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Abstract. High resolution range profile (HRRP) is being 
known as one of the most powerful tools for radar target 
recognition. The main problem with range profile for radar 
target recognition is its sensitivity to aspect angle. To over-
come this problem, consecutive samples of HRRP were 
assumed to be identically independently distributed (IID) in 
small frames of aspect angles in most of the related works. 
Here, considering the physical circumstances of maneuver 
of an aerial target, we have proposed dynamic system 
which models the short dependency between consecutive 
samples of HRRP in segments of the whole HRRP se-
quence. Dynamic system (DS) is used to model the se-
quence of PCA (principal component analysis) coefficients 
extracted from the sequence of HRRPs. Considering this 
we have proposed a model called PCA+DS. We have also 
proposed a segmentation algorithm which segments the 
HRRP sequence reliably. Akaike information criterion 
(AIC) used to evaluate the quality of data modeling showed 
that our PCA+DS model outperforms factor analysis (FA) 
model. In addition, target recognition results using simu-
lated data showed that our method based on PCA+DS 
achieves better recognition rates compared to the method 
based on FA. 
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Radar Target Recognition, High Resolution Range 
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1. Introduction 
The advent of high resolution radars made it possible 

to extract more information from targets which are used for 
radar target recognition. High resolution range profile 
(HRRP) is being known as one of the most powerful tools 
for radar target recognition [1-4]. A high resolution range 
profile is a one-dimensional signature of target scatterers 
along the radar line of sight (LOS) that the signal amplitude 
in each of its range cells shows the strength of the target 
return at that range. So, it can specify the location and 
dominance of target scatterers. It can be obtained through 
employing a wideband signal (which lead to a high range 

resolution) such as linear frequency modulated (LFM) 
pulse by the radar. The main problem with range profile for 
radar target recognition is its sensitivity to aspect angle [2], 
[5]. That is, change of aspect angle during the target ma-
neuver causes significant changes in amplitude of signal in 
range cells of the range profile. So the signal amplitude in 
a range cell can be regarded as a nonstationary signal. 
Moving toward range cells (MTRC) and Speckle are two 
main phenomena cause HRRPs to change due to change of 
aspect angle during the maneuver of an aerial target [2]. 

To overcome this problem and simultaneously utilize 
the information in a frame of consecutive range profiles in 
recognition process, we need a mathematical model for the 
statistical relation of the consecutive range profiles. Some 
solutions are proposed using the Gaussian distribution and 
its variants in [6] and [7]. In [6] the features extracted from 
the range profiles are modeled by Gaussian mixture distri-
bution. In [7], the factor analysis (FA) model proposed for 
modeling sequence of HRRPs assumes independency be-
tween consecutive samples of HRRPs in small frames of 
aspect angles. Note that in all of these works, the consecu-
tive range profiles are assumed to be identically inde-
pendently distributed (IID) in an aspect frame. 

Here we seek for an alternative model ignoring the 
independency assumption. According to the physical be-
havior of linear and rotational movement of the target and 
taking into account the electromagnetic backscattering 
considerations, Dynamic system (DS) seems to be able to 
model the statistical behavior of range profile variations 
during the target maneuver. Dynamic System is a general 
model that a lot of models and processes such as auto re-
gressive (AR), moving average (MA), and ARMA can be 
regarded as its special cases. In a DS model, nonstationary 
behavior of the observations (as it is the case in the se-
quence of HRRPs) can be modeled through the existence of 
sequence of continuous hidden states (like HMM; of 
course, there, states are from a discrete finite set). 

