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Abstract. This paper presents a simple electronically
tunable voltage-mode first-order all-pass filter realization
with MOSFET-C technique. In comparison to the classical
MOSFET-C filter circuits that employ active elements in-
cluding large number of transistors the proposed circuit is
only composed of a single two n-channel MOSFET-based
inverting voltage buffer, three passive components, and one
NMOS-based voltage-controlled resistor, which is with ad-
vantage used to electronically control the pole frequency of
the filter in range 103 kHz to 18.3 MHz. The proposed fil-
ter is also very suitable for low-voltage operation, since be-
tween its supply rails it uses only two MOSFETs. In the
paper the effect of load is investigated. In addition, in or-
der to suppress the effect of non-zero output resistance of
the inverting voltage buffer, two compensation techniques
are also introduced. The theoretical results are verified by
SPICE simulations using PTM 90 nm level-7 CMOS pro-
cess BSIM3v3 parameters, where ±0.45 V supply voltages
are used. Moreover, the behavior of the proposed filter was
also experimentally measured using readily available array
transistors CD4007UB by Texas Instruments.
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1. Introduction
Electronically tunable circuits attracted significant at-

tention in the design of analog integrated circuits, since toler-
ances of the electronic components in integrated circuit (IC)
realization in practice are unacceptably high and thus after
manufacturing fine-tuning is necessary. The most commonly
used tunability approaches are the following: Firstly, the
operational transconductance amplifier (OTA) can be men-

tioned, which is widely used in the design of electronically
tunable circuits, since its transconductance gain (gm) can
be varied through an external bias current [1]–[3]. After
the current-controlled conveyor (CCCII) was introduced by
Fabre et al. [4], a new period has been opened with respect
to electronic tunability in the analog filter design. Here the
parasitic/intrinsic X-input terminal resistance of the CCCII
is controlled via an external bias current allowing electronic
tunability to some current conveyor-based filter topologies.
Another technique is given in [5]–[8], where the current
and/or voltage gains of active building blocks (ABBs) are
used for tuning purposes. In [9]–[23], MOS resistive cir-
cuits or metal-oxide semiconductor field effect transistor-C
(MOSFET-C) filters were proposed. In MOSFET-C tech-
nique, the resistors are replaced with MOSFETs such that
distortions, due to MOSFET non-linearities, are canceled
and voltage-controlled resistors (VCR) are obtained. In
the classical MOSFET-C approach the filters are composed
of operational amplifier (Op-Amp)-based integrator blocks,
where each of them is individually linearized [9], [10]. Also,
beside Op-Amps, other ABBs are used in the design of
MOSFET-C filters [10], [12], [14], [17], [20]. It is worth not-
ing that all the above mentioned tunability methods require
an active element that includes large number of transistors.

In this study, a two n-channel MOSFET-based inverting
voltage buffer (IVB) is used in the design of MOSFET-C fil-
ter in contrast to circuits that require an active elements that
are composed of large number of transistors [9]–[23]. The
two NMOS-based IVB is employed in the realization of the
MOS resistive cell (MRC) in [23]. In this technique, a MOS
transistor is used with balanced signals due to an IVB in
order to cancel even-order non-linearities of the MOS tran-
sistor [23]. In order to show the advantage of this method,
in this work a voltage-mode (VM) first-order all-pass filter
(APF) example is presented. In the open literature several
VM first-order APFs were reported [24]–[44] (and works
cited therein), however, only circuits in [39]–[44] employ in
total less than ten transistors. The use of low number of tran-
sistors in the circuit may results in lower silicon area in case
of on-chip fabrication. This can be also seen from Tab. 1,
which summarizes the advantages and disadvantages of pre-
viously reported VM low-transistor count APFs [39]–[44]



986 B. METIN, N. HERENCSAR, O. CICEKOGLU, A LOW-VOLTAGE ELECTRONICALLY TUNABLE MOSFET-C VOLTAGE-MODE ...

Ref. Year
No. of No. of No. of

Technology
Supply

Tunability
Frequency Total areac

ABBs transistors R/C voltages (V) tuning range (Hz) (µm2)

