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Abstract. This paper proposes a novel method based on 
first-order statistics, aims to solve the problem of the inde-
pendent component extraction of complex valued signals in 
instantaneous linear mixtures. Single-step and iterative 
algorithms are proposed and discussed under the engineer-
ing practice. Theoretical performance analysis about 
asymptotic interference-to-signal ratio (ISR) and probabil-
ity of correct support estimation (PCE) are accomplished. 
Simulation examples validate the theoretic analysis, and 
demonstrate that the single-step algorithm is extremely 
effective. Moreover, the iterative algorithm is more efficient 
than complex FastICA under certain circumstances. 

Keywords 
Independent component analysis, complex valued 
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1. Introduction 
Independent component analysis (ICA), a multi-chan- 

nel signal processing technique, has been heat debated dur-
ing the past decades. As an important tool for blind source 
separation, ICA has been widely used in a variety of appli-
cations such as biomedical image analysis, face recognition 
and radar data [1]-[3]. However, most researchers focused 
on real domain of ICA. Recently, due to the crying need of 
frequency domain signal processing [4], array signal proc-
essing [5] and wireless communication [6], [7], some 
efforts have been made to explore its extension to complex 
domain. 

The complex-valued sources could be sub-Gaussian 
or super-Gaussian with circular or noncircular symmetric 
distributions [8], [9]. The algorithms of complex-valued 
ICA might be divided into two types: one type of the algo-
rithms is based on second-order statistics [10], [11], which 
mainly includes algorithm for multiple unknown signals 
extraction (AMUSE), second-order blind identification 
(SOBI), strong uncorrelating transform (SUT), and Jacobi 
angles for simultaneous diagonalization (AJD); another 
type is based on higher-order statistics[12], which includes 
complex FastICA [8], forth-order blind identification 

(FOBI) [13], kurtosis based algorithms [14] and so on. 
However, for most of the algorithms using second and 
higher order statistical information, these methods gener-
ally have higher complexity, and are not efficient enough 
especially in power-limited scenarios. Recently, some re-
search has aimed at exploiting prior knowledge about the 
mixing system or the sources themselves. This may include 
information on the support of the source of interest, i.e., the 
time or frequency indices where the desired source is posi-
tive or presents significant power [15], [16]. But these 
source extraction methods essentially require the solution 
of eigenvalue decomposition (EVD) or generalized EVD 
problem per iteration. Vicente Zarzoso et al. proposed 
another algorithm which exploits first-order statistics of the 
whitened observations, under the circumstance that the 
positive support of the real-valued sources is known [17]. 
The positive support denoted the sample indices where the 
source of interest presents positive values. Compared to 
second and higher order statistical algorithms, the algo-
rithm behaves more efficient to separate the mixed 
real-valued signals, particularly when the positive support 
is entirely seized. Nevertheless, it is a pity that the algo-
rithm and conclusion can’t be directly applied to solving 
the complex case. 

In this paper, aiming to solve the problem of the inde-
pendent component extraction of complex valued signals in 
instantaneous linear mixtures, we propose an extremely 
effective method using only the first-order statistics of the 
signals. In order to extend this method in engineering prac-
tice of wireless communications, a brief scheme is also 
proposed and discussed. Section 2 introduces the data 
model and assumptions in brief. All source signals are cir-
cular symmetric distributed, which is an important signal 
form in wireless communication systems. Section 3 puts 
forward a novel method for complex-valued issue based on 
first-order statistics. Two kinds of single-step segregators 
are proposed and discussed. Theoretically speaking, prior 
knowledge of the positive support that is distinct from the 
definition in [17] must be required by the method; while in 
engineering practice, achieving the prior knowledge is dif-
ficult and even impossible. Therefore, a project is consid-
ered to solve this problem, in which a combination between 
the method and the training-based communication system 
is made. An iterative algorithm is also provided in order to 
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overcome the inaccuracy rooting in engineering practice. 
Furthermore, theoretical performance analysis about 
asymptotic interference-to-signal ratio (ISR) and probabil-
ity of correct support estimation (PCE) are accomplished in 
Section 4. Section 5 carries out several simulations and 
discussion on the performance, including ISR, correct sup-
port estimation ratio r and performance index (PI). The 
theoretic analysis is validated by simulation results. Com-
parison of the performance between this method and classic 
Complex FastICA is made. In Section 6, a concise conclu-
sion is given. What’s more, this paper can be regarded as 
an important complement for Vicente Zarzoso’s method in 
[17]. 

