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Abstract. Under communication environments, such as
wireless sensor networks, the noise observed usually exhibits
impulsive as well as Gaussian characteristics. In the ini-
tialization of channel iterative decoder, such as low density
parity check codes, it is required in advance to estimate the
channel parameters to obtain the prior information from the
received signals. In this paper, a blind channel parameters
estimator under impulsive noise environment is proposed,
which is based on the empirical characteristic function in
MPSK/MQAM higher-order modulation system. Simulation
results show that for various MPSK/MQAM modulations,
the estimator can obtain a more accurate unbiased estima-
tion even though we do not know which kind of higher-order
modulation is used.
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1. Introduction
Employing the iterative codes, such as turbo codes and

low-density parity check codes (LDPC), for channel coding
is in a growing trend. In standard iterative soft decoder, an
important initialization is to estimate the channel parameters
to obtain the soft prior information from the received sym-
bols. The performance of the decoder relies on the Gaus-
sian assumption for the additive noise. However, impulsive
noise arises as results of automobile spark plugs, lightning
discharges, underwater sonar, etc. Moreover, studies [1]-
[2] show that, in a multi-user network with power-law path
loss, the multiple access interference results in a Symmet-
ric Alpha Stable (SαS) distribution. Therefore, the received
signals in wireless networks are corrupted by noise that is
a mixture of both Gaussian and α-stable components. As
a matter of fact, an increasing number of applications re-
quire consideration of impulsive and non-Gaussian noise in
wireless communications [3]. Thus, it is of paramount im-

portance to incorporate the effect of impulsive noise in the
initialization of standard iterative soft decoder.

Summers and Wilson [4] proposed a signal to noise
ratio (SNR) estimation algorithm called online SNR esti-
mator (OSNRE), and studied the performance of the turbo
decoder using OSNRE. Li [5] generalized OSNRE from
binary phase-shift keying (BPSK) to 8-PSK modulation
symbols, and proposed a blind SNR estimation algorithm
(8PSK-BSNRE) using the moment theory and function fit-
ting method. The authors claimed that the proposed algo-
rithm can be applied to other higher-order modulation sys-
tems. Seen from the derivation steps of the 8PSK-BSNRE
algorithm, however, different modulation types need differ-
ent fitting functions. That is why the proposed blind SNR
estimation algorithm is not universal. Moreover, the SNR
scope of the estimator is narrow. To solve these disadvan-
tages, Xu [6] proposed a low complexity SNR estimator
based on the empirical characteristic function (ECF) for both
M-ary PSK (MPSK) and M-ary quadrature amplitude mod-
ulation (MQAM), which provided a good unbiased perfor-
mance even without knowing the modulation type.

Meanwhile, a common disadvantage of these works is
to consider only the white Gaussian noise (WGN), regardless
of the presence of the actual impulsive noise. As mentioned
before, the impulsive noise (or interference) can not be neg-
ligible in many communication scenarios. The performance
of the iterative decoder based on the Gaussian assumption is
deteriorated sharply because of the incorrect soft prior infor-
mation due to the presence of the impulsive noise. In order
to ensure that the iterative decoding algorithm is still appli-
cable, a new prior information estimator is needed to take
account of such impulsive noise environment.

The alpha stable distribution encompasses an important
class of distributions which can successfully model a num-
ber of impulsive noise processes [7], because it satisfies the
generalized center extreme limit theorem. In particular, the
Gaussian distribution can be considered as a special case
of the SαS distribution [8]. In this paper, the impulsive
noise is modeled as a SαS because in most of the practical
communication systems, the impulsive noise is assumed to
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be symmetrical. Unfortunately, explicit expressions for the
probability density function (PDF) of the SαS distribution in
terms of elementary functions are still unknown except for
the Gaussian and Cauchy laws [9]. This limits the applica-
tion of the SαS distribution in practice. Nevertheless, it is
still an open question on how to obtain a simple yet accurate
estimator of the prior information with the impulsive noise.

