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jozef.kenyeres@tuwien.ac.at, markus.rupp@tuwien.ac.at

Abstract. Efficient localization methods are among the ma-
jor challenges in wireless sensor networks today. In this pa-
per, we present our so-called connectivity based approach,
i.e, based on local connectivity information, to tackle this
problem. At first the method fragments the network into
larger groups labeled as packs. Based on the mutual con-
nectivity relations with their surrounding packs, we iden-
tify border nodes as well as the central node. As this first
approach requires some a-priori knowledge on the network
topology, we also present a novel segment-based fragmen-
tation method to estimate the central pack of the network as
well as detecting so-called corner packs without any a-priori
knowledge. Based on these detected points, the network is
fragmented into a set of even larger elements, so-called seg-
ments built on top of the packs, supporting even more local-
ization information as they all reach the central node.
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1. Introduction
Wireless sensor networks (WSNs) attracted much at-

tention by both academia and industry in the last years. As
presented in [1], WSNs are facing a vast number of seri-
ous challenges; those related to the energy constraints being
the most crucial ones. This emphasizes the need of viable
and energy efficient solutions, together with other important
challenges that arise in a possible large number of nodes.
The authors in [2] concluded that for many areas of WSNs
such solutions exist and are already standardized such as [3],
[4], [5] and [6]. On the other hand, a global consensus about
a routing protocol suitable for WSNs is lacking. The authors
in [2] present a detailed survey of many different approaches.
They start with out-of date solutions such as flooding and
cluster-based hierarchical protocols. Then, they continue
with geographical routing protocols following the approach
in [7]. In these protocols, their necessity of the node’s lo-

cation awareness is a weakness. To overcome it, so called
virtual coordinates emerged. They are intended to be used
instead of the physical coordinates to define the node’s lo-
cation. The protocol class related to virtual coordinates is
labeled as self-organizing coordinate systems in [2].

Self-organizing coordinate systems are considered as
the current state of the art. Nevertheless, many challenges
still remain; the most obvious one being the way, in which
the nodes obtain their coordinates. Currently, several solu-
tions exist. A straightforward solution assumes the presence
of anchor points in the network. They are used as a loca-
tion reference for the rest of the nodes, which obtain their
location by a local measurement. There are various meth-
ods how to accomplish this task, for example Received Sig-
nal Strength (RSS) and Time Of Arrival (TOA) as in [8]
or Time of Flight (ToF) from [9]. Also, a multilateration
method similar to GPS-based systems is presented in [10].
The major drawback of these methods presented in [2] is
that these derivatives of the physical coordinates are not re-
flecting the network topology. Also, the precision of these
methods is questionable. An other approach is based on the
assumption that the traffic destinations are known in WSNs
(sink nodes or base stations). Thus, they serve as reference
points. The nodes are able to determine their location, based
on their distances from these points as presented in [11], [12]
and [13]. As there are no natural reference points expected
in the network, they have to be picked. This should be per-
formed randomly as in [14], or on the network’s border as in
[18], [15], [16]. Another approach is the so-called centroid
transformation presented in [17].

In our work, we target this problem of node self-
localization. We introduce the concept of connectivity based
localization with the definition of the most important terms
in Section 2 and describe more details of our algorithm in
Section 3 based on our earlier work [19], [20]. Section 4
gained results of such algorithm obtained by simulations. In
this paper, we present a significant extension of our algo-
rithm in Section 5. Here, we aim to provide every node in
the network with location data and to generalize our algo-
rithm in order to gain a valid result regardless of the network
topology. We analyze the improved results in Section 6 and
conclude the paper in Section 7. All new and unpublished
results are thus presented in Sections 5 and 6.
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2. Connectivity-Based Localization
In our work presented in [19] and [20], we introduced

a novel localization concept, suitable for WSN nodes. We
made several assumptions for a WSN:

• A WSN N = {n1,n2, ...,n|N |} consists of a large num-
ber of the nodes (typically |N | > 100). We denote the
size of the WSN by |N |.

• The nodes ni; i = 1,2, ..., |N | are randomly located
within a plane and their location is defined by an or-
dered pair of two coordinates (xi,yi). We assume that
the nodes are located within a squared plane consist-
ing of M ×M discrete points. Their location within
the plane is defined by an ordered pair of two coor-
dinates (x,y),x ∈ {1,2, ...,M} = M ;y ∈M . The po-
sition (xi,yi) ∈ M 2 of every node ni is unique, i.e.,
@ni∨n j|(xi,yi) = (x j,y j).

