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Abstract. In this paper the influence of information about 
high level features of Human Visual System (HVS) on ob-
jective quality assessment is studied. This was done by 
extending the existing full-reference objective image qual-
ity metric – FSIM – where the different importance of cer-
tain areas of image is considered using Phase Congruency 
(PC) algorithm. Here, the estimation of Region of Interest 
(ROI) based on this algorithm is complemented by Fixation 
Density Maps (FDM) containing the information about 
high level features of HVS. Use of another low level fea-
tures based algorithm (Phase Spectrum of Fourier Trans-
form) was also considered and compared to the PC algo-
rithm. The performance was evaluated qualitatively on 
images reconstructed according to ROI and quantitatively 
on images from LIVE database. The correlation between 
subjective and objective tests was calculated using Pear-
son’s Correlation Coefficient and Spearman’s Rank Order 
Coefficient. The statistical significance of the difference 
between correlation coefficients was assessed by Fisher  
r-to-z transformation. The performance of the metric was 
also compared to other state-of-the-art image quality met-
rics (SSIM, MS-SSIM, and FSIM). 

Keywords 
Human visual system, image quality assessment, high 
level features, FSIM. 

1. Introduction 
The image and video quality assessment is very 

important issue in various fields of image and video pro-
cessing because every processing algorithm affects the 
output quality and it is necessary to reliably evaluate its 
impact. 

Basically, there are two ways how to assess the qual-
ity of images. The first way is the subjective quality test-
ing, using the group of observers. During these tests, every 
subject evaluates the series of images, according to a pro-
cedure, such as Double-Stimulus Impairment Scale (DSIS) 
or Double-Stimulus Continuous Quality Scale (DSCQS). 

The most important procedures for subjective quality tests 
are described in ITU-R Recommendation BT.500-13 [1]. 
After the processing of results, the final values are Mean 
Opinion Scores (MOS) and standard deviations. That rep-
resents the quality perceived by the “average observer.” 
This testing is really reliable but expensive, time-consum-
ing, vulnerable to systematic errors etc. The other approach 
is based on utilization of objective image quality metrics. 
These are the algorithms able to automatically assess the 
quality of images. They could be divided to full-reference 
where the whole unprocessed image is necessary for evalu-
ation, reduced-reference where only partial information 
(e.g. about edges) from the original image is needed and 
finally no-reference or blind image quality metrics which 
assess the quality with no further information than the 
image itself. The main advantages of objective metrics are 
that they are cheap, fast, and their results are unambiguous. 
The problem is that they are dependent on the content of 
images. 

Most of the effort is so far done in the full-reference 
quality metrics area. The oldest ones are pixel-based crite-
ria which come from the theory of signals. Mean Squared 
Error (MSE) and Peak Signal to Noise Ratio (PSNR) are 
the typical example of these metrics. The other important 
family of full-reference metrics is metrics based on the 
calculation of the loss of information during the process. 
The most important of these criteria is visual information 
fidelity (VIF) proposed by Sheikh [2]. Probably the most 
widely studied metrics are based on Human Visual System 
(HVS). The principle is to model human perception. The 
most popular HVS-based criteria are structural similarity 
index (SSIM) and multi scale SSIM (MS-SSIM) both pro-
posed by Wang [3], [4]. The majority of these metrics 
however do not consider the fact that some areas in the 
image are of higher importance for observer than the other. 
One of the metrics which tries to include this kind of 
information is feature similarity index (FSIM) proposed by 
Zhang [5]. 

The areas containing the most visual information are 
called Region of Interest (ROI). These regions are  
localized during the pre-attentive stage and further 
explored during the attentive stage [6]. There are two 
mechanisms influencing the visual attention [7].  
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Fig. 1. Image “Woman” from the LIVE database [11] and extracted low-level features – (a) original, (b) PC, (c) G, (d) PFT, (e) PC&PFT. 

The bottom-up mechanism drives the attention, according 
to the content of the image, to the areas with e.g. contrast 
changes, edges etc. 

The top-down mechanism is on the other hand influ-
enced by the given task (e.g. traffic signs localization in the 
image) or the experience of the observer with the content 
of the image. The features extracted from the scene by 
these two mechanisms are either low level (LLF) – 
extracted by bottom-up mechanism – or high level (HLF) – 
extracted by top-down mechanism [7].  

Naturally, it is very difficult to automatically estimate 
HLF from the scene. In this case, Fixation Density Maps 
(FDMs) obtained by the eye-tracking experiment are used 
[8]. FDMs show ROI obtained from both LLF and HLF. 

In this paper, we investigate the influence of addition 
of the information about HLF in the quality metric on its 
performance compared to the subjective tests. It is the 
extension of our previous work, published in [9]. Here, the 
metric’s performance is qualitatively tested in the context 
of multimedia imaging and thorough statistical analysis is 
applied to verify the significance of the results. 

