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Abstract. This paper presents an efficient sparse repre-
sentation approach to direction-of-arrival (DOA) esti-
mation using uniform linear arrays. The proposed 
approach constructs the jointly sparse model in real 
domain by exploiting the properties of centro-Hermitian 
matrices. Subsequently, DOA estimation is realized via the 
sparse Bayesian learning (SBL) algorithm. Further, the 
pruning threshold of SBL is adaptively selected to speed up 
the basis pruning rate. Simulation results demonstrate that 
the proposed approach achieves an improved performance 
and enjoys computational efficiency as compared to the 
state-of-the-art l1-norm-based DOA estimators especially 
in scenarios with small sample size and low signal-to-noise 
ratio. 

Keywords 
Direction-of-arrival (DOA) estimation, uniform linear 
array, sparse representation, sparse Bayesian learning. 

1. Introduction 
Direction-of-Arrival (DOA) estimation has been 

widely used in radar, sonar, wireless communications, and 
other application fields. A vast number of algorithms have 
been devised for the DOA estimation problem. Subspace 
algorithms, such as MUSIC [1], ESPRIT [2], and their 
variants, are well known to have high resolution capabili-
ties. However, all the subspace algorithms require the exact 
knowledge of the array signal model and consistent esti-
mate of the noise or signal subspaces. The maximum likeli-
hood (ML) approach is asymptotically optimal under 
certain regularity conditions [3]. Unfortunately, since the 
ML objective function is very flat far from the true DOAs, 
good initial guesses for the DOAs and an exact estimate of 
the number of the incident sources are required to ensure 
the global convergence. 

Recently, exploiting the inherently spatial sparsity of 
the incident sources, DOA estimation has been formulated 
in the sparse representation framework [4]-[11]. The gen-
eral concept of the sparsity-based DOA estimators is to 
directly reconstruct the spatial spectrum of the incident 
sources from multiple measurement vectors (MMV) sub-

ject to sparsity constraint. In [4], the global matched filter 
(GMF) approach is proposed to realize the DOA estimation 
based on sparsely representing the beamformer samples. 
The so-called l1-SVD algorithm in [5] reduces the sample 
size by means of the singular value decomposition (SVD), 
and utilizes the l1-norm penalty to enforce sparsity. The l1-
SVD algorithm has been further investigated in [6]-[8], 
where weighted l1-norm penalties are adopted instead. 
Hyder and Mahata approximated the l0-norm by a family of 
Gaussian functions, and proposed the joint l2,0 approxima-
tion (JLZA) algorithm for direction finding [9]. However, 
the global convergence of JLZA is not guaranteed since 
there are lots of parameters have to be properly set. The 
literature [10] presents a method via sparse representation 
of array covariance vectors provided that large sample 
support is available. In the scenario where uncorrelated 
sources impinge on a uniform linear array (ULA), Xu et al. 
simplified the MMV model to single measurement vector 
(SMV) model [11]. Generally speaking, the DOA estima-
tors based on sparse representation outperform conven-
tional approaches particularly in small sample size, low 
signal-to-noise ratio (SNR) scenarios, and rely less on the 
priori information of the incident source number. Nonethe-
less, there are two major drawbacks of the popular l1-norm-
based approaches. First, the computational load of solving 
the l1-norm optimization as a second-order cone program 
(SOCP) is quite expensive for some applications. Second, 
it is still nebulous to select the optimal regularization pa-
rameter. 

In this paper, we present an efficient and accurate 
sparse representation approach to the DOA estimation 
using a ULA. We construct a real-valued jointly sparse 
model by taking advantage of the centro-Hermitian prop-
erty. The sparse Bayesian learning (SBL) algorithm [12]-
[14] is adopted to realize the DOA estimation. In addition, 
we speed up the basis pruning rate of SBL by adaptively 
setting the pruning threshold according to a rough estimate 
of the nonzero hyper-parameters. The proposed approach 
achieves high estimation accuracy with a low computa-
tional complexity as compared to several existing l1-norm-
based DOA estimators. Such advantages are demonstrated 
by simulation results. 

The rest of the paper is organized as follows. Section 
2 briefly reviews the formulation of the sparsity-based 
DOA estimators. Section 3 presents the proposed method. 
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Several numerical simulations are carried out in Section 4 
to evaluate the performance of the proposed method. Fi-
nally, Section 5 concludes the whole paper. 

