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Abstract. Standard tracking filters perform target detec-
tion process by comparing the sensor output signal with 
a predefined threshold. However, selecting the detection 
threshold is of great importance and a wrongly selected 
threshold causes two major problems. The first problem 
occurs when the selected threshold is too low which results 
in increased false alarm rate. The second problem arises 
when the selected threshold is too high resulting in missed 
detection. Track-before-detect (TBD) techniques eliminate 
the need for a detection threshold and provide detecting 
and tracking targets with lower signal-to-noise ratios than 
standard methods. Although TBD techniques eliminate the 
need for detection threshold at sensor’s signal processing 
stage, they often use tuning thresholds at the output of the 
filtering stage. This paper presents a Continuous Wavelet 
Transform (CWT) and Hidden Markov Model (HMM) 
based target detection method for employing with TBD 
techniques which does not employ any thresholding. 
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1. Introduction 
In standard tracking filters, target detection is per-

formed by comparing the sensor output signal with a prede-
fined threshold. However, using a threshold brings out two 
major problems. The first problem occurs when the thresh-
old is selected very low which increases the false alarm 
rate. This implies that measurements not originating from 
targets of interest which exceed the threshold are detected 
as target. The second problem arises when the selected 
threshold is very high which increases the track loss rate. 
This means, targets with low signal-to-noise ratio (SNR) 
may not be detected. Track-before-detect (TBD) techniques 
eliminate the need for a detection threshold and help de-
tecting and consequently tracking targets with lower signal-
to-noise ratios. 

Numerous studies can be found on TBD techniques in 
the literature, but Dynamic Programming (DP) and particle 
filter based implementations are the most common and 

well-known techniques. In [1]-[3], DP based TBD methods 
were proposed for detecting and tracking low SNR targets. 
The analysis in [1] showed that the tracking performance of 
the DP algorithm is poor, even though detection perform-
ance is good and track separation phenomenon is one of the 
factors that deteriorate the tracking performance. An alter-
native approach is the Particle Filtering (PF), which has 
been used extensively for TBD [4]-[7]. It is a numerical 
approximation technique that uses randomly placed sam-
ples to solve the non-linear function of the target state, 
which describes target’s kinematic evolution. However it 
was found that, performance of the PF based detection 
algorithm depends on correctness of the particle weights 
which are calculated using system dynamics which were 
assumed to be known [8]. 

Moreover, although TBD techniques mentioned 
above eliminate the need for detection threshold at sensor’s 
signal processing stage, they often use tuning thresholds at 
the output of the filtering stage. It is the motivation in this 
work to propose a novel method for TBD that avoids em-
ploying any thresholding at any stage. 

Detecting surface targets in the presence of sea clutter 
is an important task for applications like surveillance and 
navigation. The non-stationary nature of the sea clutter 
makes the target detection task more difficult for radar 
applications. Therefore, modeling the sea clutter becomes 
a critical point. Especially, high resolution radars working 
with low grazing angles showed that sea clutter contains 
non-Gaussian nature [9], [10]. There have been some ef-
forts to model the real world sea clutter amplitudes to vari-
ous statistical distributions. Weibull distribution [11], log-
normal distribution [12], K distribution [9], [13] and com-
pound Gaussian distribution [10] are the most well-known 
distributions among these studies. However, fitting real 
world sea clutter data to statistical distributions were not 
successful enough and did not provide adequate help to 
detect targets in the sea clutter environments [14]. The 
major reason for this conclusion is that, these algorithms 
try to model the sea clutter as a stationary process. In real-
ity, sea clutter has a time varying nature and in order to 
adapt to this nature the methods using statistical distribu-
tions need to become more complex. 

Continuous Wavelet Transform (CWT) has become 
a widely used tool in signal processing applications. Unlike 
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Fourier transform, CWT performs analysis in the time 
domain and because of this feature it has been a useful tool 
for applications such as data compression, pattern recogni-
tion, radar signal processing, de-noising and image proc-
essing. Additionally, the flexibility at selecting a mother 
wavelet becomes a major advantage, because selecting 
a proper wavelet for a particular problem increases the 
processing capability. CWT can be interpreted as 2-D cor-
relator and if characteristics of the signal to be detected are 
known a-priori, a proper mother wavelet can be created. In 
that sense, CWT can be considered as a matched filter. 
Because of this feature, selection of an appropriate mother 
wavelet CWT becomes an efficient detection tool. 