[39] 2002 – 6 1 / 1
0.35 µm

3.3 No – 30
CMOS

[40] 2010 – 3 MOS 2 / 1
TSMC 0.35 ±1.5 No – 24.5
µm CMOS

[41] 2003 1 IUGA 5 MOSb 0 / 1
0.35 µm ±1.5 Yes 500 k→ 3 M 190

BiCMOS

[42] 2010 1 IVB 2+2 MOS 2 / 1
TSMC 0.18 ±0.9 Yes 544.8 k→ 2.9 M 39.53
µm CMOS

[43] 2012 – 4+1 MOS 0 / 1
TSMC 0.18 ±0.9 and

Yes 840 k→ 2.25 M 64.15
µm CMOS –0.37

[44] 2013 1 VDIBA 6 MOSb 0 / 1
TSMC 0.18 ±0.9 Yes 1.07 M→ 9.44 M 97.2
µm CMOS

This
2013 1 IVB 2+1 MOS 2 / 1

PTM 90 ±0.45 Yes 103 k→ 18.3 M 29.33
worka nm CMOS

Tab. 1. Comparison with previously published low transistor count VM all-pass filters.
Notes:
– Not applicable
a Solution with m-ratio compensation shown in Fig. 4(b) is considered
b Ideal current source(s) assumed
c Sum of products of the lengths and widths of each transistors in used CMOS structure incl. VCR area

based on various relevant criteria. Recently, there is an in-
creasing trend on the design of low-voltage circuits due to
the requirement of efficient portable electronic systems with
long battery lifetime [45]. In this paper and in [39], [41]–
[43] proposed circuits are suitable for low-voltage operation,
because only two MOSFETs are used between its supply
rails. From Tab. 1 it can be also seen that only APFs in [41]–
[44] are electronically tunable. From the tunability point of
view, the circuit in [41] adapts the Fabre’s controlling para-
sitic resistance technique [4] adjusting the output resistance,
circuits in [42] and [43] belong to MOSFET-C filters, while
the APF in [44] is based on OTA. In order to suppress the
effect of non-zero output resistance of the IVB, which neg-
atively effects the gain response of the APF, two compen-
sation techniques are also proposed and their efficiency are
compared. The functionality of the proposed APF is verified
by SPICE simulations and with experimental measurements.

2. The Proposed First-Order All-Pass
Filter
The MOS resistive cell in Fig. 1 can be used for can-

cellation of MOS transistor non-linearities and a voltage-
controlled linear MOS resistor is obtained [23]. The drain
current of an n-channel MOS transistor in triode operation:

ID = K
[
a1(V1−V2)+a2

(
V 2

1 −V 2
2
)
. . .
]

(1)

where V1 and V2 denote the drain and source voltages, re-
spectively. Equation (1) shows how even-order terms are
canceled for V1 =−V2. The ID ≈ 2V1/Rmos, where the equiv-
alent resistance can be calculated as:

Rmos = 1/Ka1 =
1

µCox
W
L (VC−VT h)

. (2)

 
 

Fig. 1. The MOS resistive cell (MRC), which cancels even-order non-linearities of 
the MOS transistor [23]. 
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Fig. 1. The MOS resistive cell (MRC), which cancels even-order
non-linearities of the MOS transistor [23].

Here µ is free electron mobility in the channel, Cox is
gate oxide capacitance per unit area, W and L are channel
width and length of the NMOS, VT h is threshold voltage of
the transistor, and VC is control voltage at the gate of the
MOSFET used for tuning, respectively. In the MRC, even-
order non-linearities of the MOS transistor can be canceled
by the IVB that provides opposite signals at its drain and
source.

The proposed VM APF circuit is given in Fig. 2. The
NMOS transistors M1 and M2, both working in saturation
region (satisfy conditions VGS >VT h and VDS >VGS − VT h),
implement the IVB of the MRC. The gain of the IVB can be
calculated as [46]:

Vx

Vy
=−k

√
(W/L)2

(W/L)1
, (3)

and Iy = 0. Selecting equal values of W/L for both transis-
tors, the gain k of the IVB will be unity.

