the Non-uniform Arrays

After having determined the sparse weight vector wwwsss,
the antenna elements corresponding to nonzero valued
positions of the sparse weight vector are retained to
form D non-uniform linear arrays with fewer elements
as well as different orientations.

The above steps (2,3,4) are repeated until the final syn-
thesized pattern performance is satisfactory or the spec-
ified maximum number of iterations is attained.

• Optimizing the Sparse Weight Vector

To further improve the performance of the array beam-
pattern formed by the sparse weight vector, convex op-
timization is further conducted to obtain the optimal
weight vector, that is,

Find wwwopt that minimizes ||F(θ)−Fd(θ)||`∞
,

∀ θ ∈ [−180◦,180◦].
(15)

The optimal sparse weight vector wwwopt can be obtained
from (15) readily.

3. Simulation Results and Discussion
Given the array physical size, the objective is to de-

sign an array with the desired array pattern as shown in
Fig. 1, where the region |θ| ≤ θs corresponds to the main
beam and the region |θ| ≥ θs corresponds to the sidelobe.
We set θs = 2.3◦, and take a “dense set” of the interval
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[−180◦,180◦] with the angles sampled at 2◦ from −180◦ to
180◦.

To show the performance of our beampattern
synthesis, we will consider two cases: same ele-
ment number array and approximate beampattern per-
formance, since all formulated problems in (1) (5)
(14) and (15) are convex, so we adopt the optimiza-
tion toolbox [21] to solve the formulated problems.

3.1 Same Element Number Array with Array
Orientation Diversity

The influence of the array orientation diversity on the
beampattern synthesis is analyzed in this section. We choose
four-orientation virtual ULAs (named Array a, Array b, Ar-
ray c, Array d, with array orientation -10◦, 0◦, 10◦, and
20◦ respectively) with each subarray aperture length of 25 λ

having a uniform spacing of λ/16 between neighboring ele-
ments. In addition, we initialize Q as the identity matrix, δ=
1× 10−4, and p = 2 in our simulations. Fig. 2 shows a 23-
element beampattern synthesis performance in four cases
with 1, 2, 3, and 4 array orientations, and Fig. 2 shows the
beampattern synthesis performance of our proposed method
and BCS approach improve with increasing array orientation
diversity (from 1 to 3), but too high array orientation diver-
sity (from 3 to 4) can reduce beampattern synthesis perfor-
mance, which will also be demonstrated in Fig. 3. The opti-
mal antenna positions and the corresponding excitation am-
plitudes of the four cases are displayed in Tab. 1, 2, 3 and 4,
respectively. Note that for the two cases of Tab. 1 and 2, the
required normalized radiated energy of BCS approach [11]
and our proposed method are almost the same to obtain the
desired beampattern, while for cases of Tab. 3 and 4, the BCS
approach requires normalized radiated energy 64.7370 and
67.0517 respectively, which is correspondingly bigger than
48.6094 and 48.7165 of our proposed method. Besides, from
Tab. 2, we can see that the BCS approach needs a 24-element
array to obtain the performance of our 23-element array.

3.2 Approximate Beampattern Performance
with Array Orientation Diversity

To show another advantage of our approach, we exem-
plify the synthesis of an 18-element array with one orienta-
tion, 11-element array with two orientations, 9-element array
with three orientations, and 10-element array with four ori-
entations using our method, respectively. The optimal beam-
patterns exhibit maximal sidelobes of -7.78 dB, -8.10 dB,
-7.77 dB and -7.89 dB respectively, which are shown in
Fig. 3. Tables 5, 6, 7, and 8 display all the corresponding an-
tenna positions and excitation amplitudes. Obviously, when
the array physical size is given, using orientation diversity
can offer economization of 8 (or 9) elements without reduc-
ing the array performance. Besides, the normalized radi-
ated energy data can also provide that our proposed method
needs less radiation energy for two cases of Tab. 7 and 8.
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Fig. 1. Desired beampattern.
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Fig. 2. “Reference beampattern of a 23(24)-element array by us-
ing BCS inversion algorithm[11]” vs. “Our beampattern
of a 23-element array”.
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Fig. 3. Optimal beampattern of different element number ar-
ray by using “BCS inversion algorithm [11]” vs. “Our
method” .
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Element Indices Positions (λ) Excitation amplitudes (w)
Array b Array b Array b (BCS) Array b (Our)
1, 23 ±12.5000 51.3198, 47.9195 12.2921, 11.4768
2, 22 ±12.4375 62.5594, 56.5721 14.9799, 13.5478
3, 21 ±12.1875 19.9681, 17.3741 4.7825, 4.1609
4, 20 ±11.8125 7.3736, 7.7327 1.7659, 1.8519
5, 19 ±11.4375 4.5632, 4.8394 1.0928, 1.1590
6, 18 ±11.0000 2.3530, 2.4080 0.5635, 0.5767
7, 17 ±10.5625 1.3405, 1.3437 0.3210, 0.3218
8, 16 ±9.6875 1.7990, 0.8586 0.4309, 0.2056
9, 15 -4.875, 8.75 1.5282, 1.4926 0.3660, 0.3575

