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Abstract. The sensor management problem can be 
expressed as obtaining the state estimation with desired 
accuracy by utilizing the resources effectively. In the litera-
ture, there are two principal approaches to this problem, 
namely task-driven and information driven sensor man-
agement. Performance metrics for both task-driven and 
information driven sensor management frameworks suffer 
from the heavy computational burden due to the evaluation 
of expectations or are available only in simulation. In this 
paper, the Observed Information Matrix (OIM), which is 
widely used in statistical practice as a surrogate for the 
Fisher Information Matrix (FIM) in difficult problems, has 
been proposed as a metric that can be used in sensor man-
agement. Recursive computation of OIM has been derived 
for the cases with linear and nonlinear system dynamics 
corrupted with additive Gaussian noise. The usefulness of 
OIM in sensor selection in multistatic target tracking has 
been demonstrated via simulations. 
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1. Introduction 
Target tracking in multi-sensor environment com-

prises the problems of measurement to track association, 
state estimation through filtering and sensor management. 
Sensor management problem can be expressed as obtaining 
the state estimation with desired accuracy by utilizing the 
resources effectively. In the literature, there are two princi-
ple approaches to the sensor management problem. In the 
first approach, which is known as task-driven sensor man-
agement, the problem is formulated in terms of minimiza-
tion of a risk function related to the true state and the esti-
mated state. The second approach is called information-
driven sensor management and the sensor management 
policy is constructed on improving information content of 
posterior distribution in some sense. Information-driven 
sensor management approach is based on determining 
control decisions that maximize some notion of infor-
mation gain or minimize some notion of uncertainty [1].  

Most of the studies on information-driven sensor 
management have focused on information gain between 
prior and posterior distribution. The information gain be-
tween two distributions has been expressed in terms of 
Kullback-Liebler (KL) divergence, which is a measure of 
similarity of two distributions, in [2]. In [3], more general 
Rényi divergence ( –divergence) was introduced instead 
of using KL divergence.  –divergence provides extra 
freedom by choosing the parameter   and this can lead to 
an opportunity to emphasize certain part of the distribution. 
Boers et al. have proposed to look at overall uncertainty, 
i.e., entropy instead of information gain and they showed 
a clever way to calculate entropy by using particle filter in 
[4]. Simulation based performance analysis of aforemen-
tioned information-driven sensor management measures 
have been analyzed in a multistatic sensor environment in 
[5]. Theoretical comparison of these measures was given in 
[1 and references therein]. 

In the task-driven sensor management, utilization of 
the resources is carried out by controlling a function related 
to the accuracy of the target state estimation. A study in 
which the function related to accuracy of the estimation has 
been chosen as Posterior Cramer-Rao Lower Bound was 
presented in [6]. PCRLB is defined to be the inverse of the 
Fisher Information Matrix (FIM) and provides a lower 
bound in terms of second order error on the performance of 
an unbiased estimator. In [6], the target tracking accuracy 
was quantified in terms of PCRLB and subsequently con-
trolled. Sensor management framework presented in [6] 
was then extended to the case where sensor locations are 
not known precisely and sensors have uncertain movement 
in [7]. Another PCRLB based sensor management study 
was presented in [8] where the authors proposed a method 
for calculating multi target PCRLB and exploited PCRLB 
as a measure of estimation accuracy for selecting a subset 
of the available sensors in two scenarios where the total 
number of targets in surveillance region is known and 
fixed, and the number of targets is unknown and time 
varying. A study on determining a subset of available sen-
sors where the number of sensors is large was presented in 
[9]. The study presented in [9] differs from the aforemen-
tioned papers by the challenge of optimally determining 
a subset of sensors from the large number of sensors on the 
basis that the selected set will provide reasonable PCRLB. 
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The authors proposed a convex optimization followed by 
a greedy local search as a near-optimal solution to solve the 
sensor selection problem, and achieved desired estimation 
accuracy measured in terms of PCRLB. This study was 
extended to the condition of limited communication band-
width and average transmitting power in [10], and again 
estimation accuracy was controlled by quantifying PCRLB. 
An important study was presented in [11] where multistatic 
sensor placement problem has been surveyed. FIM has 
been exploited as the quantification of information gath-
ered from the multistatic sensor network and global optimi-
zation based sensor placement strategy was introduced that 
maximizes the information provided to the tracker. PCRLB 
has also been exploited in distributed sensor networks for 
the aim of decentralized sensor selection. In [12], a recur-
sive procedure to compute the fused FIM by using FIMs 
obtained from the distributed estimators was proposed. 
Decentralized sensor selection strategy based on distributed 
PCRLB has been presented in [13]. 