The input/output terminal resistances of the IVB can be
found as:

Ry ∼= ∞, Rx ∼=
1

gm1
‖ro2 (4)
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Fig. 2. (a) Proposed MOSFET-C all-pass filter, (b) its low-
voltage CMOS implementation.

where gm1 and ro2 represent the transconductance and output
resistance of the M1 and M2 transistors, respectively. From
(4) it can be seen that the input terminal of IVB has high
resistance (ideally infinity) while the output terminal can ex-
hibit low resistance Rx (for ideal IVB it is zero) by selecting
large transistors M1,2.

Assuming an ideal IVB with unity-gain and with zero
output resistance and considering the resistance of the MOS
transistor used as VCR, which is labeled as Rmos, routine
analysis of the proposed circuit in Fig. 2 gives the following
voltage transfer function (TF):

T (s) =
Vout

Vin
=
−sCR1Rmos +R2(2+ sCRmos)

(R1 +R2)(2+ sCRmos)
. (5)

Here it is worth noting that it is possible to match re-
sistors with much better precision than 0.1 % even in the
IC technologies of two decades ago [47]. For the element
matching condition of R1 = 2R2, the TF in (5) changes to:

T (s) =
Vout

Vin
=

1
3
· 1− sCRmos/2

1+ sCRmos/2
. (6)

Equation (6) represents a first-order all-pass TF. Al-
though (6) is independent from the absolute values of R1 and
R2, these resistance values should be chosen sufficiently high
such that the output of the IVB is not loaded heavily. For-
tunately, as it was mentioned, high-value resistors with good
matching can be obtained in IC technology [47]. Their large
tolerances in absolute values will not be a problem since (6)
is independent from both R1 and R2.

The phase response of the TF in (6) is calculated:

ϕ(ω) =−2tan−1(ωCRmos/2), (7)

and pole (ωp) and zero (ωz) frequencies can be found as:

ωp = ωz = 2/CRmos, (8)

which clearly indicates that the ωp can be easily tuned by
adjusting the value of Rmos.

Considering non-ideal IVB and assuming equal W/L
ratio for both transistors, (3) converts to Vx = −β(s)Vy,
where β(s) is frequency-dependent parameter of the IVB,
which limits the high frequency operation of the circuit. Us-
ing a single-pole model [48] it can be defined as follows:

β(s) =
βo

1+ sτβ

(9)

where βo = 1− εβv is DC voltage gain of IVB and ideally it
is equal to unity. Considering non-ideal IVB and assuming
element matching condition of R1 = 2R2, voltage gain (6)
changes to:

T (s) =
Vout

Vin
=

1
3
·

(
2

CRmos−τβ
− s
)(

CRmosτβ

CRmos−τβ
+ s
)

(
2

CRmos+τβ
+ s
)(

CRmosτβ

CRmos+τβ
+ s
) . (10)

Equation (10) shows that extra pole and zero appears
due to single-pole model additional to filter pole. If the
frequency of these additional pole and zero are sufficiently
higher than the pole of the presented all-pass filter than their
effect on the frequency can be ignored.

3. Loading Effect Analysis

In this section the effect of the load at output terminal
of the filter shown in Fig. 2 is investigated. Assuming an
IVB with unity-gain and with non-zero output resistance Rx,
which is for better understanding labeled as RO, considering
the resistance used as VCR as Rmos, and load RL at output
terminal of the filter, straightforward analysis gives the volt-
age TF (11).

Assuming RL� RO and R1 = 2R2 =R, TF in (11) turns
to:

T (s) =
Vout

Vin
=

1(
R

RL
+3
) · 1− sCRmos/2

1+ sCRmos/2
. (12)

From (12) it can be observed that the load has no ef-
fect on pole (ωp) or zero (ωz) frequencies, but it effects the
DC voltage gain of the filter. Here it is worth noting that this
feature is an interesting advantage of this circuit against filter
available in [44] in which the load effects the pole frequency
of the circuit and it may produce a mismatch to zero fre-
quency. To illustrate the effect of the load on the gain of the
filter, it was further investigated. The calculation has been
done for different values of RL while keeping the resistor
values identical with listed in the Tab. 2 (without compensa-
tion column) and results are plot in Fig. 3.