Brcich et al use the weighted least squares to increase
the estimation accuracy compared to using the moment func-
tion method, and propose a parameter estimator based on the
nonlinear weighted least squares (NWLS) in the characteris-
tic function domain [10]. However, this estimator ignores the
effect of modulation types of channel parameter estimation.
Swami et al use the normalized correlations, moments, and
cumulants to obtain consistent estimates of the autoregres-
sive moving average parameters of the linear SαS processes.
This method works even under an additive noise (Gaussian
or non-Gaussian, white or colored) with finite variance [11].
However, the ARMA model does not have an explicit PDF
expression, and is not suitable for iterative decoding.

For the received samples modeled by (8) in Section 2,
taking BPSK as an example, the optimal log-likelihood ratio
(LLR) of initialization in iterative decoding is given by [12]

LLR(rk) = ln
f (rk|sk = 1)

f (rk|sk =−1)
(1)

where f is the PDF of the mixed noise. Notice that LLR(rk)
represents the contribution from the k-th channel observation
and is also called as the intrinsic information.

As the simplest suboptimal solution, LLR is simpli-
fied by assuming α = 2 (i.e., the noise is assumed to be
Gaussian), and the intrinsic information of the standard sum-
product algorithm is given by

LLR(rk) =
2

σ2 rk (2)

where σ2 is the variance of Gaussian noise, and the constant
of proportionality 2

σ2 is called the channel reliability.

However, the Gaussian assumption makes poor decod-
ing performance compared to the optimal one when α < 2.
Meanwhile, the optimal LLR is still impractical because it
requires complex computations to evaluate. To overcome
this disadvantage, Sureka et al proposed the alternative PDF
to approximate the actual one. According to [13], this alter-
native PDF is given by

f (v) =
1
I

(
c1g0e−

v2
4γsg +

α̂γ̂sCα̂

|v|α̂+1 + c2

)
(3)

where all the parameters are functions of channel parameters
(α,σα,σg), respectively. The proposed performance is al-
most indistinguishable from that of the intractable optimum
receiver over a wide range of noise parameters. However, the
parameters estimation of f (v) is too complicated. Anyway,

it is possible to obtain the intrinsic information in the condi-
tion that the channel parameters are estimated in advance.

As we know, the characteristic function (CF) and the
PDF of the same random variable form a pair of Fourier
transforms. Fortunately, the CF of the SαS distribution
has a simple analytical expression. Based on the CF, we
propose a new channel parameters estimator in the paper.
Specifically, the CFs of the transmitted symbol sequences
for the various normalized higher-order modulation type are
derived. Then, the variance σ2

g of the Gaussian noise and
the characteristic exponent α, the divergence σα of the SαS
distribution noise are estimated simultaneously based on the
ECF.

The rest of the paper is organized as follows. The
SαS distribution and system model is briefly introduced in
Section 2. We derive the CF of the transmitted higher-
order modulation symbols and point out that the transmitted
symbols obey the Gaussian distribution since both of them
have the same CF expression under appropriate simplified
assumptions in Section 3. An ECF-based channel param-
eters estimator is proposed in Section 4. In Section 5, we
show the performances of our proposed estimator and verify
its effectiveness and robustness. The results show that the
proposed estimator obtains a better performance and is very
robust with low complexity.

2. SαS Distribution and System Model

2.1 SαS Distribution Model
In 1925, Lévy put forward to the conception of alpha

stable distribution. As it satisfies the generalized central
limit theorem, the alpha stable distribution has been con-
firmed on theory and experiments to describe the impulsive
noise perfectly. According to [9], the SαS distribution can be
completely determined by two parameters: (1) a character-
istic exponent α ∈ (0,2], which indicates the characteristic
of the tail of the SαS distribution. Specifically, a smaller
α leads to a greater probability of existing larger pulse and
a thicker (or heavier) tail compared to the Gaussian distribu-
tion which decays exponentially; (2) a divergence (or scale)
parameter σ (or γ = σα)∈ (0,∞), which is analogous to the
variance of the Gaussian distribution. Despite of its simple
CF shown in (4), there is yet no explicit expression for the
PDF fα(x) of the SαS distribution except for α = 1 (i.e., the
Cauchy distribution) and α = 2 (i.e., the Gaussian distribu-
tion). A real valued SαS random variable, w ∼ Sα(σ), has
a characteristic function φw(t) given by