In our previous work [8] we used dynamic system to 
model the sequence of feature vectors extracted from the 
sequence of HRRPs. Features were the location of main 
scatterers (range cells with the largest amplitudes) ex-
tracted from each sample of HRRP using RELAX algo-
rithm introduced in [9] and also used in [6]. But, in this 
paper we proceed with another approach. 
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Since dimensionality of HRRP vectors is high (about 
100 or more), modeling the sequence of HRRP vectors 
using dynamic system makes a model complicated and 
with a lot of parameters to be estimated, resulting in time-
consuming computations for model learning. So, Dynamic 
system is used to model the sequence of PCA (Principal 
Component Analysis) coefficients extracted from the se-
quence of HRRPs. Considering this, we have proposed 
a model called PCA+DS which models consecutive sam-
ples of HRRP in a segment. The whole HRRP sequence 
obtained during a complete maneuver of the target is split 
into a few segments and modeling is done for each seg-
ment. To segment HRRP sequence reliably, we have pro-
posed a segmentation method (Section 3.2). To evaluate the 
quality and fitness of the proposed model on simulated 
data, the Akaike information criterion (AIC), introduced in 
[10], is used. It is shown to be well performed in multivari-
ate model selection problems with limited observation data 
[11]. Radar Data are simulated using BSS (Backscattering 
Simulation) software based on simplest components analy-
sis method [12]. The recognition experiments based on 
simulated data show that our recognition method based on 
PCA+DS outperforms the method based on factor analysis 
(FA) which has been proved in [7] that can appropriately 
model HRRP statistical characteristics and achieve good 
recognition results. 

The remainder of this paper is organized as follows. 
In Section 2 dynamic system and the expectation maximi-
zation (EM) based method for its parameter estimation is 
discussed and PCA+DS is presented for modeling. In Sec-
tion 3 the whole recognition procedure from learning phase 
to test phase will be discussed. Section 4 contains experi-
mental results including model quality test using AIC and 
recognition results. Finally, Section 5 concludes this paper. 

2. Dynamic System for HRRP 
Sequence Modeling 
The dynamic system model used here can be summa-

rized in state and measurement update equations as below: 

 xt+1	=	Fxt	+	wt, (1) 

 yt	=	Hxt	+	vt (2) 

where xt	∈	R
n is the hidden state, yt	∈	R

q is the observation, 
wt and vt are the model and measurement noise respectively 
and F and H are two n-by-n and q-by-n matrices respec-
tively. Model and measurement noise are assumed to be 
white Gaussian and uncorrelated. 

 wt ~ N	൫μw	,	Q൯, (3) 

 vt ~ N	൫μv	,	R൯. (4) 

The initial state (x0) is also assumed to be Gaussian with 
mean μ0 and Σ0. The parameters of the model can be sum-
marized in the parameter set λ which should be estimated 
according to the observations. 

	ߣ  ൌ ൫F,H,μw,Q,μv,R,μ0,Σ0൯. (5) 

As noted before, a lot of models and processes (such as 
AR) can be regarded as special cases of DS model. The 
sequence of hidden states in DS can be interpreted as 
a trajectory along which observations are generated, and 
thereby Dynamic system will be able to model the nonsta-
tionarity in observations as it is the case in the sequence of 
HRRPs (Fig. 1). Fig. 1 shows variations of two of elements 
of HRRP vectors along one segment. 

 
Fig. 1.  Variations of two of elements of HRRP vectors along 

one segment. 

2.1 Parameter Estimation   

To estimate the parameters, an Expectation Maximi-
zation (EM) based technique is used which is first intro-
duced in [13]. Using the EM algorithm for estimating the 
parameters of the dynamic system model involves compu-
ting the conditional expectations of the sufficient statistics 
for the hidden state during the E-step, using these to re-
estimate the parameters during the M-step, and iterating 
until convergence. If Y = [y0, y1, …., yN] is the segment of 
observations for training the dynamic system, only the 
following statistics are needed to be computed in E-step 
[13] 

 Eሼxt|Yሽ	=	xොt|N, (6) 

 Eሼxtxt
T|Yሽ	=	xොt|Nxොt|N

T 	+	Σt|N, (7) 

 E ቄxtxt-1
T ቚYቅ 	=	xොt|Nxොt-1|N

T 	+	Σt,t-1|N (8) 

where: 