• The transmission area of every node is defined as a cir-
cle with the node located in its center and with a defined
radius r, equal to all nodes. Every two nodes with a mu-
tual distance smaller than such radius are considered as
adjacent nodes, reflected by the elements ai j ∈ {0,1}
of adjacency matrix A with aii = 0. Take, for exam-
ple, node ni; the center of its area is located in the point
(xi,yi) and it covers an area of size πr2. Consequently,
every n j with Euclidean distance E to ni smaller or
equal to r becomes its adjacent node. This can be stated
as follows:

ai j = 1|E(ni,n j) =
√

(xi− x j)2 +(yi− y j)2 ≤ r. (1)

Consequently, every network can be described by an
ordered triplet (|N |,M,r).

• Every message send by a node is correctly received by
all its adjacent nodes. In order to describe the network’s
connectivity, we define parameter ξ. It defines an ex-
pected average number of adjacent nodes of every node
ni and is stated as follows:

ξ =
|N |
M2 πr2, (2)

thus given the triplet (|N |,M,r), the network’s connec-
tivity is defined. The ratio |N |M2 can be interpreted as the
average number of nodes per one point of the plane.
For better illustration, consider a random network with
|N | = 100 and M = 10. In this case, every point con-
tains on average a single node. Thus, the average num-
ber of nodes per point has to be 1 (= 100/102 in this
example). As every node covers an area of size πr2,
the expected average number of neighbors is calculated
this way.

In contrast to the existing solutions described in Sec-
tion 1, our localization concept does not rely on a distance
estimation method. In other words, the node is able to re-
ceive messages from its neighbors (the set of its adjacent

nodes), but it is unable to determine their distances or posi-
tions. We also avoid a reliance on a set of predefined anchor
nodes, which can be used as the localization basis. This as-
sumption of our solution differs from many of the existing
solutions described in Section 1, but it maintains the most
realistic scenario.We aim to analyze the connectivity, which
means no obligation of a specific hardware distance estima-
tion capability as the node’s connectivity can solely be de-
scribed by the number of their neighbors. Thus, an ordinary
inter node message exchange is sufficient for this purpose.
On the other hand, such a simple approach has its obvious
limitations. The node is hardly able to find its precise loca-
tion based on its connectivity information only. As the nodes
are located randomly, there is no clear relation between the
node’s location and its connectivity. Thus, the purpose of
the algorithm’s original packs-based version was to detect
the nodes with a specific location within the network. In
general, their connectivity is assumed to be different from
the rest of the nodes. As first, we presented how to detect
the nodes on the network’s periphery (the border nodes) in
[19]. We define them as a connected subset encircling the
rest of the nodes and we assume that their connectivity tends
to be weaker. Subsequently, we extended our algorithm to
estimate the network’s central node in [20]. We define the
central node as a node that is located in a preferable posi-
tion in terms of the network’s connectivity ξ. This means
that a significant fraction of all nodes should be located in its
proximity. Thus, its connectivity is expected to be exception-
ally high. An example is shown in Fig. 1. The border nodes
are indicated as white circles and the central node as black.
We discuss the packs-based algorithm in detail in Section 3.

Fig. 1. A network with its border nodes (white) and a central
node (black).

The following Tab. 1 list all important parameters and vari-
ables used throughout this paper to facilitate reading.

2.1 Packs
The first step of the localization algorithm is a trans-

formation of the network, i.e., a set of the nodes N =
{n1,n2, ...,n|N |} with the cardinality |N | randomly dis-
tributed within a plane. In our case, the transformation de-
scribes the process of the packs’ creation such that N =
{P1,P2, ...,Pi}. Every pack Pi consists of a head (ni in this
case) and its descendants. The head is the pack’s center, i.e.,
it is adjacent to all its descendants.
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Name Meaning
N = {n1,n2, ...,nK} network with K nodes
|N | cardinality of network N
A ∈ {0,1}|N |×|N | adjacency matrix Ai j = ai j
di = ∑ j ai j number of neighbors of node ni
ri relative connectivity: (3)
ξ network’s connectivity: (2)
N = {P1,P2...,PK} network with K packs
Pk = {nk1 ,nk2 , ...,nkK} pack with K nodes: (5)
|Pk| pack cardinality, i.e., the number

of nodes that belong to pack k
P c central pack: (19)
ci bounding coordinate: (7)
ci j bounding weight between (ni, n j)
R(Pi) communication range: (6)
Oi cohesion: (8)
Ōi comparison basis: (9)
BN set of border nodes
Bdet set of detected border nodes

Eq. (13)
BdetC set of correctly detected border

nodes: (15)
bi border coordinate: (11)
bi j border weight between ni and n j
f reconstruction factor: (16)
BP set of border packs
C corner packs: (22)
Si segment formed by Pi: (25)

Tab. 1. List of frequently used parameters and variables.