φw(t) = E[exp(ıwt)] =
∫

∞

−∞

fα(w)eıwtdw = e−|σt|α . (4)

In particular, G ∼ S2(σ) is Gaussian distribution with
zero mean and variance 2σ2, which can be considered as
a special case of the SαS distribution. The CF of the Gaus-
sian distribution is given by
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φG(t) = e−|σt|2 . (5)

BPSK signals in real domain and MPSK/MQAM sig-
nals in complex domain (I and Q components in Constella-
tion respectively) are used to investigate the performances
in this study. We now define complex isotropy SαS random
variables, which we will use to model the noise in next sec-
tion. If both wI := R{w} and wQ := I{w}, distributed as
Sα(σ), are independent and identically distribution (i.i.d.),
then

w = wI + ıwQ (6)

is said to follow complex isotropy SαS distribution denoted
by w ∼ CSα(σ). Specially, if w ∼ CSα(σ), it means that
the characteristic exponent αI = αQ = α and the divergence
σαI = σαQ = σα. Since both wI and wQ are independent, the
characteristic function of the complex isotropy SαS distri-
bution random variable, i.e. w, can be expressed as follows

φw(t1, t2) = E[eı(t1wI+t2wQ)] = E[eıt1wI ] ·E[eıt2wQ ]

= e−|σt1|α−|σt2|α .
(7)

2.2 System Model
We make the following assumptions throughout this

paper: first, our algorithms operate on discrete sequences
of observations; second, the discrete-time additive noise
components in the observation-process are independent. The
system model under consideration is the complex, dis-
crete, baseband-equivalent, band-limit model of coherent
MPSK/MQAM in complex domain (which is also a suitable
model of BPSK in real domain with minor modifications).
Perfect carrier recovery and symbol timing recovery are also
assumed. We introduce SαS into a statistical model of im-
pulsive noise, and consider that the received interference is
a mixture of complex impulsive noise and Gaussian noise.
Therefore, the signal presented to the receiver is described
by the following relation:

rk =
√

Esk +wα,k +wG,k =
√

Esk +wk ,k = 1,2, . . . ,N (8)

where E is the signal’s average power. Without loss of gener-
ality, we assume E = 1. The transmitted signal sk is chosen
from a normalized MPSK/MQAM constellation; wα,k fol-
lows complex isotropy SαS distribution; similarly, wG,k fol-
lows complex isotropy Gaussian distribution; the complex
noise wk is referred to as the complex mixed noise.

For simplicity, (8) with the vector form is expressed as

R = S+W = S+Wα +WG (9)

3. CF of the Received Signal
From (9), it is easy to obtain the corresponding char-

acteristic function of the received signal, φR(t1, t2), which is
given by

φR(t1, t2) = φS(t1, t2) ·φW (t1, t2) (10)

since the transmitted signal S and the complex mixed noise
W are assumed to be mutually independent. To simplify the
calculation, we assume that t1 = t2 = t > 0 in the next sec-
tions. Under this assumption, (10) is simplified to

φR(t) = φS(t) ·φW (t). (11)

We have noticed that the complex Gaussian WG also fol-
lows CSα(σ). Therefore, reusing (7) with the assumption
t1 = t2 = t, the CF of Wα,WG and W are also simplified and
given by

φWα
(t) = e−2(σαt)α

, (12a)

φWG(t) = e−2(σgt)2
, (12b)

φW (t) = φWα
(t) ·φWG(t) = e−2(σαt)α−2(σgt)2

(12c)

where σα is the divergence of CSα(σ) noise, and σg is the
standard variance of the Gaussian noise.

The following is to derive the CF of the transmitted
symbol S, denoted as φS(t). The φS(t) can be obtained by
the direct use of the definition of discrete random variable
characteristic function, i.e.