The above mentioned measures exploited for both in-
formation-driven and task-driven sensor management suf-
fer from the necessity of taking statistical expectation to 
calculate them. Especially in the nonlinear state estimation 
problems, there is no closed form solution to these expec-
tations and approximate solutions can only be given. Fur-
thermore, PCRLB must be calculated around the true target 
state and which is only available in simulations. However, 
the papers that proposed PCRLB as a metric also proposed 
that PCRLB could be approximated via Monte Carlo inte-
gration. Consequently, exploiting these measures lead to 
heavy computational burden and approximate solutions. 

In this paper, we propose to employ a statistical met-
ric called Observed Information Matrix (OIM) as a sensor 
management tool. OIM is well known in the statistics liter-
ature and widely used in statistical practice as a surrogate 
for the FIM in difficult problems for which the FIM is not 
available [14, see references therein]. It is defined as the 
negative of the second derivative of the logarithm of the 
likelihood function evaluated at the Maximum A Posteriori 
(MAP) estimation [15]. The inverse of OIM is closely 
related to the PCRLB. However, since calculation of OIM 
involves no expectation, and it is evaluated at the MAP 
estimation, the OIM differs from the FIM. These two defi-
nitions of information coincide in a particular case where 
the estimation problem is modeled under linear Gaussian 
assumptions of the Kalman filter. It is shown in this paper 
that OIM and FIM are being exactly same and equal to 
inverse of the Kalman filter covariance under linear 
Gaussian assumptions. We have shown that the OIM can 
be exploited as the measure of information in multistatic 
target tracking problems in which range and range-rate 
measurements are available and state estimation is carried 
out by using central data fusion architecture. Since the state 
estimation using multistatic sensor measurements range 
and range-rate is a nonlinear problem, we have exploited 
SIR particle filter [16] as state estimator and shown that 
more accurate state estimation can be achieved by selecting 
sensor subset which provides more information in terms of 
OIM. 

The rest of the paper is organized as follows: In Sec-
tion 2, recursive computation of OIM is given and closed 
form expression for the posterior OIM in the presence of 
linear and nonlinear system dynamics corrupted with addi-
tive white Gaussian noise is derived. Theoretical back-
ground of particle filtering and SIR particle filter in partic-
ular is presented in Section 3. Multistatic radar network and 
simulation environment along with the obtained simulation 
results are presented in Section 4. Finally some concluding 
remarks are given in Section 5. 

2. Recursive Computation of OIM 
The OIM is calculated by using joint distribution of 

the state where state and measurement dynamics evolve 
with respect to linear/nonlinear stochastic processes. 
Assume that a target which moves according to discrete 
time state space model given in (1) 
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where 0 1 1, , , , , and k k k k k kx z x f h v w   are 1xn   state vector,  

1xn   measurement vector, initial state vector, linear/non-

linear state transition function, and linear/nonlinear meas-
urement function, process and measurement noise pro-
cesses, respectively. Then the OIM can be calculated by 
using the definition given in (2). 
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  0 1, , ,k kX x x x  , all the state vectors up to and 

including time k, 

  1 2, , ,k kZ z z z  , all the measurements up to and 

including time k, 

 ˆ MAP
kX , MAP estimations of the state vectors kX   

In (2),  ,k kp X Z  is the joint probability density function 

of the state and the measurements, and superscript T de-
notes matrix transpose. The operator 