In the heads selection algorithm presented in [19], the
best connected nodes are elected as the heads by their less
connected neighbors. To compare their connectivity, every
node computes its relative connectivity as follows:

ri = di−
1
di

∑
n j |ai j=1

d j. (3)

Here, di is the number of ni’s neighbors. Then, ni satisfy-
ing ri = min{r j|ai j = 1} picks its best connected neighbor
nk (satisfying rk = max{r j|ai j = 1}) as the head and by this
the pack Pk is formed. We define Pk’s head as follows:

nk ∈ Pk|∃ni|ri = min{r j|ai j = 1}
∧rk = max{r j|ai j = 1}. (4)

Subsequently, all n j|a jk=1 become the descendants of Pk.
Then, the process is repeated for the remaining nodes (previ-
ously added nodes are not taken into account). Theoretically,
a node could be adjacent to more than one head. For exam-
ple, node ni is adjacent to both n j and nk elected as the heads.
In this case, node ni picks P j as r j > rk. In general, a node
elects pack Pk with maxrk among the adjacent heads as its
head. We define Pk as follows:

Pk = {nk,∀ni|rk = max{r j}P j |ai j=1}. (5)

As a result, the better connected heads form more populated
packs, as they attract also the descendants with more than

one head in its neighborhood. The process is described in
even more detail in [19]. An example is shown in Fig. 2.
Following the assumptions from the beginning of Section 2,
we define the communication range R(Pi) of Pi as follows:

R(Pi) = {∀P j|∃nk ∈ Pi∧∃nl ∈ P j;akl = 1}. (6)

In other words, R(Pi) is the set of geographically proximate
packs of Pi. The horizon of Pi’s data acquisition is limited
to R(Pi). Thus, all required data have to be available within
R(Pi) for Pi.

Fig. 2. A network fragmented into packs.

2.2 Network Connectivity
In [19], we defined two major factors affecting Pi’s

connectivity. As first, the cardinality matters. The term car-
dinality refers to the number of the nodes included in the
pack and we use |Pi| to denote the cardinality of Pi. The
size of |Pi| depends on the node’s density in ni’s one hop
neighborhood and on the ni’s connectivity. Thus, |Pi| tends
to be increasing for ni located in a preferable position within
the network. On the other hand, |Pi| tends to be decreasing
for ni located on the network’s periphery. Another impor-
tant factor is the strength of the pack’s connectivity with the
surrounding packs. Thus, also the number of the inter con-
necting nodes matters. The main idea is to emphasize the
difference between |Pi| located in a preferable position and
|P j| located on the periphery as we assume, that |P j| has just
a limited ability to interact with Pk ∈ R(P j). Thus, we de-
fine so-called bounding coordinates (ci for each node ni in
Equation (7) further ahead). The value of ci represents the
strength of ni’s connection to ∀nk /∈ Pi|aik = 1. In order to
compute ci, every nk ∈ Pi assigns a weight (so-called bound-
ing weights) to all its neighbors (n j ∈ Pl |Pl ∈ R(Pi) in this
case) as follows:

ck j =

{
1; i 6= l
0; i = l∨ k = j.

Consequently, every n j ∈ Pi calculates c j as follows:

c j =
c j j +∑nk|a jk=1 c jk

d j +1
. (7)

In conclusion, ni (which is the head of Pi) collects the bound-
ing coordinates of its descendants and calculates the final
pack’s characteristics labeled as cohesion Oi for pack Pi
stated as follows:

Oi = |Pi|
ci +∑n j |n j∈Pi c j

|Pi|
= ci + ∑

n j |n j∈Pi

c j. (8)
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As a result, Oi reflects both connectivity and size of Pi. In
order to study the pack’s mutual relations, we define a so-
called comparison basis (Ōi in the case of Pi) as follows:

Ōi =
Oi +∑P j |P j∈R(Pi) O j

|R(Pi)|+1
. (9)

In other words, Pi collects available data from R(Pi).
In consequence it is able to analyze its own connectivity in
the context of the surrounding packs.

3. Packs-Based Algorithm
As we explained in Section 2, our algorithm derives

the location information from the node’s connectivity. We
use the number of the node’s neighbors (notation di for i-
th node ni) to serve as basic connectivity information. On
the other hand, such trivial information is hardly sufficient
for a node’s localization. In order to find a relation between
the location and the connectivity, it is necessary to analyze
the connectivity in a broader sense. Thus, we fragment the
network into larger elements labeled as packs as defined in
Section 2.1. The analysis of their connectivity and their mu-
tual relations allows to derive objective location information.
We explain these in more detail in this section.