2. Data Model and Assumptions 
The complex-valued ICA model used in this article is 

 ( ) ( )t tz Qs  (1) 

where 1 2( ) [ ( ), ( ), , ( )]T
nt z t z t z tz   is the vector of 

whitened observations, 
1 2( ) [ ( ), ( ), , ( )]T

nt s t s t s ts   is the 

vector of sources, and Q is an unknown unitary mixing 
matrix connecting sources and whitened observations. 
Without loss of generality, we will presume that s1(t) is the 
source of interest. In our complex-valued ICA model, all 
source signals are circular symmetric distributed, which is 
quite realistic in practical problems [8]. Therefore the 
sources satisfy the following four assumptions: 

AS1: The source signals s(t) are zero mean. 

AS2: The source signals s(t) are statistically 
independent. 

AS3: For all source signals, real and imaginary parts 
are uncorrelated and their variances are equal. 

AS4: All source signals have unit variances, i.e., 
*{ ( ) ( )} 1k kE s t s t   for {1,2, , }k n   . 

3. The Proposed Algorithm 
In this section, before concentrating on the proposed 

algorithm, we introduce the definition of first-order statis-
tics first. First-order statistics can be mainly described by 
mathematical expectation and conditional expectation of 
the signals. 

Assume that the probability density function of a con-
tinuous random variable x is p(x), and the conditional prob-
ability density function of x given continuous random 

variable y is p(x|y). If ( )p d


 x x x  and ( | )p d


 x x y x  

converge absolutely at constants, then the former is the 
mathematical expectation of x, and the latter is the condi-
tional expectation of x [18]. In this work, we utilize the 
conditional expectation as the first-order statistics. Since 
the probability density function is generally unknown, the 

conditional expectation is appropriately obtained by 
averaging the samples under given condition. 

Now we present the algorithm for complex-valued 
signals under the data model in Section 2. The algorithm 
for one source of interest is 

Segregator 1  
1{ | 0}E R w z   (2) 

where R1 is the real part of s1. The segregator is gained by 
the conditional mean, which amounts to averaging the 
observations over the samples where R1 is positive-valued. 
Then, the source of interest can be estimated as: 

 
1

Hy s w z  with 
1 1{ | 0} 0E R R    . (3) 

The reason why the estimated source signal equals αs1 
can be illustrated as follows: 

According to model (1), we have 

1 1{ | 0} { | 0}E R E R    w z Qs Qg ,  

where 
  

1{ | 0}E R g s .  (4) 

Considering AS1, AS2 and the un-correlation assump-
tion in AS3, we have: 

1 1 1 1 1 1 1{ | 0} { | 0} { | 0}g E s R E R R jE I R        , 

1{ | 0} 0k kg E s R    

where I1 denotes the imaginary part of s1. 

Hence,  1g e , where [1,0,0, ,0]T1e  . 

Consequently, 
1

H H H Hy s   w z g Q Qs g s . 

Therefore, s1 is estimated as y, and sk for {2, , }k n    

can be recovered in the same way. Similarly, we can con-
ceive another algorithm based on the positive support of 
imaginary part, the segregator of which turns into 

1{ | 0}jE I  w z . Furthermore, joining these two algo-

rithms together will fabricate an algorithm with better per-
formance, which can be proved in Section 4. The segrega-
tor is expressed as follows: 

Segregator 2   
1 1[ { | 0} { | 0}]/ 2E R jE I   w z z . (5) 

Undoubtedly, the Segregator 2 needs more prior 
knowledge of the sources. Both of the segregators, simple 
yet effective, can independently accomplish the source 
separation task. To choose which kind of the segregator 
depends on how much prior knowledge is provided. 