988 B. METIN, N. HERENCSAR, O. CICEKOGLU, A LOW-VOLTAGE ELECTRONICALLY TUNABLE MOSFET-C VOLTAGE-MODE ...

T (s) =
Vout

Vin
=− sC [R1 (Rmos−RO)−R2 (Rmos +RO)−RmosRO]−2R2−RO

R1
RL
{sC [R2 (Rmos +RO)+RmosRO]+2R2 +RO}+ sC [(R1 +R2)(Rmos +RO)+RmosRO]+2R1 +2R2 +RO

.

(11)
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Fig. 3. Voltage gain of the APF for different values of load.

4. Compensation of the Effect of the
Output Impedance
The presented APF adapts MOSFET-C technique and

low-voltage technology. However, this simple MRC has an
important non-ideality affecting the characteristics of the cir-
cuits, which is the non-zero output resistance of the IVB that
is shown in Fig. 4. Two techniques are proposed to suppress
the effect of this parasitic output resistance: (i) by changing
the gain of the IVB and (ii) via resistor matching ratios.

4.1 Compensation with the Gain of the
Inverting Voltage Buffer

Firstly, the change of the gain parameter of the IVB
is used to compensate the unwanted effects of the parasitic
output resistance. Denoting the parasitic output resistance of
the IVB in Fig. 4 again as RO and with element matching
condition R1 = 2R2, the TF can be given as:

T (s) =
Vout

Vin
= (13)

RO (1+ sCRmos)+R2 [1+ k+ sCRmos (1−2k)+3sCRO]

RO (1+ sCRmos)+3R2 [1+ k+ sC (Rmos +RO)]

where k is the gain of the IVB. For a non-zero RO, a k value
can be calculated to achieve a flat gain response of the APF
as it is given in (14).

The graphical representation of k is given for vari-
ous Rmos and RO values for R2 = 1 kΩ in Fig. 5(a) and
R2 = 20 kΩ in Fig. 5(b), respectively. Figure 5 shows that
choosing a k value appropriately can compensate for the un-
wanted effects of the RO.

Fig. 2. (a) Proposed MOSFET-C all-pass filter, (b) its low-voltage CMOS 
implementation. 
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Fig. 3. Voltage gain of the APF for different values of load. 
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Fig. 4. The compensation for the unwanted effect of the RO: (a) by proper gain 
value k, (b) with a proper resistor-matching ratio m. 
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Fig. 4. The compensation for the unwanted effect of the RO:
(a) by proper gain value k, (b) with a proper resistor
matching ratio m.
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Fig. 5. Optimum gain value k (constant k-value curves) for the circuit in Fig. 4(a) 
(to preserve the all-pass response) versus Rmos and RO: (a) for R2 = 1 kΩ, (b) for 
R2 = 20 kΩ. 
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Fig. 5. Optimum gain value k (constant k-value curves) for the circuit in Fig. 4(a) 
(to preserve the all-pass response) versus Rmos and RO: (a) for R2 = 1 kΩ, (b) for 
R2 = 20 kΩ. 

(b)

Fig. 5. Optimum gain value k (constant k-value curves) for the
circuit in Fig. 4(a) (to preserve the all-pass response) ver-
sus Rmos and RO: (a) for R2 = 1 kΩ, (b) for R2 = 20 kΩ.
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k =
RO

Rmos
+

RO

6R2
+

√
13RO2Rmos2 +48ROR2Rmos (RO +Rmos)+36R22 (RO +Rmos)

2

6R2Rmos
. (14)
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Fig. 6. Optimum resistor-matching value m (constant m-value curves) for the circuit 
in Fig. 4(b) (to preserve all-pass response) versus Rmos and RO: (a) for R2 = 1 kΩ, 
(b) for R2 = 20 kΩ. 
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Fig. 6. Optimum resistor-matching value m (constant m-value curves) for the circuit 
in Fig. 4(b) (to preserve all-pass response) versus Rmos and RO: (a) for R2 = 1 kΩ, 
(b) for R2 = 20 kΩ. 