The paper is organized as follows: Section 2 describes 
the FSIM metric and its extensions done for the purpose of 
this paper, in Section 3 qualitative and quantitative results 
are presented and Section 4 concludes the paper. The illus-
trational scheme of High Level FSIM (HLFSIM) calcula-
tion could be found in Appendix. 

2. Metric Extension 
This section is dedicated to the description of FSIM, 

proposed modifications for LLF extraction, HLF infor-
mation addition and HLFSIM calculation. 

2.1 FSIM 

The Feature Similarity Index is full-reference objec-
tive image quality metric proposed by Zhang [5]. Within 
FSIM, two main measures are employed. 

The first one is Phase Congruency (PC) [10] which 
measures the significance of a local structure. It is based on 
the theory, that the features in image are perceived at 
points, where Fourier components are maximal in phase. It 
is defined as 
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where An is the amplitude of n-th Fourier component, Φn(x) 
denotes local phase of n-th Fourier component at position x 
and ⎯Φ(x) means the amplitude weighted mean local phase 
angle of all the Fourier terms at position x. 

In FSIM implementation, PC is calculated using bank 
of log-Gabor filters uniformly dividing the frequency 
plane. This method was proposed by Kovesi [11]. LLF 
map obtained by this calculation contains values from 0 to 
1. An example of this map for image “Woman” (Fig. 1(a)) 
from LIVE database [12] is shown in Fig. 1(b). 

The second measure used in FSIM is Gradient Mag-
nitude (G). First, the gradient is calculated in horizontal 
and vertical direction by convolution of an image and 
Scharr operator [13]. Then G is calculated as  

 2
y

2
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where Gx and Gy stand for gradient calculated in horizontal 
and vertical direction, respectively. Gradient Magnitude for 
“Woman” scene can be seen in Fig. 1(c). 

Similarity between original and distorted image is 
calculated separately for both measures as  
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where S{.} denotes similarity map, Feature represents 
PC(x) or G(x) and indexes 1 and 2 indicate reference and 
distorted image, respectively. TFeature is small positive con-
stant ensuring the fraction stability. 

In the next stage, the information about ROI is used, 
to weight the similarity map according to the importance of 
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the area in the scene. The weighting map is the combina-
tion of PC maps from both original and distorted image: 

 )](),(max[)( 21 xPCxPCxPCm   (4) 

where PCm(x) stands for combined PC map and PC1(x) and 
PC2(x) represent PC maps from both scenes. 

Finally, the FSIM index is calculated as 
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where Ω represents the whole image spatial domain. 

2.2 FSIMC 

The above described procedure calculates with lumi-
nance component of the image only. Zhang [5] also defines 
the metric for colored input images. 

First, the image is converted to YIQ color space [14]. 
Then the similarity SI(x) and SQ(x) for chrominance com-
ponents I and Q is calculated according to (3). 

Final index is then  
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where λ is a parameter influencing the importance of the 
chrominance components. This parameter was set to 0.03. 
The scheme of the whole procedure is the same as the one 
shown in Appendix, when LLFi = PCi and HLF = 1. For 
more details refer to the relevant paper [5]. 

2.3 Modification of LLF Extraction 

As mentioned before, the original FSIM index em-
ploys PC to extract LLF from the scene. In this paper, 
authors employed also another method for LLF extraction 
– Phase Spectrum of Fourier Transform (PFT) – and in-
vestigated if it can improve the metric performance. 

Hou [15] proposed a method for localization of im-
portant areas in the scene based on spectral residual of an 
image. This is calculated from the log amplitude spectrum. 
However, Guo et al. [16] found out that the information 
about LLF is carried by the phase spectrum only. So they 
proposed the calculation of the LLF map: 

 2)(1
gauss }]{[)()( xpieFxhxPFT   (7) 

where hgauss(x) is a Gaussian kernel, * convolution opera-
tor, F-1 is an operator of inverse Fourier transform and i is 
the imaginary unit. PFT map is then normalized. An exam-
ple is shown in Fig. 1(d). 

Authors also combined these two methods: 

 )](),(max[)(& xPFTxPCxPFTPC  . (8) 

LLF map obtained by this combination is in Fig. 1(e). 

2.4 HLF Information Addition 

Obtaining the information about HLF automatically is 
not an easy task because it requires modeling of compli-
cated operations in human brain. Since this is not yet pos-
sible, all of the ROI estimators are so far based on LLF. 
That is why the use of Fixation Density Maps (FDMs) 
obtained by the eye-tracking experiment with human ob-
servers was necessary for including also the HLF infor-
mation. FDM for Woman scene is depicted in Fig. 2(a). 

  
                        (a)                                             (b) 

Fig. 2. Fixation Density Map and Importance Map for 
“Woman” scene.   