kX  is the gradient 

with respect to kX . The joint probability density function 

can be written in the form given in (3) by making some 
algebraic manipulations. 
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Logarithm of (3) gives the function where the gradient will 
be computed. The recursive formula for calculating OIM 
can be derived parallel to the method given in [14], [17] 
where recursively computed OIM is called as posterior 
OIM. One can obtain this recursive formula by taking the 
gradient of (4) with respect to kX  and making some alge-
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braic manipulations. As it is seen in (2), the gradient must 
be taken two consecutive times. Hence, K K  gradient 
must be calculated. The posterior OIM at time k then can 
be computed recursively by using the formula given in (5) 
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where   represents the initial information which is inverse 

of the covariance of the prior distribution and k , 1, 1k k   , 

1,k k  are defined as follows: 
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In the subsequent sections, posterior OIM is derived 
for two special cases, namely, i) System state-space model 
is linear and noise sequences are additive white Gaussian 
processes. ii) System state-space model is nonlinear and 
noises are additive white Gaussian processes. 

2.1 Posterior OIM in Linear Gaussian Case 

Linear Gaussian case is defined by stating some 
assumptions: 

 State is a first order Markov process and evolves in 
time via stochastic linear equation given by (7). 

 1 1 1, 1,k k k kx F x v k       (7) 

where vk is zero mean white Gaussian noise process 
with known covariance 
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 Measurements are a linear function of the state and 
they have been corrupted by additive white Gaussian 
noise. 

 , 1,k k k kz H x w k     (8) 

where wk is zero mean white Gaussian measurement 
noise process with known covariance 

 The initial state x0 is a random variable which is 
Gaussian distributed with known mean and 
covariance  

 The noise sequences kv , kw  and the initial state x0 

are independent 

Under these assumptions, logarithm of the joint 
distribution can be written as follows: 
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The probability density functions constituting (9) are 
all Gaussian. 
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If we substitute these density functions into (6) and 
take the required derivatives, then we can write the 
posterior OIM by utilizing (5)  
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As it is seen in (11), posterior OIM at time k is inde-
pendent of state vector as well as the measurements. It is  

also equal to the Fisher information Matrix calculated for 
the linear Gaussian case. If we replace 1kJ   with the 

1
1| 1k kP
   (the estimation covariance at time 1k  ) and rear-

range the equation by using matrix inversion lemma, then 
we will obtain the Kalman Filter covariance update equa-
tion in information filter form. 
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Consequently, since the posterior OIM is independent 
of both state and measurements, there is no more need to 
calculate the MAP estimation of the state. It is sufficient to 
know the probability densities given in (10) for calculating 
the posterior OIM. 

2.2 Nonlinear State-Space Model with 
Additive Gaussian Noise Case 

Suppose that the state transition function fk(.) 
and the 

measurement function hk(.) 
given in (1) are nonlinear and 

the noise sequences abide by the same set of assumptions 
defined in section 2.1. Then, one can calculate the posterior 
OIM by taking the required derivatives of the Gaussian 
densities and obtain the closed form recursive expression in 
the following way: 
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where Jk is calculated around the MAP estimates of the xk - 1 
and xk. If one replaced the gradient and hessian terms given 
in (13) with the equivalences defined in (14) and applied 
the matrix inversion lemma, a more familiar form would be 
achieved. 
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2.3 Posterior OIM in Multiple Sensor Case 

As shown in preceding subsections, the posterior OIM 
is the negative of the hessian of the log-likelihood function 
evaluated at the MAP estimate of target state. One can 
easily extend the posterior OIM recursion to multiple sen-
sors case under the assumption that each sensor measure-
ments are mutually independent and MAP estimation of the 
target state is obtained via central data fusion. Assume that 
there are M sensors and all sensors generate target related 
measurement at each sampling time with probability of 
detection 1DP   and there is no clutter. The joint distribu-

tion required to derive the posterior OIM for multiple 
measurements is defined as follow 
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where i
KZ  represents all measurements belonging to ith  