In engineering practice, achieving the prior knowl-
edge is difficult and even impossible. Therefore, we con-
sider the following project to win through: 

Procedure 1. Transmit the pilot sequence of each 
source one by one, i.e., n pilot sequences take turns occu-
pying the channel. The receiver synchronously gets the 
positive support of each pilot sequence during the interval 
nΔt, where Δt is the interval of single pilot sequence. 
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Procedure 2. Retransfer the pilot sequences during 
the interval Δt, i.e., n pilot sequences occupying the chan-
nel simultaneously. Calculate the segregator using Segrega-
tor 1 or Segregator 2 after the mixtures of pilot sequences 
are received. 

Procedure 3. Transmit the communication source 
signals simultaneously. Use the segregator gained from 
pilot sequences to separate the mixed signals directly. 

Thus, if the wireless communication system follows 
the rule above, mutually independent source signals will be 
able to transmit simultaneously in the same frequency band 
in the stationary or slowly varying non-stationary environ-
ment. It can be seen from the project that the separation 
performance relies on the accuracy of the segregator ob-
tained from pilot sequences. Whereas the estimation of the 
pilot’s positive support wouldn’t be totally accurate in prac-
tice. To overcome the limitation, we think of adding the 
following iterative algorithm before Procedure 3: 

Iterative Segregator 

Step 1. Calculate the estimate of each pilot sequence. 

Step 2. Obtain the positive support of the estimate. 

Step 3. Recalculate the modified segregator 1 

 0
~  RE zw  or the modified segregator 2 

    2/]0
~

0
~

[  IjERE zzw , and then return to Step 1 

to estimate the plot sequence. Repeat these steps until the 
estimate converges. R

~  and I
~  denote the real and 

imaginary part of the estimated pilot sequence respectively. 

4. Performance Analysis 
In this section, the theoretical analysis on source 

extraction performance of the segregators (i.e. Segregator 1, 
Segregator 2 and Iterative Segregator regardless of the 
engineering project) is carried out. Both the performance of 
interference-to-signal ratio (ISR) and the probability of 
correct support estimation (PCE) will be deduced based on 
all assumptions of the source. In order to simplify the issue, 
two further assumptions are made: 

AS5: The source signals consist of i.i.d. samples. 

AS6: Both the real and imaginary parts of the source 
signals are symmetric distributed. 

For the observation lengths are finite in practice, we 
assume that the observations are composed of T samples, 
the index of which is expressed as S = {0, 1, …, T – 1}. 
The set S can be divided into two exclusive sets Sr1 and 

1rS  (or Si1 and 1iS ) where Sr1 (or Si1) is the positive sup-

port of source’s real parts (or imaginary parts) and 1rS  (or 

1iS ) is the complement. The index set estimated as the 
positive support of the source’s real parts (or imaginary 
parts) is denoted Fr (or Fi), the cardinality of which is 

/2N T  according to AS6. Here we suppose the correct 

support estimation ratios for real and imaginary parts are 
equal. Therefore, the set Fr (or Fi) is the union of set Fr1 (or 
Fi1) composed of N1 indices correctly identified, i.e., for 
which actually R1(t) > 0 (or I1(t) > 0), and its complement 

1rF  (or 1iF ) of N - N1 indices in Fr (or Fi) where R1(t) > 0 
(or I1(t) > 0). In short, we can express these relations as 
follows: 

1 1 1 11 1 1 1, , ,r r r rr r r r r r r      S S S F F F F F S F F S

and 

1 1 1 11 1 1 1, , ,i i i ii i i i i i i      S S S F F F F F S F F S . 

Being interested in average ISR per interfering source, 
we refer to [17] and reach an amendatory definition 

  
   
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where the component of the source of the interest 
1y  and 

the interfering component b  make up of the estimated 

signal, i.e.,   
1

H
y y b  g s  . Given  Tnggg ~,...,~,~~

21g , we 

have 
111

~~ sgy   and 
k

n

k
k sgb 




2

~~ . 