 

(b)

Fig. 6. Optimum resistor matching value m (constant m-value
curves) for the circuit in Fig. 4(b) (to preserve all-pass
response) versus Rmos and RO: (a) for R2 = 1 kΩ, (b) for
R2 = 20 kΩ.

4.2 Compensation with the Resistor Matching
Ratio
Secondly, a resistor matching ratio is used to compen-

sate the undesired effects of the non-zero RO to achieve a flat
gain all-pass response. The new transfer function of the
circuit in Fig. 4(b) for the element matching condition of
R1 = mR2 and with consideration RO can be calculated as:

T (s) =
Vout

Vin
= (15)

RO +R2 [2+ sCRO (1+m)]+ sCRmos (R2−mR2 +RO)

RO +R2 (2+ sCRO)(1+m)+ sCRmos (R2 +mR2 +RO)
.

The resistor matching ratio m that results an all-pass
response is given in (16).

For various Rmos and RO values the graphical repre-
sentation of m is given for R2 = 1 kΩ and R2 = 20 kΩ in
Figs. 6(a) and (b), respectively. Figure 6 illustrates how to
select an m value for a proper design to compensate the effect
of RO.

As a summary, both methods can be used to compen-
sate the unwanted effect of the output resistance of the IVB.

Therefore, the efficiency of both techniques is compared by
simulations.

5. Limitations of the Input Signal and
the Control Voltage
To employ the MOSFET in MRC as a linear resistor,

the terminal and control voltages of the MOSFET must keep
it in triode region. Thus, the terminal voltages Vy and Vx of
the MRC shown in Fig. 1, must satisfy the following condi-
tions:

Vx =−Vy, (17)
|Vy| ≤ VC−VT h, (18)
|Vy| ≤ |VB|. (19)

Here VC ≥ VT h and VB ≤ 0. Moreover, VT h is given by:

VT h =VT h0 + γ
′·
(√

2Φ f +VB−
√

2Φ f
)

(20)

where VT h0 is the threshold voltage for VB = 0, Φ f is a phys-
ical parameter with (2Φ f ) typically 0.6 V, γ ′ is a fabrication-
process parameter [47].

Since the conditions in (17)–(19) impose a limitation
on the terminal voltages of the MRC, it is clear that they
also impose a limitation on the amplitude of the filters input
signal Vin. The relation between the magnitudes of Vy (the
voltage at the inverter input terminal) and Vin in Fig. 2(a)
is |Vy( jω)| = RmosCω/

√
4+Rmos2C2ω2|Vin( jω)|. Further-

more from the conditions in (17)–(19) it is obvious that
|Vy( jω)|≤Vm, where Vm = min{|VC−VT h|, |VB|}. Therefore
one can obtain the limitation for Vin as:

|Vin| ≤ Vm

√
4+Rmos2C2ω2

Rmos2C2ω2 . (21)

Equation (21) shows that the input signal limitation is
|Vin| ≤ Vm in Fig. 2(a) and it occurs at the sufficiently high
frequency region. On the other hand much wider input dy-
namic signal is possible at low frequencies.

6. Simulation and Experimental
Results
To verify the theoretical analyses, the proposed VM

APF circuit is simulated using the SPICE simulation pro-
gram with DC power supply voltages equal to +VDD =
−VSS = 0.45 V. In the simulations, all n-channel MOS
transistors are modeled by the Predictive Technology Model
(PTM) 90 nm level-7 CMOS process BSIM3v3 parame-
ters developed by the Nanoscale Integration and Modeling
(NIMO) Group at Arizona State University (VT h = 0.2607 V,
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m =
3R2RO +RO

2 +(R2 +RO)Rmos +
√

RO2 (R2 +RO)2 +Rmos [6R22RO−2RO3 +(R2 +RO)(9R2 +5RO)Rmos]

2R2 (Rmos−RO)
. (16)
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Fig. 7. (a) AC (voltage gain & output resistance vs. frequency) and (b) DC analyses 
of IVB. 
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Fig. 8. Simulated (a) gain and phase responses, (b) time-domain responses of the 
proposed all-pass filter at 5.5 MHz. 
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Fig. 8. Simulated (a) gain and phase responses, (b) time-domain responses of the 
proposed all-pass filter at 5.5 MHz. 
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Fig. 8. Simulated (a) gain and phase responses, (b) time-domain responses of the proposed all-pass filter at 5.5 MHz.