sensor. The likelihood function given in (16) has more 
complex structure in comparison to one analyzed at the 
beginning of this section. However, it is reasonable to 
assume that the measurements of sensors are independent 
and (16) reduces to multiplication of likelihood function of 
each sensor. Additionally, log-likelihood function under 
this assumption becomes simply sum of the log-likelihood 
function of each sensor. 
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As we know from (2), the OIM is the negative of the 
hessian of the log-likelihood function evaluated at the MAP 
estimation. Multiple sensor OIM can be defined as the 
negative of the hessian of (18) as follows. 
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By using linearity of the hessian, equation (19) can be 
written as 
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where i
kI  is the OIM of each sensor. The posterior OIM of 

each sensor can be recursively calculated by using the 
recursion given in the preceding section. In other words, 
the posterior OIM of all sensors can be obtained by com-
bining (5) and (20). Let kJ  and i

kJ  be the posterior OIM of 

all sensors at time k  and the posterior OIM calculated by 
using measurement of ith sensor at time k  respectively. 
The relation between kJ  and i

kJ  can be expressed by using 

(20) 
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Consequently, calculating the OIM in the presence of mul-
tiple measurement sources problem turns into summation 
of the OIM calculated of each measurement source. How-
ever, one should be careful at this point; each OIM must be 
evaluated at the MAP estimate computed by exploiting all 
available measurements but not at the MAP estimate of 
each sensor separately. 

3. Particle Filtering 
Particle filters are numerical methods that being used 

to approximate the posterior density function. This class of 
filters is suboptimal filters that perform sequential Monte 
Carlo (SMC) estimation based on point mass (or particle) 
representation of probability densities [16]. Since in most 
cases, the true posterior density is unknown and drawing 
particles from the true density is impossible, importance 
sampling method [18] that is based on drawing samples 
from the importance density which has to have same sup-
port set with the true density is used while implementing 
particle filters. Assume that kX  is all the target states up to 

time k,  |k kq X Z  
is the importance density function and 

the  , , 1,...,i i
k kX w i N  is the sample points and their asso-

ciated weights that characterize the joint posterior density 
function  |k kp X Z . Then one can write the discrete ap-

proximation of the  |k kp X Z  as follows, 

    
1

|
N

i i
k k k k k

i

p X Z w X X


   (23) 

where the     is delta Dirac function and i
kw  is normal-

ized weights computed according to importance density 
function. 

 
 
 

|

|

i
k ki

k i
k k

p X Z
w

q X Z
 . (24) 

Discrete approximation of the posterior density given in 
(23) is required batch computation of the density function. 
A method for recursive computation of the posterior distri-
bution  |k kp x Z  by using principle of importance sam-

pling is given in [16] and it is called sequential importance 
sampling (SIS). By using SIS framework, discrete 
approximation of the marginal density function can be 
computed as follow, 

    
1

|
N

i i
k k k k k

i

p x Z w x x


  , (25) 
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where the importance weights only depend on samples 
drawn at time k and measurement kz . In this method, the 

weights computed by using relation (26) must be normal-

ized such that
1

1
N

i
k

i

w


 . 

In this paper, Sampling Importance Resampling (SIR) 
particle filter has been used as state estimator. This algo-
rithm can be easily obtained by modifying Sequential 
Importance Sampling (SIS) algorithm. The algorithm is de-
rived from the SIS algorithm by choosing importance den-
sity to be the transitional density  1|k kp x x   

and perform-

ing the resampling step at every time update. In the SIR 
particle filter, there are two simple assumptions: i) State 
dynamics and measurements functions are known. ii) It is 
possible to sample realizations from the prior and transi-
tional distributions. If these two assumptions are satisfied, 
SIR particle filter is initiated by drawing samples from the 
prior distribution and time updates of the filter is recur-
sively implemented as follow: 

 Draw samples at time k  1~ |i i
k k kx p x x   

 Calculate weights  |i i
k k kw p z x  

 Normalize weights  

1

i
i k
k N

i
k

i

w
w

w





  

 Calculate state estimation and its covariance 

  
1 1

ˆˆ ˆ ˆ,
N N

Ti i i i i
k k k k k k k k k

i i

x w x P w x x x x
 

       

 Resample samples generated at time k with respect to 
the weights. 