10, 14 -2.9375, 4.875 0.7863, 0.4661 0.1883, 0.1116
11, 13 -1.0, 2.9375 1.5120, 1,1712 0.3621, 0.2805
12 3.9375 1.0407 0.2492

Tab. 1. Element positions and excitation amplitudes in a 23-element one-orientation antenna array obtained by BCS inversion algorithm [11] vs.
our method.

Element Indices Positions (λ) Excitation amplitudes (w)
Array (a, b) Array (a, b) Array (a, b) (BCS) Array (a, b) (Our)

1, 1 -8.0625, -10.2500 1.2357, 0.8602 0.2047, 0.1488
2, 2 -6.4375, -9.5625 1.3310, 1.3180 0.2204, 0.2280
3, 3 -5.1875, -7.6875 1.2404, 0.7458 0.2054, 0.1290
4, 4 -3.6250, -6.4375 1.5706, 1.5549 0.2601, 0.2690
5, 5 -1.4375, -3.6250 0.7106, 1.7101 0.1177, 0.2958
6, 6 -0.6250, -2.4375 2.2701, 0.9225 0.3760, 0.1596
7, 7 0, -1.8750 0.3516, 0.9005 0.1165, 0.1558
8, 8 3.6250, -0.6250 1.2664, 1.5396 0.2097, 0.2663
9, 9 6.9375, 6.4375 0.6381, 0.6793 0.1057, 0.1175

10, 10 9.4375, 7.6875 0.7758, 0.8363 0.1285, 0.1447
11, 11 10.125, 9.5625 1.0089, 0.9005 0.1671, 0.1558

12 10.25 0.8021 0.1388
13(BCS) 0(BCS) 0.3516(BCS)

Tab. 2. Element positions and excitation amplitudes in a 24-element two-orientation antenna array obtained by BCS inversion algorithm [11] vs.
a 23-element two-orientation antenna array obtained by our method.

Element Indices Positions (λ) Excitation amplitudes (w)
Array (a, b, c) Array (a, b, c) Array (a, b, c) (BCS) Array (a, b, c)(Our)

1, 1, 1 -9.3750, -10.625, -6.75 0.6986, 0.9990, 0.8895 0.1103, 0.1116, 0.1256
2, 2, 2 -6.8125, -7.7500, -5.125 0.5428, 0.7880, 1.1561 0.0857, 0.0880, 0.1633
3, 3, 3 -5.1250, 1.3750, -3.625 0.9754, 0.9085, 0.8375 0.1540, 0.1014, 0.1183
4, 4, 4 -1.6250, 7.7500, -0.75 0.5837, 1.0895, 0.8879 0.0922, 0.1217, 0.1254
5, 5, 5 -0.8125, 10.625, 2.375 0.7196, 1.1484, 0.9246 0.1136, 0.1282, 0.1306
6, 6 2.3750, 3.625 1.0262, 1.1047 0.1621, 0.1560
7, 7 3.6250, 5.125 1.3672, 0.8900 0.2159, 0.1257
8, 8 5.1250, 9.4375 0.9062, 0.7077 0.1431, 0.1000
9, 6.8125, 0.9340, 0.1475,
10, 9.3750, 0.7333, 0.1158,

Tab. 3. Element positions and excitation amplitudes in a 23-element three-orientation antenna array obtained by BCS inversion algorithm [11]
vs. our method.
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Element Indices Positions (λ) Excitation amplitudes (w)
Array (a, b, c, d) Array (a, b, c, d) Array (a, b, c, d) (BCS) Array (a, b, c, d) (Our)
1, 1, 1, 1 -12.1875, -10.625, -10.4375, -9.5625 0.7358, 0.6999, 0.6413, 0.8625 0.1039, 0.0605, 0.0716, 0.1140
2, 2, 2, 2 -6.7500, -1.3125, -8.3750, -7.6875 0.9060, 0.9059, 0.7063, 0.7072 0.1280, 0.0784, 0.0789, 0.0934
3, 3, 3, 3 -4.9375, 1.3125, -5.1250, -3.5625 1.2890, 0.8468, 1.0876, 1.1947 0.1821, 0.0732, 0.1215, 0.1578
4, 4, 4 -3.6875, 5.1250, -2.3750 0.9672, 1.2757, 0.9623 0.1366, 0.1424, 0.1271
5, 5, 5 0.5000, 8.3750, 0.5625 0.8397, 1.0613, 0.8544 0.1699, 0.1185, 0.1129
6, 6 3.6875, 6.5625 1.0262, 0.6671 0.1186, 0.0881
7, 7 4.9375, 7.6875 1.0175, 0.7799 0.1437, 0.1030
8, 6.7500, 0.8331, 0.1177,