φS(t) =
M−1

∑
m=0

Pr(sm)eıt(sm,I+sm,Q) (13)

where sm is a symbol from the normalized MPSK/MQAM
constellation; Pr(sm) is the probability of the symbol sm. In
a communication system, it is reasonable to assume that each
symbol in a fixed constellation is equiprobable. That is to say
Pr(sm) = 1/M; sm,I , sm,Q are the components of the symbol
sm in the I and Q axis respectively.
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Fig. 1. Normalized MPSK/MQAM constellation.

In Fig. 1(a), for example, the symbols in the normal-
ized 8PSK constellation are (1,0), (1/

√
2,1/
√

2), (0,1),
(−1/

√
2,1/
√

2), (−1,0), (−1/
√

2,−1/
√

2), (0,−1),
(1/
√

2,−1/
√

2) respectively. According to (13), φS(t) can
be expressed as

φS(t) =
1
8

[
2eıt(0+1)+2eıt(−1+0)+2eıt(1/

√
2−1/

√
2)

+ eıt(1/
√

2+1/
√

2)+ eıt(−1/
√

2−1/
√

2)
]

=
1
4

[
1+2cos(t)+2cos(

√
2t)
]
.

(14)
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Similarly, it is easy to derive the CFs of the other
higher-order MPSK/MQAM modulations, listed in Tab. 1.

Modulation φS(t)
BPSK cos(t)
QPSK cos(t)
8PSK 1

4 [1+2cos(t)+ cos(
√

2t)]
4QAM 1

2 [1+ cos(
√

2t)]
8QAM 1

4 [1+2cos( 2t√
6
)+ cos( 4t√

6
)]

16QAM 1
8 [2+ cos( 6t√

10
)+2cos( 4t√

10
)+3cos( 2t√

10
)]

64QAM 1
32 [4+7cos( 2t√

42
)+6cos( 4t√

42
)+5cos( 6t√

42
)

+4cos( 8t√
42
)+3cos( 10t√

42
)+2cos( 12t√

42
)

+cos( 14t√
42
)]

Tab. 1. The CFs of the higher-order MPSK/MQAM modula-
tions

In practice, we use the ECF to estimate the CF of mixed
random variables and extract information about their param-
eters. Let the vector {xk,k = 1, . . . ,N} be a set of random
observations of an i.i.d random variable X . Then the ECF
φ̂X (t) is given by

φ̂X (t) =
1
N

N

∑
k=1

eıtxk (15)

where N is the length of the observation vector and
t ∈ R. Thus, φ̂X (t) is computable for all values of t. For
a given t, φ̂X (t) is a random variable, and {φ̂X (t), t ∈ R}
is a stochastic process. The ECF of φ̂X (t) is a sufficient
accurate approximation of the CF φX (t) when N is large
enough. Moreover, it is an unbiased estimator. The ECF as-
sociated with the observation vector {xk,k = 1, . . . ,N} evalu-
ated at m points t = [t1, . . . , tm] is the complex random vector
φ̂X (t) = [φ̂X (t1), . . . , φ̂X (tm)]. The φ̂X (t) converges weakly to
a complex Gaussian random vector with the mean φX (t) and
the covariance matrix C [14], whose each element is given
by

C j,k = cov
(

φ̂(t j), φ̂(tk)
)
=

1
N

[
φ(t j+tk)−φ(t j)φ(tk)

]
. (16)

For a given N, we have a ’good’ estimation accuracy
of the CF if t is close to zero, and has a ’poor’ accuracy
if t is large. Specially, the covariance matrix C is smaller
as t approaches to zero, and the estimation performance of
the ECF is better. On the contrary, the numerical calcula-
tion of the ECF is unstable, and the covariance matrix C is
larger as t becomes too large. That means the estimation per-
formance of the ECF is worse. Therefore, a value close to
zero is chosen for t to get the ECF of the observation vector
{xk,k = 1, . . . ,N}.

Based on the above discussion, a value close to zero is
chosen for t to calculate the ECF. In this condition, the CF
φS(t) of the higher-order MPSK/MQAM modulations can be
approximated by a fitting function φ̂S(t), which is defined as

φ̂S(t), e−
1
2 t2

. (17)

Equation (17) may be explained by the central limit theorem.
The constellation shown in Fig. 1 is seen as a discrete ran-
dom variable. Due to the symmetry and normalization of the
constellation, the mean of this random variable is 0, and its
variance is 1. Therefore, this random variable converges to
a standard normal distribution according to the central limit
theorem.