3.1 Modification of SIR Particle Filter for 
Multiple Sensor Case  

As it can be seen from weight calculation step of the 
SIR particle filter (second step), measurements only have 
contribution on calculating the particle weights. Therefore, 
one can easily extend the SIR particle filter to multiple 
sensor case under the assumption that each sensor 
measurements are mutually independent. In this study, it is 
assumed that target of interest is observed by the 
multistatic sensor network consists of M sensors and 
measurements related to M targets can be acquired with 
probability of detection 1. It is also assumed that there is no 
clutter. Let , 1,...,j

kz j M  be the measurement sequence 

observed at time k. Then, the likelihood function of M 
measurements can be expressed under the independence 
assumption as follows: 
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 (27) 

As it was mentioned in the preceding section, particle 
weights of the SIR particle filter are calculated directly 
proportional to the likelihood function. Therefore, particle 
weights would be easily evaluated by using independence 
of the measurements as given in (28). 

  
1

|
M

i j i
k k k

j

w p z x


 . (28) 

4. Multistatic Radar Network and 
Simulation Results 
In this study, results of information analysis in the 

passive radar network given in [19] have been used for 
modeling a multistatic radar network. A multistatic radar 
network consisting of two transmitters and 10 receivers has 
been modeled by preserving the assumption given in previ-
ous sections. The multistatic radar network is assumed to 
output bistatic range and range rate measurements that are 
generated by each transmitter-receiver pair and those 
measurements are corrupted by additive white Gaussian 
noise with known mean and variance.  
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where R  and R  stand for bistatic range and range-rate 
measurements respectively. The arguments given in the 
measurement functions are defined as follow: 
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 (31) 

The additive noises Rw  and 
R

w   are assumed to be 

white Gaussian sequences with zero means and known 
variances. It is also assumed that these noise sequences are 
independent. Time and transmitter-receiver pair numbering 
has been omitted for convenience in (29) and (30). Loca-
tions of the transmitters and the receivers have been given 
in Tab. 1 and their distributions on the XY plane has been 
represented Fig. 1. As it is seen in Fig. 1, radar network 
consists of two hexagonal cells where cell structure com-
prises of one transmitter and six receivers. The hexagonal 

cells share an edge, thus the receivers labeled with R1 and 
R11 denote the same receiver, and R2 and R10 are the 
labels for the same receiver.  
 
 

R1 R2 R3 R4 R5 R6 

X 30000m 15000m -15000m -30000m -15000m 15000m 

Y 0m 25981m 25981m 0m -25981m -25981m 

Z 0m 0m 0m 0m 0m 0m 

R7 R8 R9 R12 T1 T2 

X 75000m 60000m 30000m 60000m 0m 45000m 

Y 25981m 51962m 51962m 0m 0m 25981m 

Z 0m 0m 0m 0m 0m 0m 

Tab. 1.  Locations of transmitters and receivers. 

 
Fig. 1.  Locations of the transmitters and receivers on XY 

plane. 

It is assumed that all the receivers are capable of lis-
tening to signals coming from all available transmitters. It 
is also assumed that a target flies over the multistatic radar 
network with initial position (–40, 20, 10) km and velocity 
(150, 0, 0) m/s. Target moves according to the nearly con-
stant velocity model [20] about 800 seconds. In the first 
half of its motion, target flies over the first cell of the net-
work and it moves through the second cell in the last 400 
seconds. Trajectory of the target is illustrated in Fig. 2. 

 
Fig. 2.  Target trajectory. 
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4.1 Measurement Selection w.r.t. Posterior 
OIM 

The aim of this study can be explained as determining 
how to make a decision on which measurement set should 
be used for target state update in multistatic radar network. 
If there are numerous measurement sources (transmitter-
receiver pairs) that generate measurements related to the 
same target, one should choose a subset of these multiple 
measurements for updating the state instead of using all of 
those for track update. Utilizing a subset of the all available 
measurements would save the computational power. Fur-
thermore, the sensors that provide consistently less infor-
mation can be determined and put into stand-by state ac-
cording to appropriate sensor management strategy. This 
would decrease the number of measurements acquired per 
scan and make measurement to track association problem 
easier, which is a hard problem to solve in real time de-
pending on increasing number of measurements. Such 
a sensor management strategy would also reduce the com-
munication cost and lead to save the power resources of 
sensors.  