In recent years, Hidden Markov Model (HMM) based 
methods have become indispensable in applied mathemat-
ics and modern pattern recognition. Hidden Markov Mod-
els are especially known for their application in temporal 
pattern recognition such as speech, sound, handwriting and 
image recognition. Recently, Markov based procedures and 
algorithms have also been applied successfully in pattern 
recognition for radar target detection and classification 
[15]], [[16]. The underlying assumption of the HMM is that 
the data samples can be well characterized as a parametric 
random process and the parameters of the stochastic proc-
ess can be estimated in a well-defined framework.  

This paper presents a CWT-HMM based target detec-
tion method for employing with TBD techniques. CWT is 
a useful tool for extracting the required information from 
noisy data. In the proposed method CWT is used to detect 
the singularities originated from target in the received radar 
echo signal. HMM is a powerful statistical method to char-
acterize the observed data samples of a discrete time series 
and used to separate target related signals from clutter. In 
order to evaluate the performance of the proposed method, 
CSIR database [17] was used to detect surface targets from 
real radar data. For this purpose clutter and target models 
have been constructed. Pulse integration was used in order 
to increase signal-to-noise (SNR) ratio. Target detection is 
performed over 10 coherent processing intervals (CPI). 
Then, clutter and target models were trained by Baum-
Welch algorithm with sufficient amount of observation 
data. Finally, detection process was performed on radar 
observations by using Viterbi algorithm.  

In Section 2 brief description of the HMM theory and 
the three basic HMM problems is presented. Section 3 
gives a brief description of the CWT. Section 4 describes 
how solution of the basic HMM problems and the HMM 
structure can be applied to target detection is introduced. 
Section 5 gives a summary of the proposed method. 

2. Brief Overview of HMM 
An HMM consists of a set of N states, each of which 

is associated with a set of M possible observations. The 
parameters of the HMM include: 

 An initial matrix of state probabilities given by 

   TNppp ,,, 21       (1)
 

whose elements, pi i  [1, N]  describe the position distri-
bution probabilities of the target over the initial state set at 
the beginning t = 1. 

 A transition matrix defined as 
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whose elements aij; i, j  [1, N] are the transition prob-
abilities from state i to state j. 

 An observation matrix given by 
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whose elements bim are the probabilities of observing 
symbol m  [1, M] given that the system is at the state 
i  [1, N]. 

The HMM parameter set is denoted by  = (A, B, ). 
The transition probabilities express which type the model 
is, i.e., ergodic, left-right or coupled. Three basic problems 
have to be address with the HMM [18]:  

 Evaluation problem: What is the probability of the 
observation O, given the model , i.e. P(O|) = ? 

 Decoding problem: What is the most likely state 
sequence given the observation O, i.e.  
args[max P(O|)] = ? 

 Estimation problem: How can one estimate the 
parameters given the training observation sequences, 
* = arg[max P(O|)] = ?  

3. Brief Overview of CWT 
CWT is defined as the convolution product of time 

series signal f(t) , with the scaled and translated versions of 
wavelet function   and integrating over time. 
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where  and  are scale and translate parameters respecti-
vely,   

is the complex conjugate of the wavelet function 

 . The result of the CWT is the numerous number of 

wavelet coefficients, C, as a function of scale and transla-
tion. 

In recent years, CWT has been used to analyze radar 
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signals and become an efficient tool for target detection. 
The main goal of employing CWT for target detection is 
the presence of singularities caused by the target itself. As 
these singularities are not visible, they can be detected by 
analyzing the CWT coefficients which include detailed 
level information of the received time series signal [19]-
[22]. In this paper, complex valued Morlet wavelet is pro-
posed for analyzing the received radar signal for detection 
of target. In literature, Morlet wavelet has been utilized in 
sonar and radar applications due its good response to tran-
sient complex exponential sinusoids in noise [23]. 

4. Application of HMM to Target 
Detection 
In the proposed method, the HMM is used to detect 

targets in the presence of clutter. Let each radar measure-
ments be represented by a sequence of measurement vector 
or observations O, defined as 

  ToooO ...,, ,21 .  (5) 

The target detection problem can then be regarded as 
that of computing 
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where wi is the ith detection. In this study, detections are 
divided into two main classes as clutter and target. If 
needed, these classes can be divided into subclasses. For 
example, clutter class can be divided into sea and land 
clutter subclasses and target class can be divided into con-
stant velocity and coordinated turn subclasses. The prob-
ability given in (6) is not computable directly; however, 
Bayes’ Rule yields 
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Thus, for a given set of prior probabilities P(wi), the 
most probable detection depends only on the likelihood 
P(O|wi). If the dimensionality of the observation sequence 
O considered, the direct estimation of the joint conditional 
probability P(o1, o2,…|wi) from examples of radar meas-
urements is not practical. However, if a parametric model 
of radar measurement production such as a Markov model 
is assumed, then estimation from data is possible since the 
problem of estimating the class conditional observation 
densities P(O|wi) is replaced by the much simpler problem 
of estimating the Markov model parameters [24]. 