Notation: Throughout the present work, we use am. 
and a.n to denote the mth row and nth column of matrix A, 
respectively. The operators E(•), (•)*, (•)T, (•)H, (•)-1, Re(•), 
Im(•), diag(•), ||•||2, ||•||F, and IM denote expectation, 
conjugate, transpose, conjugate transpose, inverse, real part, 
imaginary part, diagonalization, Euclidean norm, Frobenius 
norm, and M×M identity matrix, respectively. j is reserved 
for the imaginary unit 1 . 

2. Problem Formulation 
Consider a ULA of M sensors receives signals from K 

far-field uncorrelated narrowband sources. The distance 
between adjacent sensors is d = λ/2, where λ is the wave-
length of the source. The array observation vector at time t 
is modeled as 
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where sk(t) is the baseband waveform of the kth source, 
s(t) = [s1(t),…,sK(t)]T is the source waveform vector, n(t) is 
the noise vector, T denotes the number of snapshots, the 
vector θ = [θ1,…,θK] contains the actual DOAs of the 
incident sources, and the matrix A(θ) = [a(θ1),…,a(θK)] is 
commonly referred to as the array manifold matrix, whose 
kth column 

   sin( ) ( 1) sin( )( ) 1, , ...,k k
Tj j M

k e e         a  (2) 

is the steering vector of the kth source. In this paper, the 
source waveforms and the additive noise are assumed to be 
circularly symmetric, independent identically distributed 
(i.i.d.) complex Gaussian random processes with zero mean, 
and the noise at each sensor is uncorrelated with each other 
as well as the incident sources. Under this assumption, we 
obtain the following array covariance matrix: 

 2{ ( ) ( )} ( ) ( )H H
x s n ME t t   R x x A θ R A θ I  (3) 

where Rs = E{s(t)sH(t)} is the source covariance matrix, 
and 2

n  represents the noise variance. 

To formulate the DOA estimation in the sparse repre-
sentation framework, the potential spatial scope of the 
incident sources is first sampled to form a direction grid 

1 2[ , , , ] L  Θ with L >> K denoting the length of the 

grid. Correspondingly, the array manifold matrix A(θ) is 
generalized to an M×L over-complete dictionary B in terms 
of the direction grid, as 

 1 2[ ( ), ( ), , ( )]. L  B a a a  (4) 

Note that B is known and does not depend on θ. Suppose 
the grid is dense enough so that all elements of θ lie in (or, 

close to) the grid, then (1) can be rewritten in an over-
complete form as 

  X BH N  (5) 

where X=[x(1),…,x(T)], H=[h(1),…,h(T)], h(t) is a sparse 
vector whose lth element is nonzero and equal to sk(t) if 
source k comes from l  and zero otherwise, and 

N=[n(1),…,n(T)]. If the incident sources are fixed over the 
observation period, it is clear that for all t the nonzero 
elements of h(t) occur at the same locations, such that only 
K rows of H are nonzero, each corresponding to a different 
source. The estimation of DOA for all sources then reduces 
to recoverying and determining the nonzero rows of the 
sparse matrix H from the snapshots matrix X, and can be 
expressed as the following constrained convex optimiza-
tion problem: 

    s.t. 2,1min F  H  X BH  (6) 

where β is a fitting error threshold that must be set by user, 
and the objective ||H||2,1 is defined as 

 .2,1 2
1

L

l
l

 H h  (7) 

which is equal to the l1-norm of the vector [||h1.||2,…,|hL.||2]
T. 

The indices of nonzero rows of H give the DOA estimates. 
It is worthwhile to note that the recovery performance of H 
is heavily dependent on the choice of β. 

3. The Proposed Method 
In this section, an efficient DOA estimator based on 

sparse representation is proposed. First, we formulate 
a real-valued jointly sparse model for the direction finding 
problem. Next, we develop a solution mechanism to realize 
the DOA estimation. 

3.1 Real-Valued Jointly Sparse Model 

Consider the augmented sample matrix  
Y=[X ПMX*ПT], where ПM is an M×M exchange matrix 
with ones on its anti-diagonal and zeros elsewhere. It is 
shown that Y is centro-Hermitian, and can be transformed 
to a real-valued matrix according to [15] 

 r  2[ ]H
M M T T

Y Q X Π X Π Q  (8) 

where Q is a unitary matrix, defined as 
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and the matrix Q2n can be easily obtained from Q2n+1 by 
dropping its center row and center column. Without loss of 
generality, we assume the amount of the sensors M = 2M′ 
to be even. Note that (8) incorporates forward-backward 
averaging, and therefore the sample size is virtually dou-
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bled from T to 2T. Observe that the over-complete diction-
ary B satisfies 