3.1 Border Nodes Detection
A side effect of our approach is the potential to detect

border nodes. We do not strive to detect all border nodes
but even if some nodes discover that they are on the border
of a network, they tremendously facilitate the extraction of
locality information. In [19], we aimed to detect the set of
the border nodes (denoted as BN) of the network. The bor-
der nodes define a connected ring for which we cannot find
any of the remaining nodes geographically outside of such
ring. The main idea is very simple, as we assumed that the
packs on the network border tend to be weakly connected in
comparison to the packs within the network. Thus, it is re-
quired to detect these weakly connected nodes. If Pi satisfies
the following condition, it considers itself as Pi ∈ BP (BP is
a set of packs located on the network’s border):

Ōi ≤ αOi. (10)

In this inequality, α is a so-called minimal border pack
threshold constant. Its values are defined within 0.6≤ α≤ 1
and we discuss its impact in Section 4. More details are
presented in [19]. Subsequently, we also included two pro-
cedures that optimize the border nodes selection. Obviously,
∀n j ∈ Pi|Pi ∈ BP are not explicitly n j ∈ BN . In the ideal
case as shown in Fig. 1, every border node is adjacent to two
other border nodes. In general, every node is most likely ad-
jacent to a higher number of nodes. Thus, we aim to reduce
the selected nodes. To do this, we use a similar approach as
in (7). First, ni ∈ Pi|Pi ∈ BP assigns weights to its neighbors

as follows:

bi j =

{
1; i = j∨n j ∈ Pk|Pk ∈ BP
0; n j ∈ Pk|Pk /∈ BP.

Here, bi j is so-called border weight. It is worth emphasizing
that only nodes ni ∈ Pi|Pi ∈BP are performing these compu-
tations. Then, each ni computes its border coordinate bi as
follows:

bi =
bii +∑n j |ai j=1 bi j

di +1
. (11)

Consequently, ni is able to recognize whether it is a suitable
border node or not by examining this term:

β < |Ti|;Ti = {∀n j|ai j = 1∧b j < bi}. (12)

Here, Ti is the set of the ni’s neighbors which are bound
stronger to the border. If ni has more of these neighbors than
β, it does not consider itself as the border node. In order to
avoid false detections, we added a second procedure:

Bdet = {∀ni|bi > 0.5∧∃n j|ai j = 1;b j < 0.5}. (13)

It is worth mentioning that both ci and bi assign values from
the interval [0;1]. In (12) we defined an upper-bound for bi.
If ni exceeds this upper-bound, another check is performed
as defined in (13). If this condition also holds, ni consid-
ers itself as ni ∈ Bdet . We present the performance of the
distributed algorithm in Section 4.

3.2 Central Node Estimation
An extension of the algorithm subsequently allows to

estimate the position of the central node. Here, we just aim
to detect the pack that is least interacting with its detected
border nodes. First, we define the packs of our interest as
candidates set D . Set D is stated as follows:

D = {∀Pi|Pi /∈ BP}. (14)

Thus, we are interested in all packs except those on the bor-
der. Then, we search for Pi with the smallest bi among
∀Pi ∈ D and label it as the central node. The results of this
procedure are presented in Section 4.

4. Algorithmic Behavior in Dense
Networks

We tested the packs-based algorithm’s performance.
Here, we aim to determine its performance on a set of ran-
dom, but dense networks. In other words, the network’s
topology is random, but we exclude the existence of signif-
icant void areas. We elected these networks as it is possible
to determine the network’s physical center and border explic-
itly, which allows the direct comparison with the true, phys-
ical location. In case of a complex, irregular topology, this is
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much more complicated. In [19], we define a so-called refer-
ence algorithm, detecting the network’s border as defined in
Section 2. Here, the node’s physical coordinates are used for
the network’s border guaranteeing the detection of the true
border. Consequently, the subset of the correctly detected
border nodes (BdetC) is defined as follows:

BdetC = {ni|ni ∈ Bdet ∧ni ∈ BN} (15)

with Bdet from (13). We introduce the reconstruction factor
f to define the |BdetC|’s ratio to |BN |:

f =
|BdetC|
|BN |

. (16)