In HMM based target detection, it is assumed that the 
sequences of observed radar measurement vectors corre-
sponding to each detection are generated by a Markov 
model as shown in Fig. 1. A Markov model is a finite state 
machine which changes state once every time unit (in this 
application time unit is a radar scan) and each time t that 
a state j is entered, a radar measurement vector is generated 
from the probability density bj(ot). Furthermore, the transi- 

tion from state i to state j is also probabilistic and is repre-
sented by the discrete probability aij. The joint probability 
that O is generated by the model M moving through the 
state sequence X is calculated as the product of the transi-
tion probabilities and the output probabilities. So, for the 
state sequence X given in Fig. 1 
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In practice, only the observation sequence O is known 
and the underlying state sequence X is hidden. 

 
Fig. 1.  The Markov generation model. 

Given that X is unknown; the required likelihood is 
computed by taking the sum over all possible state se-
quences (Bayesian approach) X = x(1),  x(2), x(3),…, x(T), 
that is 
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where x(0) is constrained to be the model entry state and 
x(T + 1) is constrained to be the model exit state. 

As an alternative to (9), the likelihood can be ap-
proximated by considering the most likely state sequence 
that is (Viterbi approach) 
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Given a set of models, Mi, corresponding to detections 
wi, equation (6) is solved by using (7) and assuming that 
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Given sufficient number of training examples of each 
detection, a HMM can be constructed which implicitly 
models all of the many sources of variability inherent in 
real radar measurements. Fig. 2 summarizes the use of 
HMMs for target detection. Firstly, a HMM is trained for 
each detection using a number of examples of that detec-
tion. In this case, just two detection models: “clutter” and 
“target” models are used. Secondly, to detect some un-
known radar measurements, the likelihood of each model 
generating that measurement is calculated and the most 
likely model identifies the detection. 



RADIOENGINEERING, VOL. 23, NO. 1, APRIL 2014 99 

 
Fig. 2.  Using HMMs for target detection. 

4.1 CWT-HMM Structure for Detection 

The measurements, feature set and HMM structure 
determine the overall performance of the detection system 
designed. Efficient way of detecting the target in the clutter 
environment is to correlate the target radar echo signal with 
itself and maximize the SNR at the receiver. In that sense, 
CWT can be considered as correlator or a matched filter 
bank. If signal to be detected can be known a priori, this 
signal can be used for modeling a mother wavelet. Using 
CWT, received radar signal spectrum can be separated into 
different frequency bands. The goal is, using different filter 
resolutions for adapting the variability in the received radar 
signal frequency components. In this paper, complex Mor-
let mother wavelet was used for CWT analysis. The ability 
of complex Morlet wavelet for detection of transient sinu-
soidals in the noisy signal efficiently, gives an opportunity 
for detection of target signal in the sea clutter environment. 
Fig. 3 shows an example of received radar signal which 
includes target and sea clutter measurements whereas 
Fig. 4 gives percentage of energy for each wavelet coeffi-
cient with respect to wavelet scale. As seen from the figure, 
maximum energy values correspond to the points where the 
correlation between received radar signals and mother 
wavelet is maximized. Considering that the mother wavelet 
is designed according to the target signal to be detected, the 
maximum energy points are the potential evidence for 
target presence. However, it has been observed that, deter-
mining a single wavelet scale which optimizes the target 
detection is a difficult task, because the presence of a target 
in the frequency bands is affected by target’s physical 
characteristics, maneuvers, speed and etc. Fig. 5 shows 
wavelet scale change during 10 CPI of target maneuver. As 
it can be seen from the figure, wavelet scales which are in 
accordance with the target presence change over time. 
Therefore, a range of wavelet scale was selected for proc-
essing. In order to make sure about the target presence at 

these points, the range and bearing changes corresponding 
to these points need to be taken into the consideration. The 
proposed method uses range and bearing values related 
with the maximum energy points of CWT coefficients 
along with their delta, acceleration and third differential 
coefficients as a feature vector. Delta, acceleration and 
third differential coefficients provide the ability to detect 
the target maneuver in an efficient way [25] and are calcu-
lated through, 

 








  


1

2

1

2

)(



 



 tt
t

cc
d  (12) 

where dt is a delta coefficient at time t and    is the win-
dow size. The same formula is applied to the delta coeffi-
cients to obtain the acceleration coefficients.   