The idea of exploiting the only a subset of all availa-
ble measurements stems from the fact that the increment 
rate of information provided by each additional measure-
ment decreases with the increasing number of measure-
ments in circular type of multistatic networks [19]. There-
fore, using all available measurements would yield less 
improvement on state estimation than it is expected. This 
gives an opportunity to use available resources effectively 
by exploiting particular number of measurements. It was 
proposed in [19] that state estimation could be achieved 
with an acceptable accuracy level by exploiting six meas-
urements. Thus, we have limited the number of measure-
ments that will be used for target state update at each time 
with 6 in this study. At this point, the crucial question is 
“Which subset of all measurements should be exploited?”. 
We have proposed that the posterior OIM can be utilized to 
determine the measurement subset containing the most 
information about target state. The proposed method is 
based on determining the predicted value of the posterior 
OIM at time k by using the calculated posterior OIM at 
time k-1, predicted state and available measurements at 
time k, and finding the measurement subset which maxim-
izes the determinant1 of the predicted posterior OIM. Let 

1| 1ˆMAP
k kx    be MAP estimation of the target state at time k-1 

then MAP estimation of the predicted state at time k under 
linear dynamic state equation assumption would be  

 | 1 1 1| 1
ˆ ˆMAP MAP

k k k k kx F x    . (32) 

                                                           

 

 
1 One can also use trace instead of determinant. In physical mean-

ing, determinant is related to volume of the hyper-ellipsoid described by 
a matrix and it contains statistical relations between axes. On the other 
hand, trace is related to diagonal elements of the matrix and the correla-
tions between axes are not taken into account. 

Assume that n measurements acquired from all avail-
able sources are reported at time k and m n measure-
ments can be used to update the target state. There would 

be  ,l C n m  subsets where C stands for the combination 

and each m-combination of the measurements would con-
stitute subsets , 1, ,iS i l  . Predicted value of the posterior 

OIM can be computed by using each measurement subset 
as follow: 
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 (33) 

In (33), 1kJ   and | 1,k k iJ   are posterior OIM at time k-1 and 

predicted value of posterior OIM based on the ith measure-
ment subset at time k respectively. The measurement subset 
that will be used to update the target state can now be de-
termined by taking the determinant of (33) for 1, ,i l   
and choosing the subset that maximizes the determinant. 

4.2 Simulation Results 

Performance of the posterior OIM based sensor man-
agement approach has been analyzed through simulation 
where the Root Mean Square (RMS) error has been used as 
the performance metric. SIR particle filter based MAP 
estimator has been used as the state estimator and the pos-
terior OIM has been evaluated at the value that MAP esti-
mation has pointed. Some assumptions2 related to the SIR 
particle filter and the scenario are given below: 
 There is only one target 
 There is no clutter 
 Target is detected at every sampling time with 1DP   

 Target has been initialized and the initial state 
estimation and covariance are defined as follows:  
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 Target dynamic model is linear and target states 
evolve according to 

1 1 1k k k kx F x v     

where 1kF   is state transition matrix that is a function of 

sampling interval T and given below. 1kv   is the process 

noise sequence with zero mean and known covariance. 

                                                           

 

 
2
 Note that these assumptions are made to demonstrate the employ-

ability of the proposed method and can easily be lifted at the cost of 
increased computational load and complexity.  
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 Process noise of the SIR particle filter is modeled as 
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 The number of particle utilized in particle filter is 
12000. 

 Measurement noise covariance is modeled as 
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 100 Monte Carlo simulations have been carried out. 

Four cases have been investigated in the simulations 
with the described scenario, namely: i) Exploit the six 
measurements that produce maximum information in terms 
of predicted posterior OIM. ii) Exploit the six measure-
ments that produce minimum information in terms of pre-
dicted posterior OIM. iii) Exploit the six measurements that 
produce maximum information in terms of predicted poste-
rior FIM. iv) Exploit all measurements and do not use nei-
ther OIM nor FIM. The predicted posterior FIM is 
an information measure that has been used in the aforemen-
tioned studies for various sensor management problems. As 
mentioned before, the FIM must be calculated at the true 
state or must be approximated via Monte Carlo integration 
where the former is not possible in real life applications 
and the latter has significantly high computational burden.  