 *( )MBΛ Π BΛ  (10) 

where Λ is a L×L unitary diagonal matrix whose lth 
diagonal element is given by 

 ,   ( 1) sin / 2 1 .lj M
ll e l L      (11) 

After some straightforward algebraic manipulations, we 
can rewrite (8) as below: 
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and the noise term 
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with N=[N1
T, N2

T]T. r Re  Im2[ ( ) ( )]  H Λ H Λ H  

shows the same sparsity pattern as H, therefore we can 
achieve the DOA estimates by locating the nonzero rows of 
Hr. The columns of Hr and Nr still satisfy the i.i.d condition 
under the circularly complex Gaussian assumption. 

Before turning to solve (12), we first analyze Br from 
the sparse representation viewpoint. It has been shown that 
the accuracy of the sparse-recovery algorithms is deter-
mined by the coherence measure [16], [17] of the diction-
ary matrix. For the dictionary Br, the coherence measure is 
given by 
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where r ( )ia and r ( )la  denote the ith and lth columns of 

Br, respectively. Since all the columns of Br have a con-
stant Euclidean norm M , we only have to take the nu-
merator term of (15) into account. Then we get that 
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where ( )ia and ( )la are the ith and lth columns of B, 

respectively. Considering that the Euclidean norm of each 
column of B is also equal to M , it is straightforward to 

infer that the coherence measure of Br is the same as that of 
B. As a result, the recovery accuracy of Hr is guaranteed. 

3.2 DOA Estimation via SBL 

We utilize the iterative SBL algorithm to solve the 
real-valued sparse representation problem (12). The SBL 
only requires ο(M2L) flops per iteration to solve (12), pro-
vided that Yr  can be replaced by a M×rank(Yr) matrix 

rY such that r r r r
T TY Y Y Y . However, with the additive 

noise, the rank of Yr is always equal to M, thus the noise 
component is also reserved in rY . Herein, to further miti-

gate the infection of the additive noise, we exploit the trun-
cated SVD to replace Yr: 

 rsv rY Y VD  (17) 

where Yr=ULV, D=[IK;0], and 0 is a (2T−K)×K zero 
matrix. Define Hrsv=HrVD and Nrsv=NrVD, then (12) is 
simplified to the following form: 

 rsv r rsv rsv. Y B H N  (18) 

Obviously, Hrsv and Hr have the same row support. Like the 
one did in [8], we exploit the property that 

 rsv rsv r rsv n y B h  (19) 

is an additive real Gaussian random vector with zero mean 
and covariance matrix rn

2
n MR I , where nrsv, yrsv, hrsv 

corresponds to the same column in Nrsv, Yrsv, Hrsv, respec-
tively. Then yrsv can be modeled through a Gaussian likeli-
hood function: 

rsv r rsv
rsv rsv
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In a probabilistic perspective, the sparse representa-
tion problem can be treated as finding hrsv and 2

n to maxi-

mize the posterior probability rsv rsv
2( , | )np h y  under spar-

sity constraint. Regarding the SBL algorithm, sparsity is 
enforced via invoking a Gaussian prior over each element 
of hrsv. By combining each of these priors, we have 
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where γ=[γ1,…,γL]T is a hyper-parameter vector with γl 

controlling the variance of the corresponding element rsv
lh . 

If γl = 0, it means the rsv
lh  will be zero. If γl > 0, it indicates 

a nonzero rsv
lh  whose magnitude depends on γl. Using the 

Bayesian inference, the posterior distribution over hrsv: 
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turns out to be an analytically multivariate Gaussian distri-
bution with the mean and covariance given by 
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where ( )diagΓ γ  and yr r r
2 T
n M Σ I B ΓB . The poste-

rior mean u is enlisted as a point estimate of hrsv. As seen 
in (23), the recovery of hrsv reduces to estimate the un-
known γ and 2

n . By summing up the contributions of the 

individual column rsv
.ky , we finally get the following mar-

ginal log-likelihood function: 
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An iterative type-II ML procedure [12], using the EM 
algorithm, is employed to minimize (24) with respect to γ 
and 2

n . The E-step is achieved by calculating the posterior 

moment using (23). For the M-step, the hyper-parameter 
vector γ and the noise variance 2

n are updated: 
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where the matrix U = [u.1,u.2,…,u.K] is comprised with the 
posterior mean vector corresponding to each column of 
Hrsv, and Σll denotes the lth diagonal element of the poste-
rior covariance matrix Σ. When a convergence criterion is 
satisfied, we attain the estimates of the sparse γ and noise 
variance 2

n . The DOA estimation problem can be immedi-

ately accomplished by deciding the locations of the rela-
tively K large values of γ. 