Parameter
APF without APF with k-ratio APF with m-ratio
compensation compensation compensation

C [pF] 5.8 5.8 5.8
R1, R2 [kΩ] 40, 20 40, 20 43.7, 20
W/L of VCR Rmos [µm/µm] 0.63/0.27 0.63/0.27 0.63/0.27
VC of VCR Rmos [V] 0.51 0.51 0.51
Rmos [kΩ] 10 10 10
W/L of M1 and M2 [µm/µm] both 54/0.27 54/0.27 and 71.82/0.27 both 54/0.27
Total power dissipation [µW] 364 418 364

Tab. 2. Design parameters of the VM all-pass filters in Figs. 2(b), 4(a), and (b) for fp = 5.5 MHz.

µ = 0.017999999 cm2/(V·s), Tox = 2.5 nm) [49]. In the de-
sign, the bulks of all NMOS transistors are connected to their
relevant sources to prevent body effect.

First of all, the performance of the IVB was tested by
AC and DC analyses. The aspect ratios of both M1 and M2
transistors were chosen as W/L = 54 µm/0.27 µm. Note
that the W/L ratio of the transistors should be selected suffi-
ciently high to decrease the loading effect. The AC simula-
tion results for both voltage gain and output resistance of the

IVB are shown in Fig. 7(a). The obtained gain of the IVB
voltage transfer is equal to 0.988 and its f−3dB frequency is
found to be 5.68 GHz while its parasitic output resistance,
whose unwanted effect compensation is the aim of this pa-
per, is equal to RO = 145.74 Ω. The DC voltage characteris-
tic of Vx against Vy is shown in Fig. 7(b). The maximum val-
ues of terminal voltages without producing significant dis-
tortion are approximately computed as −0.45 V to +0.23 V.

In order to compare both compensation techniques
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Fig. 9. Demonstration of electronical tunability of pole frequency with control 
voltage VC of the all-pass filter with m-ratio compensation shown in Fig. 4(b): (a) 
gain and phase responses, (b) control voltage VC vs. pole frequency. 
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Fig. 9. Demonstration of electronical tunability of pole frequency with control 
voltage VC of the all-pass filter with m-ratio compensation shown in Fig. 4(b): (a) 
gain and phase responses, (b) control voltage VC vs. pole frequency. 
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Fig. 9. Demonstration of electronical tunability of pole frequency with control voltage VC of the all-pass filter with m-ratio compensation shown
in Fig. 4(b): (a) gain and phase responses, (b) control voltage VC vs. pole frequency.

and their efficiency on the proposed VM APF, circuits
in Figs. 2(b), 4(a) and (b) have been further analyzed in
SPICE software. All three variants have been proposed
for fp ∼= 5.5 MHz, which is a typical operating frequency
of wireless local area network (WLAN; IEEE 802.11b) re-
ceivers [50], and design parameters are given in Tab. 2.
Figure 8(a) shows the ideal and simulated gain and phase
responses of the uncompensated and compensated filters.
From the results it can be observed that the deviation in gain
is compensated using both techniques successfully. To com-
pare the time-domain performance of all three filter variants,
transient analysis is performed to evaluate the voltage swing
capability and phase errors of the circuits as it is demon-
strated in Fig. 8(b). In simulations, a sine-wave input of
90 mV amplitude and frequency of 5.5 MHz was applied to
the filters while keeping settings as listed in Tab. 2. In case of
circuit with k-ratio compensation the offset is caused by non-
equal W/L ratio of M1,2 transistors and it can be suppressed
via level shifter also used in [41]. It is worth mentioning
that the total power dissipation (TPD) of the circuit with m-
ratio compensation is equal to APF without compensation
and found to be 364 µW. On the other hand, the TPD of
the filter with k-ratio compensation is 418 µW due to larger
channel width of M2, which also increases its total area in
case of on-chip fabrication. Hence, from the obtained sim-
ulation results we can conclude that the technique with m-
ratio compensation is more effective. Therefore, in further
analyses the behavior of the VM APF shown in Fig. 4(b)
will be investigated. To demonstrate the electronic tunabil-
ity of proposed filter with m-ratio compensation shown in
Fig. 4(b), its ideal and simulated gain and phase responses
are depicted in Fig. 9(a). The tunability performance is
also illustrated in Fig. 9(b), where the control voltage VC
of VCR was tuned from VT h to supply rail of IVB and the
pole frequency changes from 103 kHz to 18.3 MHz success-
fully. The total harmonic distortion (THD) variation with
respect to amplitude of the applied sinusoidal input voltage
at 5.5 MHz is shown in Fig. 10. An input with the amplitude
of 90 mV yields THD value of 2.23 %. Using the INOISE
and ONOISE statements input and output noise variations