Then, two theoretical expressions of ISR are gained 
corresponding to Segregator 1 and 2 respectively: 

Expression 1   
2 2

1

(2 1)
ISR

T r 



, 

Expression 2   
2 2

1

2 (2 1)
ISR

T r 



 

where r = N1/N represents the correct support estimation 
ratio, and α is summarized in Tab. 1 for some common 
probability distributions. These expressions indicate that 
ISR is in inverse proportion to sample size T, and extremely 
increased when r tends to 0.5. 

Proof. See Appendix A. 

In Section 3, we considered Iterative Segregator 
which can probably be applied to practical wireless com-
munication. Here we use PCE to evaluate the performance 
of the iterative algorithm. For iterative algorithm based on 
modified Segregator 1 (abbr. Iterative Segregator 1), the 

PCE is defined as r’ = P(R1 > 0 | R
~

 > 0); while for the 
iterative algorithm using modified Segregator 2 (abbr. 
Iterative Segregator 2), its PCE is 

   
   

     2/0
~

|00
~

|0

0
~

0
~

0
~

|00
~

|0

11

11








IIPRRP

InumRnum

IInumRRnum
r

  

where R
~

= 1
~
R  + rb

~
 and 1 iI I b     are the real and 

imaginary parts of the estimated signal, num(·) denotes the 
counter. The closed-form expressions are deduced 
respectively 
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Expression 3    d
n

T
erfpr R 




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




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Expression 4    d
n

T
erfpr R 










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

1

22
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1
0

~
1

 

where   12~  r ,   1
~Rp  is the probability density 

function of 1
~R , and erf(·) is the error function. In the 

course of iteration, the correct support estimation ratio will 
be updated according to Expression 3 and 4. 

Proof. See Appendix B. 

In the proposed iterative segregator, the complexity of 
the algorithm mainly depends on step 1, which means that 
the algorithm needs О(nT) products per iteration. Complex 
FastICA [8], one of the most computationally attractive 
Complex ICA methods proposed to date, needs the same 
quantity level products per iteration, and AJD approach 
[19], which converges slower than Complex FastICA, 
needs О(n2T) products per iteration. 

 

Bernoulli Sinusoid Uniform Laplacian Gaussian 

2

2

 2


 6

4

 1

2

 1
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Tab. 1. Conditional mean 
1 1 1 1{ | 0} { | 0}E R R E I I      

for some normalized distributions. 

5. Simulation Results and Discussion 
Here, several sets of simulation results are provided to 

demonstrate the performance of the proposed algorithm. 
Generally speaking, experiments on both single-step and 
iterative algorithms have been carried out. 

Simulation 1. Performance of the single-step algorithm 

In this simulation, we suppose that the prior knowl-
edge is totally known, and use Segregator 1 and 2 to sepa-
rate unitary mixtures of n independent sources with the 
same distribution. The unitary mixing matrix Q in data 
model of (1) is created randomly. 

Fig. 1 illustrates the ISR performance between Segre-
gator 1 and 2 when n = 20 for different sample size. The 
4QAM sources, whose real and imaginary parts are both 
Bernoulli distributed, are adopted in this simulation. Re-
sults are averaged over 100 Monte Carlo runs. We can see 
that the theoretical performance analysis by Expression 1 
and 2 well approximates the simulation results, and the 
performance of Segregator 2 is about 3 dB better than 
Segregator 1 just as Expression 1 and 2 indicate. 

Fig. 2 shows the ISR performance for different values 
of the correct support estimation ratio r when the sample 
size T = 1000. The simulation results are well approxi-
mated by the theoretical performance analysis. 

 

Fig. 1.  ISR versus sample size for Segregator 1 and 2 when 
n = 20, r = 1.  

 

Fig. 2. ISR versus correct support estimation ratio for 
Segregator 1 and 2 when n = 20 and T = 1000. 