Before we discuss the gained results, it is important to em-
phasize the process of BN’s detection. The setting of α and
β plays a crucial role. According to (10), α defines a thresh-
old value. For α equals to one, the number of the detected
nodes decreases in comparison to the smaller α as (10) be-
comes more tight. In other words, the connectivity differ-
ence between Pi and ∀P j ∈ R(Pi) has to be larger for in-
creasing α. On the other hand, it is unlikely to expect a sig-
nificant difference in the connectivity among the proximate
packs in a dense network. The value of β serves as an aux-
iliary parameter allowing us to modify the detection process
as shown in (12). In fact, Bdet is derived from the subset
of ∀ni ∈ Pi|Pi ∈ BP. The value of β defines how many of
them are included in Bdet as explained in (12). An exam-
ple (taken from [19]) is shown in Fig. 3. In this scenario,
α = 1. Here, the algorithm detects up to 55 % of the true
border nodes. The proportion of the detected nodes can be
increased for decreasing α. For example for α = 0.8, the al-
gorithm is able to detect up to 75 % of the true border nodes.
On the other hand, the false detections increase with the in-
crease of α. We define as false detections the subset of the
nodes detected by our algorithm but not by the reference al-
gorithm (Bdet −BdetC). We discussed these issues in more
detail in [19]. For example, |Bdet −BdetC| is twice as large
for α = 1 as for α = 0.8 for |N |=1000.
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Fig. 3. The relation of the reconstruction factor f and |N | for
α = 1.

Subsequently, we analyzed the algorithm’s ability to
estimate the central node. In this analysis, we are interested
in the Euclidean distance of the true central point and the

detected points. We calculated the true position of a virtual
center node as follows:

xpReal =
∑∀ni∈N xi

|N |
;ypReal =

∑∀ni∈N yi

|N |
. (17)

In our simulations, every node has assigned two coordinates:
xi and yi for ni. These coordinates represents its location
within a plane and are unique for every node. Based on them,
we computed the true central point (pReal) as the average co-
ordinates from all nodes in the network. Then, we calculate
the Euclidean distance between pReal and the detected value
(we use index p to denote the detected values) as follows:

E =
√

(xpReal − xp)2 +(ypReal − yp)2. (18)

The gained results are shown in Fig. 4. Obviously, the
distance among pReal and p is as close as three hops even for
large networks. We evaluate these results as very interest-
ing. Without any location information, the algorithm is able
to detect a significant fraction of the network’s border nodes
and estimate the central node with a solid precision.

100 200 300 400 500 600 700 800 900 1000
3
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5

 2−hop dist.

7

8

 3−hop dist.

10

|N|

E

Fig. 4. The distance E from (18) as a function of |N |.

An example for (500,100,15), thus |N |= 500 and
ξ = 35.325 with the selection of α = 0.8 is shown in Fig. 5,
displaying a network topology in a plane showing the true
physical coordinates x and y. The detected border nodes are
indicated by red squares and the estimated central node by
a black square. The network’s border is reconstructed with
acceptable precision. The major drawback is the necessity
to define α. Without any topology information, this task re-
mains difficult.
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Fig. 5. The detected boarder nodes (red squares) and the central
node (black square).
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5. Segment-Based Algorithm
As mentioned in Section 3.2, we aim to improve our

packs-based algorithm further. The packs-based version pre-
sented in previous sections is suitable for networks with only
a certain degree of connectivity. Thus, this limitation is in
our scope. We aim to gain acceptable performance for any
network, regardless of its topology or connectivity. More-
over, the particular setting of α and β remains a limiting fac-
tor. The values mentioned in Sections 3.1 and 4 are opti-
mized for dense networks. It is a tricky question in general
how to assign their optimal values without any topology in-
formation. Thus, we avoid them at all in the segment-based
algorithm. Subsequently, we also aim to extend location in-
formation provided by our algorithm. The packs-based al-
gorithm performs a reconstruction of the network’s topology
as it detects specifically located nodes, such as border nodes
and the central node. On the other hand, the rest of the nodes
are still unaware of their location. Thus, we aim to pro-
vide all nodes with location information. In compliance with
the packs-based algorithm, the methods presented in Sec-
tion 2.1 and 2.2 are equally applied in the extended version,
the segment-based algorithm. As opposed to the methods
presented in Section 3.1 and 3.2, which are replaced com-
pletely, this makes straightforward comparisons between the
packs-based and segment-based version very challenging. In
the segment-based algorithm, we do not emphasize the de-
centralization factor. Instead of detecting a limited set of
the nodes, the segment-based algorithm forms a structure
in terms of packs and segments (explained further ahead)
that enables to define the location of all nodes. Such a task
could not be done in a completely decentralized manner. It is
a much more complex task that offers significant advantages
on the other hand. The most obvious advantage is its poten-
tial in routing. As the position of every node is determined, it
can be used as a base for a routing decision. Due to these dif-
ferences, we cannot offer many direct comparisons of their
performance. In this section, we present the segment-based
version, satisfying all of these new requirements.