In order to verify the approximation effect, we define
a relative error err(t) as

err(t) =
(

1− φ̂S(t)
φS(t)

)
∗100% (18)

Combining (17), (18) with Tab. 1, for various higher-order
MPSK/MQAM modulations, the CFs are shown in Fig. 2(a),
and the relative errors err(t) are shown in Fig. 2(b). We ob-
serve that the relative errors err(t) are an increasing func-
tion of t ∈ (0,1) with limt→0 err(t) = 0. In addition, the
top curve corresponds to the BPSK and QPSK since they
have the same CF, and the bottom curve corresponds to the
16QAM in Fig. 2(b). That is to say, the largest approxi-
mation error is BPSK/QPSK, and the smallest is 64QAM,
which is in consistent with the central limit theorem. Further,
the err(t) is smaller than 0.015 % when t ≤ 0.2. Therefore,
φ̂S(t) is accurate enough when t ≤ 0.2.
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Fig. 2. The CFs and relative errors of various higher-order mod-
ulation (listed in Tab. 1) symbols.

Combining (11), (12) with (17), the CF φR(t) of the
received sequences R is given by
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φR(t) = e−t2/2−2(σαt)α−2(σgt)2
, t ≤ 0.2 (19)

since the transmitted symbols S and the complex mixed noise
W are independent.

4. ECF-based Parameter Estimation
We obtain the CF φR(t) of the received symbol R in

the previous section. In this section, we discuss procedures
to estimate parameters of the complex mixed noise, which
is the sum of two independent SαS random variables with
the CF given in (19). The estimation procedures proposed
in this section are important for the initiation of the iterative
soft decoder, as we state before.

The estimation of parameters of the stable laws is
severely hampered by the lack of closed-form expressions
for the PDF, and the problem is even more complicated for
the complex mixed noise. Fortunately, the moment-type
method does not rely on its PDF, which means that we do
not have to know the PDF of the complex mixed noise in
advance. Let

θ1 = 2σ
α
α , (20a)

θ2 = 2σ
2
g +

1
2
. (20b)

Taking the logarithm transformation to both sides of (19), we
obtain

ψR(t) =− ln(φR(t)) = θ1tα +θ2t2 (21)

where ψR(t) denotes the second characteristic function. In
practical estimation process, the ψR(t) is replaced by its es-
timated value ψ̂R(t) which is given by

ψ̂R(t) =− ln

(
1
N

N

∑
k=1

eıt(rI,k+rQ,k)

)
. (22)

Here rI,k,rQ,k are the I and Q component of the k-th received
signals, respectively.

Forming a similar set of equations for ε−1t, t,
εt ∈ (0,0.2), replacing ψR(·) by its estimate ψ̂R(·), and af-
ter simple mathematical derivation, we obtain the estimated
parameters α̂, σ̂α, σ̂g of the complex mixed noise. They are
given by

ε
α̂ =

ε−2ψ̂R(εt)− ψ̂R(t)
ε−2ψ̂R(t)− ψ̂R(ε−1t)

(23)

and[
θ̂1

θ̂2

]
=

1
ε2− εα̂

[
ε2t−α̂ −t−α̂

−εαt−2 t−2

][
ψ̂R(t)
ψ̂R(εt)

]
(24a)

σ̂α = (
1
2

θ̂1)
1/α̂ (24b)

σ̂g =

√
1
2
(θ̂2−

1
2
) (24c)

where α̂ is the estimate obtained in (23). The estimates of
α and σα,σg given in (23) and (24) are consistent since they

are based on ψ̂R(·), which is consistent. However, the rate
of convergence with the number of samples N to the true
values will depend on the choice of ε and t. In the follow-
ing section, simulations are carried out to test and verify the
proposed estimate algorithm.