 Σt|N=E ቄ൫xt-xොt|N൯൫xt-xොt|N൯
T
ቅ, (9) 

 Σt,t-1|N=E ൜൫xt-xොt|N൯ ቀxt-1-xො൫t-1หN൯ቁ
T
ൠ. (10) 

These statistics are calculated using the fixed-interval 
smoothing form of the Kalman filter, including forward 
and backward recursions as shown below, augmented with 
cross-covariance recursions to get second-order statistics. 
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Assuming μv = 0, we have: 

Forward recursion: 

 xොt|t	=	xොt|t‐1	+	Ktet, (11) 

 xොt+1|t	=	Fxොt|t	+	μw, (12) 

 et	=	yt	-	Hxොt|t-1 , (13) 

 Kt	=	Σt|t-1HTΣet
-1 , (14) 

 Σet
	=	HΣt|t-1HT	+	R , (15) 

 Σt|t	=	Σt|t-1-KtΣet
Kt

T , (16) 

 Σt,t-1|t		=	൫I-KtH൯FΣt-1|t-1 , (17) 

 Σt+1|t=FΣt|tF
T+Q . (18) 

Backward recursion: 

 xොt-1|N	=	xොt-1|t-1	+	At[xොt|N	-	xොt|t-1]  , (19) 

 Σt-1|N	=	Σt-1|t-1	+	AtൣΣt|N	-	Σt|t-1൧At

T
 , (20) 

 At	=	Σt-1|t-1Ft-1
T Σ

t|t-1
-1  , (21) 

 Σt,t-1|N	=	Σt,t-1|t	+	ൣΣt|N	-	Σt|t൧Σt|t
-1Σt,t-1|t . (22) 

After calculation of (6), (7), and (8) in E-step, we must re-
estimate the model parameters in M-step. Let us, define the 
following operators: 

 <	o	>1	=	
1

N+1
Σt	=	0

N 	o  , (23) 

 <	o	>2	=	
1

N
Σt	=	1	

N o . (24) 

Then, in M-step estimates of the model parameters are 
obtained through (23) to (26): 

 ൣF෡    μොw൧ = 〈ሾEሼxt+1xt
T|Yሽ     Eሼxt+1|Yሽሿ〉2 · 

 ൭ൽ൤
Eሼxtxt

T|Yሽ Eሼxt|Yሽ
Eሼxt

T|Yሽ 1
൨ඁ

2

൱

-1

, (25) 

 Q ෢= 〈E൛xt+1xt+1
T หYൟ〉2  

 -〈ሾEሼxt+1xt
T|Yሽ    Eሼxt+1|Yሽሿ〉2 ·ൣF෡    μොw൧

T
, (26) 

 H෡  = 〈ytE൛xt
TหYai

ൟ〉1ሺ〈Eሼxtxt
T|Yሽ〉1ሻ-1, (27) 

 R ෡= 〈ytyt
T〉1 ‐ ܪ෡〈Eሼxt|Yሽyt

T〉1 . (28) 

2.2 PCA+DS Model 

As noted before, Dynamic system model is used to 
model the sequence of PCA coefficients obtained from 
sequence of HRRPs. PCA is a linear transformation 
through which a set of vectors of possibly correlated varia-
bles are converted to a new set of vectors with uncorrelated 
variables called principal components (PCs). The number 
of principal components can be lower than the number of 

original variables because the variance of principal compo-
nents follows a descending order, i.e. the first component 
has the largest variance and the last one has the smallest 
variance. So, a number of components with smaller vari-
ances can be omitted.  

Here we propose a model called PCA+DS. Assume 
Zs = ሾz0 , z1 , …, zNሿ , zt ∈ Rd is the sequence of HRRPs in 
a segment of observations from the whole maneuver of the 
target, and Ys	=	ൣy0, y1, …, yN൧ , yt	∈	R

q is the correspond-
ing sequence of PCA coefficients, where q < d. Then, we 
have: 
 zt	=	Ayt	+	μ	+	ߝt (29) 

where the columns of A ∈ Rd×q are bases of the PCA sub-
space (q eigenvectors of covariance matrix of Zs with the 
largest eigenvalues). ߝt is a portion of zt which cannot be 
represented in this subspace and is modeled as a noise with 
zero mean and covariance matrix Ψ ∈ Rd×d which is ob-
tained by taking average over the available data. μ is the 
mean of Zs. PCA coefficients are modeled by dynamic 
systems through (1) and (2). 