Simulation 2. Performance of the iterative algorithm 

Here, the convergence speed of iterative segregator 
when n = 10 is considered. The 4QAM sources composed 
of T = 1000 samples are adopted in this simulation. The 
mixtures are also unitary for the data model of (1) is 
applied. 

In Fig. 3, we compare the convergence speed of cor-
rect support estimation ratio r between Iterative Segregator 
1 and 2. The different initial values of the correct support 
estimation ratio are considered and labeled as r1. Likewise, 
results are obtained over 100 Monte Carlo runs. One can 
observe that, after several iterations the correct support 
estimation ratio r converges at 1.0. When r1 = 0.6, Iterative 
Segregator 2 (Fig. 3, right) converges more swiftly than 
Iterative Segregator 1 (Fig. 3, left). And the theoretical 
curves in Fig. 3-right, are more precise than the left one. 

In Fig. 4, the performance of ISR is provided between 
Iterative Segregator 1 (Fig. 4, left) and Iterative Segregator 2 
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Fig. 3.  r of Iterative Segregator 1 and 2 for different initial correct support estimation ratios when n = 10 4QAM sources and T = 1000 
samples are adopted. 

 

Fig. 4.  ISR of Iterative Segregator 1 and 2 for different initial correct support estimation ratios when n = 10 4QAM sources and T = 1000 
samples are adopted.

 

Fig. 5.  Performance index (PI) among Complex FastICA, 
Iterative Segregator 1 and 2 when n = 10 4QAM 
sources and T = 1000 samples are adopted. 

(Fig. 4, right). As iterations increase, the correct support 
estimation ratio r is improved. So it is not difficult for us to 

understand the amelioration of the ISR performance. The 
estimated ISR from Expression 1 and 2 well approximates 
the simulated one if r1 is not close to 0.5. 

In Fig. 5, the comparison of performance index (PI) 
[20] is made between Complex FastICA and Iterative 
Segregators, where the classical expression of PI is 

1 1 1 1

| | | |1
1 1

max | | max | |

n n n n
ij ij

i j j iij ij
j i

g g
PI

n g g   

    
       
    

   
     

with gij =[WQ]ij, and W denotes the estimated mixing 
matrix. The PI performance of Iterative Segregator 1 for 
r1 = 0.55 is slightly worse than Complex FastICA, but it 
will be greatly improved if we adopt the Iterative Segrega-
tor 2 or enhance a little accuracy of prior knowledge. 
Meanwhile, considering the complexity per iteration dis-
cussed in Section 4, the proposed algorithm is more effi-
cient than Complex FastICA to some extent. 

The analysis can be summed up by a few empirical 
rules to indicate the advantages and disadvantages of our 
method, as well as the requirements for application: 
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 For single-step algorithms, large samples and high ac-
curacy of prior knowledge of support information lead 
to excellent separation performance. And the ISR per-
formance of Segregator 2 is generally 3dB better than 
Segregator 1, which demonstrates the theoretical per-
formance analysis. 

 For engineering practice such as wireless communica-
tions, although prior knowledge seems to be available 
over the pilot sequences, it is difficult to achieve accu-
rate prior knowledge. But further iterations (i.e. Itera-
tive Segregators) can improve the accuracy and obtain 
the same performance as the single-step one when r 
converges at 1.0. 

 Since the proposed method belongs to semi-blind sce-
narios and r1 = 0.5 indicates that no prior knowledge 
is available, the r1 should be not too close to 0.5 for 
our method. The method is extremely cost-effective, if 
a little more prior knowledge is adopted. 

6. Conclusion 
In this paper, a novel method for complex-valued ICA 

based on the conditional first-order statistics of the 
whitened observations is proposed. The performance of the 
method relies on sample size, the segregator type, and the 
accuracy of prior knowledge, but further iterations can im-
prove the accuracy. Simulation results support the theoretic 
analysis, and demonstrate that compared to classic 
Complex FastICA, the proposed iterative algorithm is more 
efficient if a little more prior knowledge is adopted. The 
practical project considered in Section 3 indicates that the 
method can be compatibly applied to wireless communica-
tion system. Future research includes the improvement of 
the method on fully blind scenarios, the extension to non-
circular symmetric distributed sources and the investigation 
on the method in non-stationary environment. 