5. Simulation Results and Conclusions
The simulation platform is constructed as shown in

Fig. 3. The “Bernoulli random binary generator” block gen-
erates random binary numbers using a Bernoulli distribution
that produces ‘1’s with the probability p = 1

2 . In order to
improve the bit error rate performance of a traditional com-
munication system, there must exist a channel codec. As an
example, a “convolutional encoder” with a constraint length
of 7, code generator polynomials of 171 and 133 (in octal
numbers), and a feedback connection of 171 (in octal) is
used for channel coding. The modulator is used to map the
binary data to a MPSK/MQAM symbol, and chooses ’bi-
nary’ (i.e., binary mapping) choice for mapping symbols to
ideal constellation points. The “normalize” block is to en-
sure that the symbols transmitted average power is 1, regard-
less of the transmitted symbols modulation. The MATLAB
code of the SαS distribution is obtained from [16].

Bernoulli Random 
Binary Generator

Convolutional 
Encoder

Normalize
MPSK/MQAM 
Modulator

Complex Symmetric 
Alpha Stable 

Noise Generator 

Complex Gaussian 
Noise Generator 

EstimatorComparsion

Noise 
Parameters

Fig. 3. Simulation system.

The estimation procedure requires solving (23) and
(24) at various values of t and ε. However, the optimum
choice of these variables is not clear. The performance of
the estimation strongly depends on the number of samples
(i.e., N) available and the choice of these variables. The “es-
timator” block uses (23) and (24) with t = 0.1,ε = 2 in the
simulations. The estimates maybe further refined by averag-
ing over various combinations of these variables.

To cover a broad range of parameters (α,σα), we con-
duct six experiments: three with α = 1.5, and three with
α = 0.5. We keep the dispersion of the Gaussian component
constant (σg = const), and for each value of α, we consider
the following three cases: Case (i) the level of impulsive
component is smaller than that of Gaussian (σα = 0.5σg);
Case (ii) the level of impulsive component is comparable to
that of Gaussian (σα = σg); and Case (iii) the level of impul-
sive component is higher than that of Gaussian (σα = 2σg).
We give the average and standard deviation values (in paren-
theses) of Monte Carlo simulation results based on 100 in-
dependent runs with 5×104 i.i.d. samples.
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modulator
Experiment 1 Experiment 2 Experiment 3

α = 1.5 σα = 0.5 σg = 1 α = 1.5 σα = 1 σg = 1 α = 1.5 σα = 2 σg = 1

BPSK
1.5046 0.6557 0.9615 1.504 1.0401 0.9560 1.5049 2.0594 1.0687

(0.1445) (1.0473) (0.1701) (0.0710) (0.2138) (0.2208) (0.0544) (0.3205) (0.3010)

QPSK
1.5139 0.5837 0.9447 1.4833 0.9873 1.0058 1.5013 2.0458 1.0525

(0.1421) (0.2499) (0.1740) (0.0844) (0.2345) (0.2402) (0.0600) (0.3530) (0.3496)

8PSK
1.4995 0.5508 0.9626 1.5093 1.0756 0.9355 1.5021 2.0387 1.0033

(0.1373) (0.2370) (0.1780) (0.0894) (0.3006) (0.2599) (0.0493) (0.2908) (0.3291)

4QAM
1.5284 0.6088 0.9493 1.5030 1.0483 0.9775 1.4985 2.0193 1.0740

(0.1351) (0.2991) (0.1565) (0.0921) (0.2694) (0.2431) (0.0531) (0.3147) (0.3015)

8QAM
1.5112 0.5280 0.9676 1.5055 1.0686 0.9552 1.4964 1.9980 1.0618

(0.1301) (0.2008) (0.1722) (0.0704) (0.2623) (0.2398) (0.0551) (0.2990) (0.3469)

16QAM
1.4867 0.5300 0.9661 1.5046 1.0494 0.9591 1.5035 2.0446 1.0293

(0.1385) (0.2193) (0.1816) (0.0810) (0.2384) (0.2213) (0.0548) (0.3194) (0.3401)