So, the final PCA+DS model for observations can be 
described through (30): 

 ቐ
xt+	1=Fxt+wt

yt=Hxt+vt

zt=Ayt+μ+ߝt

 (30) 

where the estimates of parameters of the two first equations 
of (30) are obtained using the method described in Section 
2.1. 

3. Target Recognition Scheme  
Target Recognition Scheme consists of train (or 

learning) and test (or recognition) phases. In the train phase 
as noted before, since notable changes of aspect angle 
cause significant changes in the statistical behavior of 
range profiles, the maneuver of the target is split into a few 
segments and a PCA+DS model is trained for each seg-
ment. So, a reliable segmentation scheme is needed. We 
have presented a segmentation method which will be ex-
plained in Section 3.2. Note that only one maneuver is used 
for model learning which must cover all aspect angles in 
the test data. Before the segmentation was done, a pre-
processing is required to be applied to the data which is the 
topic of the following section. 

3.1 Pre-Processing  

It is required to do a pre-processing on HRRP se-
quence. This pre-processing is done so as to eliminate the 
effect of jet engine modulation and to make the data 
smoother. Jet modulation is due to the effect of jet propel-
lers and jet cavity which influences a few range cells of 
range profiles and causes them to change more rapidly than 
other range cells during the maneuver depending on target 
velocity and pose. So, not only it doesn’t help for recogni-
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tion but it also degrades the recognition performance. To 
overcome this problem, we have used a low-pass filter 
which is applied separately to each range cell along the 
segment. This filter is a FIR filter with Gaussian weight-
ings. It eliminates the effect of jet modulation in range cells 
affected by it, and makes the variations smoother in other 
range cells, as can be seen in Fig. 3. The value of -3dB 
bandwidth of this filter depends on the time between two 
consecutive HRRP samples. Originally this time is equal to 
radar pulse repetition interval (PRI). But due to very close 
similarity between consecutive HRRPs, the sequence is 
usually downsampled. In our experiments with a repetition 
frequency of 40 Hz for HRRP samples (i.e. 25 msec be-
tween two consecutive samples) the -3dB bandwidth of the 
filter has been chosen to be 0.02π.    

 
Fig. 2.  Variations of one element of HRRPs during the 

maneuver before and after the filter is applied.  

3.2 Segmentation Method 

To divide the complete maneuver of each target into 
appropriate segments some constraints must be chosen. The 
constraint we use here is that the ratio of energy of HRRP 
vectors in the PCA subspace to their total energy must be 
greater than a threshold. According to this raw idea, we 
have proposed an algorithm whose flowchart can be seen in 
Fig. 3, where Z	=	ሾz0,z1,…,zTሿ , zt	∈	R

d is the whole se-
quence of HRRPs during the maneuver, K is the minimum 
number of observations in a segment that K > q, where q is 
the number of principal components, and N is the current 
number of observations in the current segment. 

We start with the first K observations in the first seg-
ment. Then, PCA bases and coefficients are computed for 
this segment. Then, with receiving the next observation 
zK+1, the ratio of its energy in the PCA subspace to its total 
energy is computed and is put to R. If R > TH, this obser-
vation will be added to the segment and we continue with 
this updated segment and the next observation. Otherwise, 
a new segment will be initialized with K observations 
starting from zK+1. These steps are continued until the last 
observation. 