3.3 Discussions 

The noise variance balances the recovery sparsity and 
accuracy of the SBL algorithm. It plays an important role 
like β in (6). However, it is demonstrated that the explicit 
learning rule of noise variance in (25) is not robust in 
strongly noisy cases. Based on the connection between the 
singular value and eigenvalue, we can get a maximum 
likelihood estimate (denoted by 2ˆn ) of 2

n : 
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where λm is the mth singular value of Yr. As the authors 
recommended in [14], we incorporate fixed 2ˆn  into the 

update rules of SBL. 

Since a sparse prior is invoked over each row of Hrsv, 
it is observed that many elements of γ tend to zero in the 

iteration process, and only a relatively small set of γ, which 
correspond to the incident sources, remain relatively large. 
A small fixed threshold (e.g., 10−5) is suggested to be set 
such that, when any element of γ is below the threshold, it 
is pruned from the model. Herein, we propose to adaptively 
set the threshold according to the average value of the 
nonzero elements of γ. When the SBL converges, it is 
shown that γl satisfies 
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Note that rsv 2
. 2lH  reflects 2TK times the average power of 

the source from l [8]. Straightforwardly, we have 
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where Ptotal denotes the average total power of all incident 
sources. Since only K elements of γ associated with the 
incident sources are nonzero, then: 

 totalPmin max2 /T K    (29) 

where γmin and γmax denote the minimal and maximal non-
zero elements of γ, respectively. It is rational to assume that 
the difference between γmin and γmax is modest, thus 
γa=2TPtotal/K can be treated as the average value of nonzero 
elements of γ. Therefore, we set the small-magnitude 
elements of γ to zero using the thresholding operation: 
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after one iteration. As a consequence, elements of γ that are 
more than τ dB down from γa, as well as the corresponding 
columns in Br, are pruned from the model. We shall point 
out that this simple modification leads to an improved basis 
pruning rate in practice. 

In the proposed method, we use the information about 
the number of sources K. Practically, this information is 
often estimated via the classical AIC or MDL criteria [18]. 
It is known that incorrect estimation of the number of the 
incident sources degrades the performance of the l1-SVD 
algorithm. For the proposed method, this degradation is 
alleviated, since the forward-backward averaging improves 
the estimation accuracy of K.  

Remark: Considering the computational complexity 
of the proposed method, it only requires real additions to 
transform the complex sample matrix into a real one [15], 
and the calculation of SVD is about ο(M3). Note that 
L >> M > K, then the recovery procedure based on SBL 
dominates the complexity analysis. Since the computa-
tional load of SBL per iteration is fixed, the overall com-
plexity rests with the number of iterations. In moderate 
SNR cases, the SBL takes less than 25 iterations provided 
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that both the noise variance and the pruning threshold are 
set as we suggested. Regarding the l1-SVD algorithm 
calculated by SOCP software package SeDuMi [19], the 
computational cost per iteration is ο((KL)3), which denotes 
complex operations, and the theoretical worst-case bound 
on the number of iterations is ο((KL)0.5). For the l1-ACCV 
algorithm in [11], the factor K is removed, leading to 
a considerable reduction compared respect to l1-SVD. 
Based on the previous analysis, we can conclude that the 
proposed method is more efficient than both l1-SVD and  
l1-ACCV. 

4. Simulations 
In this section, we carry out numerical simulations to 

evaluate the proposed method. We also compare it with the 
l1-SVD in [5], the NSW-l1 in [6], and the l1-ACCV in [11]. 
In all the simulations, a 10-element ULA with half-wave-
length spacing is used. The root-mean-square-error (RMSE) 
of the DOA estimates obtained with 500 Monte Carlo runs 
is defined as 

  
 


K

k n
kkn

K 1

500

1

2ˆ
500

1
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where kn̂  represents the estimate of θk in the nth trial. Each 

narrowband source is generated from a zero mean Gaus-
sian distribution. The additive Gaussian noise is assumed 
to be white, both spatially and temporally, and uncorrelated 
with the sources. The SNR is defined as 2 210 log( / )s n   

with 2
s  and 2

n  denoting the source and noise power, 

respectively. The number of incident sources is estimated 
by MDL criterion unless otherwise stated. The spatial grid 
is uniform in the range −89° to 90° with 1° interval, which 
means that L = 180. We set the pruning threshold of the 
proposed method to −20 dB. The confidence interval is set 
to 0.99 for both l1-SVD and NSW-l1. The regularization 
parameter of l1-ACCV is set according to the suggested 
value in [11]. 