 
Fig. 3.  Received radar signal. 

 
Fig. 4.  Percentage of energy for each wavelet coefficient. 

4.2 The Database 

The database was created by the Council for Scientific 
and Industrial Research (CSIR) in South Africa, which is 
one of the leading scientific, and technology research, de-
velopment and implementation organizations in Africa. 
One of the key research topics that need to be addressed in 
developing the database is the detection and tracking of 
small boats at sea and in the littoral which is important for 
weapons  trafficking,  smuggling, poaching, piracy, illegal  
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Fig. 5.  Wavelet scale change according to target maneuver. 

immigration and terrorism. The radar deployed on the 
measurement trials is an experimental, monopulse, pulsed 
Doppler X-band radar with an instrumented range of 60 km 
[17]. During the measurement trials different types of sur-
face vessels were used whose lengths vary between  
4.2 m – 10 m. and both sea clutter and boat reflectivity data 
was recorded with environmental conditions (wind speed, 
wave height). Boats used during the trials were instru-
mented with GPS which provides recording the radar data 
with position information (range and bearing) wrt. to time. 
In order to test the proposed method, 4.2 m length boat was 
selected. The environmental conditions of the selected data 
are defined as wind speed and wave height which are 
6.03 Kts and 2.66 m respectively. 

4.3 HMM Topology 

Each clutter and target detections were modeled by 
a 12 state HMM. HMM state number was chosen experi-
mentally as a tradeoff between detection performance and 
computational complexity [24]. State 1 is the entry and 
state 12 is the exit states of the HMM. States 2 to 10 are the 
emitting states which correspond to measurements obtained 
from sequential CPIs. Clutter and target models were 
trained separately. Feature set consists of range and bearing 
values along with their delta, acceleration and third differ-
ential coefficients which were collected from each CPI. 
The HMMs are estimated from the training database in 
an offline training stage. The CSIR database contains raw 
radar measurements for sea clutter only and target with sea 
clutter separately. For each HMM 75% of related meas-
urements were used for training and remaining measure-
ments were used for test purposes. The measurements 
which were used for training were not used for testing. 
HTK toolkit was used to perform HMM training and test-
ing processes [24]. 

4.4 Target Detection Process 

When target is in the radar illuminated area, there is 
numerous number of measurements at the radar receiver. 
The efficient way of increasing SNR at the radar receiver is 
to add up the received signals reflected from the target. 

Therefore, coherent pulse integration is used in order to 
preserve phase information and 0.5 sec. CPI time was se-
lected. Target detection is performed over 10 consecutive 
CPI. The detection process is as follows: 

1. CWT is applied to signals inside the CPI for every 
range-bearing cell. As the frequency band which the 
presence of target resides may change according to its 
maneuver or speed, different frequency bands needed 
to be considered. For this reason, a range of wavelet 
scales between 1-64 is selected. In addition, to in-
crease the resolution of the frequency bands, the se-
lected range was divided into 100 equal sub-bands.  

2. Potential target range-bearing cells are identified ac-
cording to the maximum energy level of CWT coeffi-
cients. 

3. Step 2 is repeated 10 times and resulting range-bear-
ing cell changes were accumulated into a buffer. 

4. HMM was used for accumulated range-bearing 
changes in order to detect a target trajectory.  

Detection process starts with forming the observation 
sequence, that is, by collecting 10 consecutive CPI data. 
There is no assumption as to which part of the target tra-
jectory is sampled in the observation sequence and the aim 
of the CWT-HMM detection is to perceive the target tra-
jectory through observation sequences. Detection was per-
formed by applying the Viterbi algorithm on accumulated 
CPIs to find the most likely model, i.e., whether the meas-
urement has been originated from a target or from clutter, 
then at the end of the detection process measurements in 
each CPI is marked as clutter or target.  