Appendix A: Proof of ISR Expressions 
According to (6), computing the ISR needs the cal-

culation of E{ *~~
kk gg } for 1 k n  . Here, we consider 

Expression 1 based on Segregator 1 in the first instance. In 
practice, we should first remove the sample mean from 
every sample of the observations so as to ensure the ra-
tionality of AS1. Therefore the global transformation (4) 
can be expressed as the following sample version: 

 1 1 1 1
( ) ( ) ( ) ( )
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where  Tnggg ~,...,~,~~
21g . For 2 k n  , under the 

assumption AS3 and AS5, we obtain 
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Considering the independence assumption AS2 and 
unit-power assumption AS4, we have { ( )} 0kE s t   and 

var{ ( )} var{ ( )} 1/2k kR t I t  , so that 
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For k = 1, under the symmetry assumption AS6, we have 

        

1

1
1

2
11 1

{ ( )}

1
var{ ( )} ,

2

r

r

rr

t
E R t

t

R t t or t







 
 

   

S

S

S S

 (A-4) 

Now, N1 indices of Fr belong to Sr1 and the remaining 
N - N1 to 1rS ; by symmetry, set rF  contains N - N1 indi-

ces in Sr1 and N1 in 1rS . Hence, we obtain 
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For sufficient sample size, E{ *
11

~~ gg } is dominated by 

   *
11

~~ gEgE , as a result,     22*
11 12~~  rggE . Bring this 

expression and (A-3) into (6), we obtain 
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To acquire Expression 2 based on Segregator 2, 
another global transformation can be given 
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Under the assumptions AS1-AS6, similarly we have 
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Bring (A-8) into (6), we obtain 
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1

2 (2 1)
ISR
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Appendix B: Proof of PCE Expressions 

To deduce the closed form of r’ = P(R1 > 0 | R
~

 > 0), 
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we note that P(R1 > 0 | R
~

 > 0) can be reduced to 

P( R
~

 > 0 | R1 > 0) according to Bayesian theorem and 

symmetry assumption. To calculate P( R
~

 > 0 | R1 > 0) 
needs the integration of  up RR 0|

~
1

 over [0, ) , where 

 up RR 0|
~

1
 is the probability density function of R

~
 given 

R1 > 0. Otherwise, considering   
1

H
y y b  g s   and (A-5), 

  1111
~~~ ssgEy   for sufficient sample size. Then we 

have 11
~~
RR  , with   12~  r .  

Thereby, 
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where the symmetry assumption exert an influence. The 
interference term rb  performs as a zero-mean Gaussian 
random variable with variance 2 2{ } ( 1) / 2rE b n T    , for 

the reason that       TnggEbbE
n

k
kk /1~~~~

2

** 


 and 

* 2 2 2 2 2
{ } { } { } { } 2 { }r i r i rE bb E b b E b E b E b           , where 

we use equation (A-3) and assumption AS3. 

The discussion above leads to 
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where the fourth equality uses the error function 
2

0

2
( )

x verf x e dv


   and follows from the change of 

variable ( ) /( 2 )v u    . 

Otherwise, the deduction of r’ =[ P(R1 > 0 | R
~

 > 0) + 
+P(I1 > 0 | Ĩ > 0)]/2, which represents the performance of 
iterative algorithm based on Segregator 2, resembles the 

former. Since P(R1 > 0 | R
~

 > 0) ≈ P(I1 > 0 | Ĩ > 0), the 

probability is reduced to r’= P(R1 > 0 | R
~

 > 0). Whereas 
the interference term rb  performs distinctively with the 

variance 2 2{ } ( 1) / 4rE b n T    , for  *~~
bbE  

    TnggE
n

k kk 2/1~~
2

*  
, where equation (A-8) is 

exploited. Therefore, the closed-form expression turns into 
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. 

The proof is completed. 
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