Tab. 4. Element positions and excitation amplitudes in a 23-element four-orientation antenna array obtained by BCS inversion algorithm [11] vs.
our method.

Element Indices Positions (λ) Excitation amplitudes (w)
Array b Array b Array b (BCS) Array b (Our)

1, 18 ±12.5000 20.6823, 14.8158 4.3819, 3.1390
2, 17 ±12.4375 20.1761, 14.1658 4.2747, 3.0012
3, 16 ±12.1875 3.5416, 3.5069 0.7504, 0.7430
4, 15 ±11.4375 0.9698, 0.2283 0.2055, 0.0484
5, 12 ±8.7500 2.3088, 0.8985 0.4892, 0.1904
6, 11 ±3.9375 1.3389, 1.0416 0.2837, 0.2207
7, 10 ±2.9375 0.7729, 1.5217 0.1638, 0.3224
8, 9 ±1.9375 0.9379, 0.4899 0.1987, 0.1038

13, 14 9.6875, 10.5625 1.3023, 1.0206 0.2759, 0.2162

Tab. 5. Element positions and excitation amplitudes in a 18-element one-orientation antenna array obtained by BCS inversion algorithm [11] vs.
our method.

Element Indices Positions (λ) Excitation amplitudes (w)
Array (a, b) Array (a, b) Array (a, b) (BCS) Array (a, b) (Our)

1, 1 -4.2500, -10.750 2.5745, 2.0409 0.1818, 0.3057
2, 2 -1.4375, -10.250 1.4217, 1.7936 0.1004, 0.2687

3 -5.4375 2.4323 0.3644
4 -4.3125 1.1876 0.1779
5 -2.3750 1.8990 0.2845
6 -1.4375 1.8245 0.2733
7 2.3750 1.6808 0.2518
8 4.3125 1.7988 0.2695
9 10.250 2.0026 0.3000

Tab. 6. Element positions and excitation amplitudes in a 11-element two-orientation antenna array obtained by BCS inversion algorithm [11] vs.
our method.

Element Indices Positions (λ) Excitation amplitudes (w)
Array (a, b, c) Array (a, b, c) Array (a, b, c) (BCS) Array (a, b, c) (Our)

1, 1, 1 -3.875, 1.6250, -2.8125 2.4616, 2.0282, 3.2427 0.2459, 0.1754, 0.2290
2, 2, 2 1.0000, 4.6250, 8.7500 1.4886, 2.0513, 2.5409 0.1487, 0.1774, 0.1794
3, 3 3.8750, 10.250 2.5571, 2.4902 0.2554, 0.2154
4 6.7500 1.5011 0.1499

Tab. 7. Element positions and excitation amplitudes in a 9-element three-orientation antenna array obtained by BCS inversion algorithm [11] vs.
our method.
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Element Indices Positions (λ) Excitation amplitudes (w)
Array (a, b, c, d) Array (a, b, c, d) Array (a, b, c, d) (BCS) Array (a, b, c, d) (Our)

1, 1, 1, 1 -8.9375, -10.1250, -5.5625, -9.6250 1.3440, 1.9919, 2.0703, 2.7822 0.1162, 0.1989, 0.1034, 0.1965
2, 2 2 -6.8125, -4.4375 -2.1875 1.4221, 2.4865 2.6819 0.1230, 0.2483 0.1894
3, 3 -3.6875, 4.4375 1.6143, 2.9534 0.1396, 0.2950

4 7.3750 1.4390 0.1437

Tab. 8. Element positions and excitation amplitudes in a 10-element four-orientation antenna array obtained by BCS inversion algorithm [11] vs.
our method.

4. Conclusion
The proposed APS algorithm based on reweighted

`1-norm minimization and array orientation diversity is
demonstrated to be effective in reducing array elements,
suppressing the sidelobe, and reducing the energy con-
sumption to some extent. The sensitivity and robust-
ness of the proposed design tool in real-life applica-
tion will also be considered in our further work.
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