5.1 The Detection Process
First, we present a generalized detection process. The

central node location and the border nodes remain in our
scope, but in a modified way, as a central pack of nodes
as well as border packs. It is worth emphasizing, that we
still assume the availability of connectivity information only.
Thus, we aim to detect the central pack, a dominant pack in
terms of connectivity, which takes over the meaning of the
central node in the packs-based algorithm. As each pack has
got a head node assigned, this node could take on the mean-
ing of a central node. The relation to a geographical center
is meaningless as it can be impossible to determine the ge-
ographic center of networks with an irregular topology. We
simply aim to find a dominantly connected pack. The net-
work’s border can also be complicated to define. Thus, we
aim to find a set of packs, located on the network’s periphery

with respect to the central pack. Specifically, a set of packs
with maximal distance from the central pack is in our scope.
We call this set corner packs and label this set as C . These
packs are detected instead of BP from the pack-based ver-
sion. In contrast to the packs-based version, the distances are
taken into account and the corner packs serve different pur-
pose. Obviously, C is a subset of BP from the pack-based al-
gorithm. As the result, we aim to transform the network into
a form as illustrated in Fig. 6. Here, the central pack is il-
lustrated as the black square, the corner packs as red squares
and the rest of nodes as gray circles. The network is frag-
mented into four equivalent areas illustrated as squares. We
label these fractions as segments. In this context, C serves as
the set of reference points. It is also worth emphasizing that
the segments are formed on top of the packs. In other words,
every segment is a set of the packs. We aim to fragment
the network into several areas formed around Pi|Pi ∈ C . We
also assume that each of these segments is connected with
the central pack. It is worth mentioning that we aim to form
equally sized segments. Such approach promises an optimal
number of segments regarding the network’s size. Another
important aspect is the distance to the central pack. As this
pack is unique, it can serve as the reference point for a dis-
tance measurement. The dotted circles represent the hop
distances from the central pack (indicated as black square)
in Fig. 6. Thus, the node’s hop distance defines its position
within one of the circles, that is how many packs are needed
to pass from one pack to another. As we mentioned in Sec-
tion 5, we aim to provide every node in the network with lo-
cation information. First, a node can determine its position
within one of the circles. Subsequently, it can determine its
position within one of the squares. We explain this process
in more detail in this section.

Fig. 6. Desired network structuring by segmentation: red
squares denote border packs, the central pack is indicated
by a black square.

The process of the network’s transformation begins
with the central pack’s detection. We assume the invari-
ance of the processes described in Sections 2.1 and 2.2.
Thus, the network is fragmented into the pack’s set (N =
{Pi,P j...,Pk}). We define the pack Pi as the central pack P c

if Pi satisfies the following condition:

P c = Pi|Ōi = max{Ō j}P j∈N . (19)
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Here, Ōi refers to (8). Subsequently, we define the so-called
pack’s distance d(Pi,P j) as follows:

d(Pi,P j) =

{
1; P j ∈ R(Pi)
m; m = |W (Pi,P j)|−1.

Here, W (Pi,P j) is a set of packs containing all packs
that are required to form the shortest path connecting Pi
with P j (W (Pi,P j) = {Pi...P j})and |W (Pi,P j)| denotes its
cardinality. In other words, W (Pi,P j) is the (unordered)
set of packs required to be traversed in order to connect
Pi with P j. For example, W (Pi,P j) = {Pi,Pk,P j} means
that P j /∈ R(Pi), but Pk ∈ R(Pi) and P j ∈ R(Pk), making
d(Pi,P j) = |W (Pi,P j)| equivalent to the hop distance from
pack Pi to pack P j, thus in terms of packs rather than nodes.
The corner packs are detected with respect to d(Pi,P c). In
other words, every Pi satisfying the following condition is
considered as a corner pack:

d(Pi,P c) = max{d(P j,P c)}Pk∈R(Pi). (20)

Thus, Pi ∈ C if it is not adjacent to P j with d(P j,P c) >
d(Pi,P c). As it is adjacent to at least one other P j with the
same maximal value, Pi ∈ C only if the following condition
holds:

Pk ∈ R(Pi)∧ Ōi < Ōk. (21)

Thus, only the better connected packs are selected in
the case, when ∃P j ∈ R(Pi)|d(P j,P c) = d(Pi,P c) =
max{d(Pk,P c)}Pl∈R(Pi). We aim to detect a limited num-
ber of corner packs in this case. Consequently, we define C
as follows:

C = {∀Pi|d(Pi,P c) = max{d(P j,P c)}Pk∈R(Pi)

∧Ōi < Ōk|∃d(Pk,P c) = d(Pi,P c)}. (22)