4.5 Experimental Results 

Experiments showed that, in real world conditions the 
reflected radar signal power from the low observable tar-
gets can be below the sea clutter signal level. To visualize 
this statement, Fig. 6 gives an example detection process 
which considers that the maximum signal power at the 
radar receiver is considered as a target. As it can be seen, 
such a process fails in detecting the target when its signal 
power is below the clutter level. By looking at Fig. 6, it can 
also easily be predicted that, conventional algorithms 
which uses thresholding at the radar receiver results in 
a high false alarm rate under such conditions. The main 
idea behind the utilization of CWT is to detect the transient 
sinusoids from the received radar signal which were caused 
by the target itself. This approach makes the proposed 
algorithm independent from the target signal level. The 
usage of the HMM gives the ability to recognize the target 
trajectory in the observation data. In this work, the obser-
vation data is the range cell of the target related transient 
sinusoids detected by selecting the coefficients which has 
maximum energy level after CWT. The main idea behind 
the TBD approach is to detect the target trajectory, rather 
than detecting the signal on every time instant. Therefore, 
detection process is performed on consecutive time 
intervals.  
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Fig. 6.  Detection process which considers that the maximum 

signal power at the radar receiver is considered as 
a target. 

The obtained results have revealed that the proposed 
method has a potential to detect surface targets in the pres-
ence of sea clutter without using any thresholding. Fig. 7 
shows sequences of clutter and target originated measure-
ments in an observation sequence respectively. As it can be 
seen from Fig. 7, clutter is a noise like signal and has no 
apparent relation between range samples, whereas meas-
urements from a target, which moves according to a tra-
jectory, display strong relation. Fig. 5 shows the wavelet 
scale change during the maneuver shown in Fig. 7, the 
maneuver of a target leads to change in the frequency band 
where the transient signal resides. As the target platform 
accelerates or maneuvers the presence of target in the fre-
quency bands change. For example, as shown in Fig. 5 and 
Fig. 7, during measurement samples between 3-6 target 
platform changes its speed and course which affects the 
frequency of the target presence in the received radar echo. 
Therefore, wavelet scale range 1-64 was divided into 100 
parts in order to increase the time-frequency resolution.  

 
Fig. 7.  Example of a (a) clutter (b) target marked frames. 

Fig. 8 compares the detection performance with the 
real target measurements. The proposed method identifies 
the range cells in which the target resides. As the mother 

wavelet was modeled to optimize the detection perform-
ance, the energy level of CWT coefficients maximizes at 
the points where target reflected signals reside. Moreover, 
with the usage of the HMM, the proposed method detects 
the trajectory of the CWT coefficients and separates clutter 
from target measurements. Since there is no means to indi-
cate where the target is within the identified cell, as 
a common practice, the target is assumed to be located in 
the center of that particular cell. Therefore, CWT-HMM 
method assumes the target is located in the center of the 
cell.  

 
Fig. 8.  Detection performance of CWT-HMM method. 

Fig. 9 shows range differences between real measure-
ments and CWT-HMM detections. Considering that each 
range cell is 15 m wide, this assumption leads to a maxi-
mum 7.5 m deviation from the real target location which 
can be acceptable. On the other hand, it is also seen from 
Fig. 9 that some range differences are outside of the ±7.5 m 
uncertainty interval which indicates false detections. Since 
the processing of CWT can be considered as 2-D cross-
correlator, performance of the proposed algorithm is highly 
dependent on the selection of the mother wavelets with its 
parameters. Especially for targets with maneuvers, the 
characteristics of radar echo signal changes wrt. to the 
reflection points of the target physical surface. This condi- 

 
Fig. 9. Range difference between real measurements and 

CWT-HMM detections. 
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tion is an important aspect which degrades the performance 
of conventional detection algorithms which use threshold-
ing. Due to the reflected radar echo amplitude varies during 
the target maneuver, definition of an appropriate threshold 
value becomes a difficult process. For this purpose, pro-
posed algorithm uses wavelet scales between 1-64 during 
CWT in order to capture the radar echo signal during target 
maneuver in an efficient way. 

5. Conclusion 
In this paper a CWT-HMM based target detection 

method for TBD techniques was presented. The main idea 
in this work is to propose a novel detection method for 
TBD which does not use any of the thresholding methods. 
The proposed method was tested with real radar measure-
ments. Simulations showed that proposed method has 
a potential to detect targets in a sea clutter environments. It 
has also been showed selection of a proper mother wavelet 
optimizes the detection performance, the energy level of 
CWT coefficients maximizes at the points where target 
reflected signals reside. Moreover, with the usage of the 
HMM, the proposed method detects the trajectory of the 
CWT coefficients and separates clutter from target meas-
urements. 
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