64QAM
1.4707 0.4944 1.0080 1.5029 1.0474 0.9774 1.4978 2.1068 1.0792

(0.1299) (0.2012) (0.1125) (0.0807) (0.2935) (0.2147) (0.0534) (0.3135) (0.2872)

Tab. 2. Simulation results for α = 1.5.

modulator
Experiment 4 Experiment 5 Experiment 6

α = 0.5 σα = 0.5 σg = 1 α = 0.5 σα = 1 σg = 1 α = 0.5 σα = 2 σg = 1

BPSK
0.4999 0.5039 0.9887 0.5007 1.0157 0.9725 0.4991 2.0019 0.9843

(0.0210) (0.0663) (0.1408) (0.0228) (0.1375) (0.2022) (0.0210) (0.2555) (0.2660)

QPSK
0.4936 0.4786 1.0359 0.4985 1.0004 0.9907 0.4977 1.9968 0.9988

(0.0222) (0.0649) (0.1283) (0.0229) (0.1402) (0.2096) (0.0234) (0.2870) (0.2837)

8PSK
0.5000 0.5064 0.9789 0.5028 1.0270 0.9500 0.5022 2.0516 0.9784

(0.0255) (0.0778) (0.1568) (0.0227) (0.1455) (0.2213) (0.0261) (0.3297) (0.3071)

4QAM
0.5007 0.5064 0.9882 0.5056 1.0436 0.9229 0.4979 1.9973 1.0173

(0.0260) (0.0790) (0.1604) (0.0234) (0.1476) (0.2378) (0.0229) (0.2877) (0.2476)

8QAM
0.4971 0.4932 1.0029 0.4990 1.0023 0.9889 0.5013 2.0363 1.0015

(0.0228) (0.0693) (0.1437) (0.0211) (0.1253) (0.1677) (0.0256) (0.3192) (0.2619)

16QAM
0.4977 0.4969 0.9925 0.5034 1.0328 0.9472 0.4979 2.0024 1.0265

(0.0240) (0.0735) (0.1512) (0.0239) (0.1501) (0.2141) (0.0259) (0.3141) (0.2754)

64QAM
0.4994 0.5035 0.9942 0.4964 0.9920 1.0139 0.4985 2.0069 0.9856

(0.0259) (0.0783) (0.1565) (0.0261) (0.1598) (0.2100) (0.0208) (0.2463) (0.2403)

Tab. 3. Simulation results for α = 0.5.

Tables 2 and 3 list the simulation results of the moment-
type estimator for different pairs (α,σα) when σg = 1. Sim-
ulation results show that for various MPSK/MQAM modula-
tors, the proposed estimator can obtain a good performance
with low complexity even without any knowledge of modu-
lation type. Especially, under the condition of enough sam-
ples, the ECF is very close to the CF. Progressively, seen
from Fig. 2, all CFs of different modulation types are basi-
cally the same when t is small enough, i.e., the CF has noth-
ing to do with the type of modulation. Therefore, the pro-
posed estimator has similar performance in different modu-
lation methods. Furthermore, the estimator performance of
α = 0.5 (refer Tab. 3) is better than that of α = 1.5 (Tab. 2).
The reasons are as follows. Apparently, these two kinds of
noise are easy to distinguish if α is far from 2, and we can get
a more accurate estimation of α. According to our proposed
algorithm, the estimation performance of the other two pa-
rameters depends on the accuracy of the estimated character-
istic exponent α. Therefore, the result in Tab. 3 is more close
to the actual value with smaller variance than that in Tab. 2.

However, when α approaches to 2, ε−2ψR(εt) '
ψR(t)'ψR(ε

−1t). This makes (23) numerical instability and

leads to a ’poor’ estimation performance. On the contrary,
when α is far from 2, the estimation performance is quite
better. This is consistent with our intuitions. The charac-
teristic of the impulsive noise is different from the Gaussian
noise if its characteristic exponent α is far from 2. There-
fore, these two kinds of noise are easy to distinguish, and
we can get a more accurate estimation. On the other hand,
when α approaches to 2, their characteristics are similar and
difficult to distinguish. Hence, the estimation performance
becomes worse.
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