against frequency have also been simulated and results are
tabulated in Tab. 3.

Moreover, the performance of the proposed circuit
shown in Fig. 4(b) have also been tested experimentally.
In measurements, for implementation of IVB and VCR, the
readily available array transistors CD4007UB [51] by Texas
Instruments with ±3 V DC supply voltages have been used.
In experiments the values of the passive components were
selected as C = 10 nF, R1 = 220 kΩ, and R2 = 100 kΩ. The
measured gain and phase responses are depicted in Fig. 11.
The phase responses are depicted for three different control
voltages VC = 1.5 V and VC = 1.8 V and the gain response is
depicted for VC = 1.8 V.

APF without APF with m-ratio
Frequency compensation compensation

(Hz) Input noise Output noise Input noise Output noise
(nV/
√

Hz) (nV/
√

Hz) (nV/
√

Hz) (nV/
√

Hz)
1×103 45.772 15.295 49.190 15.483
1×104 45.772 15.295 49.190 15.483
1×105 45.774 15.294 49.190 15.483
1×106 45.995 15.281 49.156 15.473
1×107 51.479 14.997 48.344 15.221
1×108 53.346 14.923 48.075 15.139
1×109 52.302 14.920 47.555 15.136

Tab. 3. Input and output noises of the all-pass filters in Figs. 2(b)
and 4(b) against frequency.
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Fig. 10. THD variation of the proposed all-pass filter with m-ratio compensation 
shown in Fig. 4(b) against applied input voltage at 5.5 MHz. 

 
 
 
 
 
 

Fig. 10. THD variation of the APF with m-ratio compensation
shown in Fig. 4(b) vs. applied input voltage at 5.5 MHz.
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Fig. 11. Measured gain and phase characteristics of the proposed all-pass filter and 
illustrating the electronical tunability of pole frequency with control voltage VC. 

 
 
 

Parameter 
APF without 
compensation

APF with k-
ratio 

compensation

APF with m-
ratio 

compensation 
C [pF] 5.8 5.8 5.8 
R1, R2 
[k] 

40, 20 40, 20 43.7, 20 

W/L of 
VCR Rmos 
[m/m] 

0.63/0.27 0.63/0.27 0.63/0.27 

VC of VCR 
Rmos [V] 

0.51 0.51 0.51 

Rmos [k] 10 10 10 

Fig. 11. Measured gain and phase characteristics of the pro-
posed all-pass filter and illustrating the electronical tun-
ability of pole frequency with control voltage VC .

From the simulation results and experimental measure-
ments it can be seen that the final solution is in good agree-
ment with the theory.

7. Conclusions
In this paper a voltage-mode first-order all-pass filter

circuit employing only three NMOS transistors, two resis-
tors, and a single capacitor is proposed by MOSFET-C tech-
nique. Simplicity, tunability, and low-voltage operation fea-
tures make the circuit attractive for contemporary technolo-
gies. In order to suppress the effect of non-zero output resis-
tance of the IVB, two compensation techniques are investi-
gated. Based on the simulation results we can conclude that
the technique with resistor matching ratio compensation is
more effective and it gives good compromise in terms of fil-
ter voltage gain compensation, DC voltage offset, TPD, and
transistors total area. However, as simulation results showed
that, if the filter is tuned then the optimum parameter setting
cannot be respected in the full scale.
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