In this study, the predicted posterior FIM has also 
been exploited as a sensor selection measure for the pur-
pose of comparing its performance with the predicted pos-
terior OIM. FIM based sensor selection has only been ap-
plied to the most informative measurement selection case 
where the simulation results of all four cases have been 
presented. Variation of the RMS error in the X axis is 
shown in Fig. 3. The simulation results have revealed that 
the tracking filter working with the measurement subset 
producing maximum information with respect to predicted 
posterior OIM has less RMS error in comparison to the 
minimum information filter and has comparable error level 
with the filter utilizing all measurements. It has been also 
revealed that similar RMS error level has been obtained by 
utilizing the predicted posterior FIM as a sensor selection 
measure in comparison to predicted posterior OIM. Espe-

cially, after the 100th sampling time, where target begins to 
move in the area bounded by the first hexagonal cell, RMS 
error decreases and remains around the 6.5m for both first 
and third cases. However, RMS errors of the tracking filter 
that exploits less informative measurement subset, fluctu-
ates during the tracking process and it varies between 6.5m 
and 15m after the 100th sampling time. The two filters ex-
ploiting OIM have achieved similar RMS error perfor-
mance, where filters share the same measurement subsets, 
for only a short period of the total tracking process.  Simi-
lar results have been obtained for the position error in Y 
axis that is presented in Fig. 4. Utilizing the prediction of 
posterior OIM utilizing the most informative measurement 
subset has produced less RMS error in comparison to the 
second case. Similar error levels have been achieved for the 
first, third and fourth cases in Y axis. Furthermore, infor-
mation based measurement selection has provided stable 
RMS error level both in X and Y positions which is a de-
sirable property for a state estimator. If there are no other 
error sources (maneuver or disturbance of any kind) in the 
estimation process, it is desired to obtain a stationary esti-
mation error. Advantage of using predicted posterior OIM 
in measurement selection has been clearly observed in 
simulation results obtained for Z axis and variation of RMS 
error in Z position has been given in Fig. 5. 

 
Fig. 3.  Variation of RMS error in X.  

 
Fig. 4.  Variation of RMS error in Y. 
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Fig. 5.  Variation of RMS error in Z. 

In the scenario, target does not change its position in 
Z and this leads to measurement process to produce less 
information about Z in comparison to X and Y. However, 
selecting most informative measurement subset for track 
update by using OIM based measure has provided substan-
tial improvement on RMS error in comparison with the less 
information case and comparable results with the all meas-
urements case. Stable RMS error level around 10m has 
been achieved for Z position as well. The FIM based sensor 
selection strategy has also led to lower RMS error level in 
comparison to less informative case and, it has similar 
RMS error level with the OIM based most information and 
the utilization of all measurements cases. 

5. Conclusion 

In this paper, we have introduced the well-known sta-
tistical metric Observed Information Matrix (OIM) as 
a sensor management criterion. The underlying reason to 
propose a metric different from the other metrics appeared 
in the open literature is that metrics exploited in either task-
driven or information-driven sensor management frame-
works have heavy computational burden due to the evalua-
tion of the expectations or they can only be obtained via 
simulation. However, OIM can be calculated in all cases 
where MAP estimation of the state is available.  

In this study, we have shown that the posterior OIM 
can be computed recursively where target and 
measurement dynamics are corrupted with additive white 
Gaussian noises. It has been shown that prediction of 
posterior OIM can be exploited in measurement selection 
process in the single target tracking in a multistatic sensor 
network problem. It has been shown that the measurement 
subset maximizing information in terms of OIM leads to 
less RMS position errors during the state estimation and 
quantifying predicted posterior OIM as a measure on 
information is reasonable. 

Consequently, utilization of predicted posterior OIM 
as an information measure in sensor networks gives an 
opportunity to achieve lower estimation errors in all three 
axes and it is also possible to obtain comparable position 

errors with the case where well-known measure predicted 
posterior FIM is exploited. 
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