5.2 The Network’s Segments
In this section, we explain the segment’s construction.

First, we define the term segment. A segment Si is a set
of packs connecting a corner pack Pi ∈ C with the central
pack. Every Pk included in W (Pi,P c) becomes a mem-
ber of Si (Pk ∈ Si). Subsequently, every P j /∈ Si selects its
most proximate segment and becomes member of this seg-
ment. As a result, a structure similar to Fig. 6 is formed.
As we consider the circles to be the packs, W (P1,P c) =
{P1,P5,P6,P7,P8,P c}. Also, P9 and P10 has to be included
in S1, as they are not part of any other path from an cor-
ner pack to the center and W (P1,P c) contains the closest
packs included in any segment. As we aim to provide ev-
ery node with location information, it is necessary to include
every pack in any segment. We explain this in more de-
tail in this subsection. Thus, the segment is formed around
ni ∈ Pi|Pi ∈ C . Moreover, we assume that every Si has

a unique path W U (Pi,P c). That means that no other S j in-
cludes any Pk ∈ Si|Pk ∈W (Pi,P c) to its W (P j,P c). This
property is stated as follows:

W U (Pi,P c) = W (Pi,P c)|@P j ∈W (Pi,P c)

∨P j ∈W ({Pk}Pk∈{C\Pi},P
c). (23)

In consequence, every Si is connected to P c via
a unique path. This also implies, that not every Pi ∈ C
forms Si. These packs (Pi ∈ C |@W U (Pi,P c)) behave like
non-corner packs and elect their most proximate segments
as defined in (24). On the other hand, this guarantees an
adequate number of Si in the network with respect to the
networks connectivity. In a strongly connected network,
more Pi ∈ C can find W U (Pi,P c) than in a weakly con-
nected network as there exist more potential candidates for
P j ∈W U (Pi,P c). Thus, this significant network’s property
is implicitly included without a need to be determined. The
rest of Pi detects their segments as follows:

Pi ∈ S j|d(Pi,{Pk}Pk∈W U (P j ,P c)) =

min{d(Pi,{Pl}Pl∈W U ({Pm}Pm|∃Sm ,P c))}. (24)

Here, Pi looks for the closest Pk included in the path from
the corner pack to the central pack. Instead of looking for
P j, it is sufficient to look for Pk ∈ S j. This reduces the re-
quired communication range, especially for Pi closer to P c.
Consequently, we define Si as follows:

Si = {Pi ∈ C |∃W U (Pi,P c)∧∀P j ∈W U (Pi,P c)

∧∀Pt |d(Pt ,{Pk}Pk∈W U (Pi,P c)) =

min{d(Pt ,{Pl}Pl∈W U ({Pm}Pm|∃Sm ,P c))}. (25)

We discuss the gained results in more detail in Section 6.

6. Simulation Examples
The major advantage of our improved algorithm is its

general approach reaching a meaningful result regardless of
the network’s topology. In this section, we present the gained
results based on simulations. We focus on networks consist-
ing of |N |= 500 nodes with a random topology very much
similar to the previous example in Fig. 5. In the presented
figures, we illustrate the nodes affiliated by the central pack
as red circles. For the comparison with the packs-based ver-
sion, we illustrate the head of the central pack as the black
square, indicating the central node. The rest of the nodes ob-
tain a color depending on the segment they are associated to.
We also highlighted Pi ∈ C by red squares. In this analysis,
we discuss the results gained from three different topologies.

In the first case, we present the results gained from
a weakly connected network. This network is described
by the triplet (500,200,15) resulting in a connectivity of
ξ = 8.83. The results are shown in Fig. 7, the blue lines indi-
cating the connections, the five colors (white, black, green,
pink, yellow) the five different segments. Red colored nodes
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indicate nodes affiliated by the central pack. We display the
network topology in an X-Y plane showing the true physical
coordinates x and y again. Obviously, there are many signif-
icant void areas in the network. The position of the central
pack is not related to the network’s geographic center. The
network is fragmented into five segments, which cover dif-
ferent fractions of the network.

In the second case, we aim on a network which is
much better connected than in the first case. Its ordered
triplet equals to (500,100,10) resulting in a connectivity of
ξ = 15.7. Thus, every node ni is expected to have in the av-
erage almost twice as many neighbors as in the first case. On
the other hand, some void areas are still present. The results
are shown in Fig. 8. In this case, the position of the cen-
tral pack indicated by red circles is much closer to the net-
work’s theoretical geographic center. The network is again
fragmented into five segments, indicated by the five colors
white, black, pink, yellow and green, which cover more uni-
form fractions of the network than in the first case.
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Fig. 7. A weakly connected network example. The five seg-
ments are indicated by the colored nodes in white, black,
pink, green and yellow. The central pack’s nodes are in-
dicated by red nodes with the central node indicated by
a black square, the detected corner packs by red squares.
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Fig. 8. A typically connected network example. The five seg-
ments are indicated by the colored nodes in white, black,
pink, green and yellow. The central pack’s nodes are in-
dicated by red nodes with the central node indicated by
a black square, the detected corner packs by red squares.