Suppose four equal-power uncorrelated sources 
impinge on the array from [−20.4°, −12°, 15.6°, 30°]. The 
SNR is −5 dB, and 100 snapshots are collected. Fig. 1 
depicts the normalized spatial spectra of various algorithms. 
Although the DOAs of the first and the fourth signal are 
not in the spatial grid, it is observed from Fig. 1 that all the 
algorithms can approximately locate them. However, 
spurious peaks exist in the spectrum of l1-SVD. 

To see more clearly the capability of the proposed 
method in resolving closely spaced sources, we plot the 
bias of the DOA estimates against angle separation be-
tween two sources in Fig. 2. We simulate two equal-power 
uncorrelated sources impinging from −20° and −20°+Δθ, 
where Δθ varies from 2° to 30°. The SNR is 0 dB and the 
number of snapshots is 100. It can be seen that the pro-
posed method shows the best performance. The reason is 

that the SBL provides a tighter approximation to the  
l0-norm than the l1-norm [20], [21]. 
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Fig. 1. Spatial spectra obtained by different algorithms. 
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Fig. 2. Bias of the DOA estimates versus angle separation. 
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Fig. 3. RMSE of the DOA estimates against input SNR with 

200 snapshots. 

Next, the performance of these four algorithms is sta-
tistically compared for incident sources of various SNRs 
and sample sizes. Here we simulate four equal-power un-



RADIOENGINEERING, VOL. 22, NO. 3, SEPTEMBER 2013 839 

correlated sources located at [−20.4°, −12°, 15.6°, 30°]. 
First, we keep the snapshots fixed at 200 and vary the SNR 
of all sources from −10 dB to 8 dB. Then the SNR is fixed 
at −5 dB and the number of snapshots is varied from 50 to 
300. The RMSE performance is depicted in Fig. 3 and 
Fig. 4, respectively. It can be seen from the two figures that 
the proposed method outperforms the other three algo-
rithms in the low SNR and small sample size cases.  
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Fig. 4. RMSE of the DOA estimates against the number of 

snapshots with −5 dB SNR. 

Finally, we present an evaluation of the computational 
complexity using the TIC and TOC instruction in MAT-
LAB. Since the NSW-l1 performs the same computational 
complexity as the l1-SVD, we only choose l1-SVD for the 
comparison. Four equal-power uncorrelated sources are 
simulated to impinge on the array from [−20°, −12°, 10°, 
30°].The number of incident sources is assumed to be 
known beforehand. The SNR is set at −5 dB and 0 dB, and 
the sample size is set at 50, 100 and 200. For each SNR-
sample size pair, the computation time of these three algo-
rithms are averaged over 500 trials, and the results are 
illustrated in Tab. 1. 
 

Computation Time (sec) SNR 
(dB) 

Sample 
Size l1-SVD l1-ACCV Proposed method 
50 0.436 0.275 0.050 
100 0.448 0.276 0.032 −5 
200 0.464 0.278 0.021 
50 0.463 0.270 0.026 
100 0.484 0.272 0.017 0 
200 0.506 0.279 0.014 

Tab. 1. Computation time comparison of various algorithms.  

As can be seen in Tab. 1, the computation time of the 
proposed method is much smaller than those two l1-norm 
based algorithms. Furthermore, the computation time of  
l1-SVD and l1-ACCV increases slightly with sample size. It 
is worth noting the computation time of the proposed 
method turns out to be reduced when the SNR and sample 
size increase. Consequently, the proposed method should 
be preferred for practical applications. 

5. Conclusion 
In this paper, we propose a DOA estimator based on 

SBL with real-valued processing, which exploits the 
centro-Hermitian property of the ULA. An approach to 
adaptively choose the pruning threshold is also presented 
to speed up the basis pruning rate of the SBL. The simula-
tion results show that the proposed method provides 
an improved performance in comparison with the current 
state-of-the-art l1-norm-based DOA estimators with re-
duced computational complexity. It is worthwhile to note 
that the proposed approach is not confined to ULA, but can 
be applied to arrays with centro-symmetric configuration. 
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