To integrate it into the metric, the Importance map 
Imap(x) is defined as  

 )().()(map xHLFxLLFxI  . (9) 

Operator .ൈ means point-by-point multiplication. LLF(x) is 
a map obtained by  

 )](),(max[)( 21 xmethodxmethodxLLF   (10) 

where method1(x) denotes the LLF map for original image 
obtained by one of the LLF extraction methods stated 
above or their combination. Index 2 labels the distorted 
image. Fig. 2(b) shows the Importance map for “Woman” 
scene. 

2.5 HLFSIM Calculation 

Similarity SLLF(x) between two LLF maps LLF1 for 
original image and LLF2 for distorted is obtained according 
to (3). 

Finally, the HLFSIM index can be calculated 
similarly to FSIM:  
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Also the variant for colored images is  
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Fig. 3. The results of subjective tests and t-tests for images reconstructed according to ROI [17]. 

The graphical computation scheme of HLFSIM can 
be also found in Appendix. 

3. Experimental Results 
This section is dedicated to metric performance eval-

uation results. First, the metric was tested on images recon-
structed according to ROI and then the quantitative analy-
sis of performance on LIVE database [12] was conducted. 

3.1 Performance of Common Metrics for 
Images Reconstructed According to ROI 

In authors’ previous work [17] a demosaicing tech-
nique using ROI for reconstruction was proposed. It is 
based on idea to reconstruct salient areas by interpolation 
technique with high quality performance and non-salient 
regions by some simple and fast method. Excessive sub-
jective test were conducted to find out if the proposed 
method can outperform some of the common demosaicing 
techniques and therefore is applicable. MOS values and 
confidence intervals at significance level 0.05 from subjec-
tive results for three images from LIVE database [12] 
(Rapids, Plane and Woman) can be found in Fig. 3(a–c). 
Proposed methods (columns no. 6 and 7) were compared to 
following interpolation techniques: 1 – bilinear, 2 – Hira-
kawa’s [18], 3 – Menon’s [19], 4 – Alleyson’s [20] and 5 – 
Chung’s [21]. To verify if the quality difference between 
techniques is statistically significant, two sampled right 

tailed t-tests at significance level 0.05, similar to those 
done by De Simone [22], were performed. The results for 
aforementioned images are shown in Fig. 3(d–f). If the 
square between two methods is white, the method on the 
horizontal axis performs significantly better than the one 
on vertical axis. Otherwise the square is black. As can be 
seen, the method no. 7 outperforms Alleyson’s algorithm 
(method no. 4). For more information about test conditions 
refer to the above mentioned work [17]. 

Quality assessment by objective criteria (Fig. 4(a–c)) 
was then performed using four state-of-the-art metrics 
(SSIM [3], MS-SSIM [4], FSIM [5] and FSIMC [5]). The 
results exhibit the contradiction between subjective and 
objective criteria (Alleyson’s method in column 4 is evalu-
ated to be better than the method in column 7) even for 
FSIM metric where the information about ROI is embed-
ded. That leads to a conclusion that HLF information is 
also important for human quality perception and could be 
included in the quality metric. 

3.2 Performance of HLFSIM for Images 
Reconstructed According to ROI 

This part of the paper deals with the evaluation of 
performance of proposed metric on the images mentioned 
in previous paragraph. Results of the assessment done by 
HLFSIM and HLFSIMC in all three modifications (using 
PC, PFT and PC&PFT) are depicted in Fig. 4(d–f). It 
clearly shows the improvement in agreement with subjec-
tive tests. 
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Fig. 4. The results of objective quality assessment for images reconstructed according to ROI [17]. 

Distortion CC SSIM MS-SSIM 
FSIM HLFSIMPC HLFSIMPFT HLFSIMPC&PFT 

lum chrom lum chrom lum chrom lum chrom 

JPEG 
PLCC (-) 0.889 0.864 0.872 0.869 0.876 0.874 0.843 0.841 0.879 0.877 

SROCC (-) 0.930 0.951 0.957 0.957 0.955 0.954 0.949 0.948 0.954 0.955 

JPEG2000 
PLCC (-) 0.846 0.790 0.734 0.728 0.737 0.730 0.743 0.736 0.741 0.735 

SROCC (-) 0.900 0.911 0.913 0.913 0.915 0.914 0.914 0.913 0.915 0.914 

White Noise 
PLCC (-) 0.967 0.956 0.926 0.908 0.934 0.919 0.930 0.917 0.937 0.926 

SROCC (-) 0.968 0.975 0.972 0.965 0.981 0.976 0.981 0.978 0.983 0.981 

Gaussian 
Blur 

PLCC (-) 0.833 0.883 0.909 0.909 0.898 0.898 0.882 0.882 0.907 0.907 

SROCC (-) 0.882 0.947 0.971 0.971 0.969 0.969 0.959 0.959 0.966 0.966 

Fast Fading 
PLCC (-) 0.893 0.855 0.852 0.851 0.859 0.858 0.889 0.887 0.883 0.882 

SROCC (-) 0.938 0.953 0.951 0.950 0.950 0.947 0.959 0.956 0.954 0.952 

All 
PLCC (-) 0.717 0.731 0.774 0.780 0.788 0.792 0.779 0.781 0.785 0.791 

SROCC (-) 0.848 0.900 0.920 0.923 0.924 0.925 0.915 0.915 0.919 0.921 

 

Tab. 1. Correlation between subjective and objective quality assessment results for LIVE database [12]. 