In the third case, we aim on a strongly connected net-
work without any void areas. In this case, its triplet equals
to (500,100,15) resulting in the highest connectivity of ξ =
35.325. The results are shown in Fig. 9. Here, we applied the
segment-based algorithm on the same network as in Fig. 5.
The central node (black square) is again located in the prox-
imity of geographic center and the five segments cover al-
most uniform fractions of the network. In contrast to the

results presented in Section 4, just a fraction of the border
nodes is detected as the corner packs. This results from the
definition of C presented in Section 5.1. As these packs serve
as the reference points for the segment construction, it is re-
quired to detect them very precisely.
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Fig. 9. A dense network example. The five segments are indi-
cated by the colored nodes in white, black, pink, green
and yellow. The central pack’s nodes are indicated by red
nodes with the central node indicated by a black square,
the detected corner packs by red squares.

As the result, every ni obtains location information con-
sisting of two parts. First, every ni is aware of the segment,
in which is located (ni ∈ Pi∨Pi ∈ S j). Second, the distance
to the central pack d(Pi,P c) is a metric worthy to emphasize.
As P c is a unique pack within the network, these distances
offers additional location data. Consider the network shown
in Fig. 6. Besides of the position within one of the squares,
also the position within the circles matters. This is achieved
by d(Pi,P c). Thus, the awareness of Pi ∈ S j and d(Pi,P c)
means very solid location data for ni ∈ Pi.

The total number of the segments in all our presented
examples was five. In general, their number varies from
three to six for our test networks. It is worth emphasizing
that this number is related to the shape of networks we are
using in simulations. Following our definitions presented in
Section 5.1, the algorithm aims to detect the most distant
packs. In case the network border is shaped like a perfect
rectangle, the number of Pi ∈ C will be four as the only
packs without a more distant adjacent packs in their neigh-
borhood are located in the rectangle’s corners. Our networks
are shaped as rectangles, but with an irregular border. There-
fore, the number of Pi ∈ C varies as the number of packs
without more distant adjacent packs in their neighborhood
is unpredictable in general. Also, the network’s density is
another important factor. In order to form a segment, every
Pi ∈ C has to establish its unique path to the central pack.
Obviously, the number of potential unique paths is related
to the network’s density as their number is increasing with
an increasing number of the inter node connections. Con-
sequently, these relations to the network’s topology allows
the algorithm to adapt for any network without specific ini-
tial requirements. This adaptability is the most significant
advantage in comparison to the algorithm’s packs-based ver-
sion.

Two significant upgrades are added to the improved
version of our algorithm. First, every node obtains loca-
tion information. This is crucial for data routing for exam-
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ple, as the node’s location can be efficiently used as a basis
for a node’s routing decision. Second, the improved version
is suitable for any network, regardless its topology. In the
packs-based version, the settings of α and β affect the gained
results significantly. As shown in Fig. 5, the gained results
are valid in the case of correct settings. The major challenge
is a method to obtain these correct settings without any initial
information about network’s size, topology or connectivity.
The improved algorithm solves these issues by avoiding any
requirements for a specific settings. Regardless of the net-
work properties, it reaches the desired performance.

7. Conclusions
In this paper we proposed a novel algorithm, tackling

the localization problems in WSNs. We assumed no loca-
tion data available to the nodes as we consider this as the
most likely scenario. In order to avoid any specific hardware
requirements, we created a so-called connectivity based ap-
proach. Here, every node requires just the number of its ad-
jacent nodes as initial data. In terms of the hardware capabil-
ities, the nodes have to be able to send and receive messages
only. Our algorithm is build on our previous work, as we ap-
plied similar techniques as presented in [19] and [20]. Here,
we proposed a fragmentation method that dissects the net-
work into larger partitions labeled as packs. We presented
also a set of parameters that allowed us to efficiently ana-
lyze their mutual relations. Based on them, we improved the
algorithm further to obtain the desired performance regard-
less of the network topology. We also simplified the initial
phase of the algorithm as the segment-based version’s per-
formance does not depend on initial settings of parameters α

and β. Regarding these results, we introduced an additional
layer of fragmentation on top of fragmenting into packs. The
network is fragmented into so-called segments, sets consist-
ing of packs. Every segment contains an corner pack and it
is connected to the central pack. Consequently, every node
obtains its location data. First, it is located within one of the
segments. Second, it is aware of its distance from the central
pack.
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