Distortion 
HLFSIMPC HLFSIMPFT HLFSIMPC&PFT 

lum chrom lum lum chrom lum 

JPEG 0.4286 0.4129 - - 0.3745 0.3594 

JPEG2000 0.4721 0.4801 0.4168 0.4286 0.4364 0.4364 

White Noise 0.2912 0.2676 0.3936 0.3085 0.2207 0.1469 

Gaussian Blur - - - - - - 

Fast Fading 0.4052 0.4052 0.0778 0.0853 0.1230 0.1230 

All 0.2389 0.2676 0.4013 0.4801 0.2912 0.2843 

Tab. 2. Significance of difference tests – p-values. 
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3.3 Performance of HLFSIM for LIVE 
Database 

Here, the quantitative evaluation of performance is 
described. It was done on images from LIVE database 
created by Sheikh [12]. It contains 29 reference images 
modified by different degrees of five types of distortions. 
These are compressions JPEG (233 images) and JPEG2000 
(227 images), white noise (174 images), Gaussian blur 
(174 images) and simulation of fast fading Rayleigh chan-
nel (174 images). Database also provides the results of 
subjective tests. For more information about the database 
refer to the website [12].  

FDMs for HLFSIM calculation were taken from 
VAIQ Database [8] created by Engelke.  

Pearson linear correlation coefficient (PLCC) and 
Spearman rank order correlation coefficient (SROCC) 
were employed to calculate the correlation between sub-
jective and objective quality evaluation results. No regres-
sion was performed. The calculation was done for every 
distortion type separately and for the whole database. The 
values of correlation coefficients could be found in Tab. 1. 
The best performer from FSIM and HLFSIM metrics is 
marked. 

In cases where PLCC for HLFSIM (or HLFSIMC) 
was higher than for FSIM (FSIMC) the statistical signifi-
cance of difference was calculated using Fisher  
r-to-z transformation. Resulting p-values are stated in 
Tab. 2. Considering significance level 0.05, p-values has to 
be lower than 0.05 to prove the significant difference 
between FSIM and HLFSIM performance. As can be seen, 
none of the modifications of HLFSIM is lower than the 
threshold which means that even though the correlation 
coefficient increased after addition of HLF information, the 
increase is not statistically significant. HLF information 
therefore does not improve the performance of the metric 
for types of distortions contained in the LIVE database.  

4. Conclusion 
This paper studies the influence of high level features 

(HLF) of human visual system on objective image quality 
assessment.  

FSIM index [5] is one of the metrics which consider 
the different importance of the salient and non-salient areas 
in image for quality perception. However it was shown 
[17] that if the image is reconstructed according to regions 
of interest (ROI), low level features (LLF) extraction, used 
in FSIM, it is not sufficient for modeling visual attention 
and its quality evaluation does not agree with subjective 
tests. 

Authors proposed modification of FSIM to calculate 
also with HLF by incorporating FDM into the metric. 
These are obtained from the eye-tracker which means that 
metric cannot be used in real-time applications. Also three 
LLF estimators were studied – Phase Congruency, Phase 

Spectrum of Fourier Transform and combination of both. 
The proposed metric is called HLFSIM. 

It was shown, that for images reconstructed according 
to ROI, this information helps the metric to assess the 
quality of the images correctly for all three modifications. 

Quantitative tests on LIVE database [12] should 
prove if it could improve the metric’s performance even on 
the different types of distortions. PLCC and SROCC were 
used to calculate the correlation between subjective and 
objective assessment. The statistical significance of im-
provement was then calculated using Fisher r-to-z trans-
form. The results show that the correlation coefficients 
increased in most cases but the improvement was not sta-
tistically significant. That means that the HLF information 
does not improve the metric performance for none of the 
modifications for images with distortion distributed all 
over the image space. 
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Appendix 

In Fig. 5 the computation scheme of HLFSIMPC&PFT is 
shown. The inputs of the metric are reference image (f1), 
distorted image (f2) and FDM (HLF). All other parameters 
are the same as in FSIM. For HLFSIMPC (HLFSIMPFT) 
LLF1 and LLF2 are already the outputs of PC (PFT) algo-
rithm used on both images.  
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