3.3 Test Phase 

In test phase, the input to the classifier is a segment of 
HRRPs during the target maneuver. Decision is made  

 
Fig. 3.  Segmentation method flowchart.  

based on maximum a posteriori (MAP) criterion. That is, 
the recognition result is the target which maximizes (31): 

 PሺTi|Zሻ∝ pሺZ|Tiሻ . Pi,    i=1,2,…,M  (31) 

where Ti denotes the i-th target and Z	=	[z1	,	z2	,	…	,	zN] is 
the sequence of HRRPs in the segment. PሺTi|Zሻ denotes the 
posterior probability of target Ti given segment observation 
Z, pሺZ|Tiሻ is the probability density function of Z 
conditioned on target Ti, and Pi is the prior probability of  
i-th target. If Pi’s are assumed to be equal (ML classifier 
case), the target which maximizes likelihood (p(Z|Ti)) or its 
logarithm (log-likelihood) is chosen. To compute the log- 
likelihood of the observations in PCA+DS model, note that 
if we combine the two last equations of (30), a new 
dynamic system is constructed. We know for a dynamic 
system model described by (1) and (2) the log-likelihood of 
the observed sequence Y is obtained by the innovations 
representations, as 

 log	pሺY|θሻ=∑ ቄlogหΣet
ห+et

TΣet
-1etቅ+constantN

t=1  (32) 

where prediction errors et ,and their covariances Σet
 can be 

computed through Kalman filter using (11) to (15). 
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Segment 
No. 

F-15 MIG-21 Tornado 
FA PCA+DS FA PCS+DS FA PCA+DS 

1 -1.0490×106 -1.5141×106 -1.4438×106 -2.0022×106 -1.0559×106 -1.5257×106 
2 -7.3227×105 

-1.1066×106 -7.4308×105 -1.1124×106 -1.0829×106 -1.5306×106 
3 -5.5414×105 -8.5640×105 -4.6054×105 -7.0197×105 -4.3600×105 -6.8795×105 
4 -4.0600×105 -6.1965×105 -4.5729×105 -6.6533×105 -3.5237×105 -5.4203×105 
5 -3.9771×105 -6.0846×105 -2.6803×105 -3.9478×105 -5.4029×105 -7.7222×105 
6 -6.0196×105 -8.5402×105 -4.1444×105 -5.8971×105 -3.7756×105 -5.4879×105 
7 -4.0730×105 -6.2255×105 -8.9106×105 -1.2763×106 -3.6234×105 -5.3635×105 
8 -4.8577×105 -7.4939×105 -4.9740×105 -7.2853×105 -7.4489×105 -1.0743×106 
9 -6.6939×105 -1.0170×106 -7.4911×105 -1.0899×106 -8.2546×105 -1.0743×106 
10 -1.3190×106 -1.8166×106 -1.3640×106 -1.8315×106 -7.0996×105 -1.0680×106 
11 -5.9569×105 -9.5843×105 -1.1265×106 -1.6037×106 -1.0971×106 -1.5757×106 

Tab. 1.  AIC values for some segments of the maneuver of F-15, MIG-21, and Tornado for FA and PCA+DS models. 

 
Note that since a target is far from radar and its pose 

is unknown, the aspect angles will be unknown too. So the 
likelihood should be computed for all models trained for 
different aspect frames of target Ti and one with the highest 
value is considered as final likelihood to be used in test 
process. Of course, if the aspect angles can somehow be 
estimated well enough, there is no need to do so and the 
likelihood is computed only for models trained for corre-
sponding aspect frames. 

4. Experimental Results 
To simulate range profiles, BSS (Backscattering Sim-

ulation) software [12] was used. Simulation is based on the 
simplest components analysis method. In this method, the 
surface of the target is divided into several geometrical 
components and some bright points or lines are determined 
for each of them, and finally the effects of them are super-
posed with taking into account the effect of shadowing. 
Details can be found in [12]. Based on comparison made 
with real data, there has been shown that the proposed 
method can appropriately simulate range profiles. 

The radar considered here for simulation is a tracking 
radar with high range resolution. Its bandwidth is 1 GHz in 
X-band, equivalent to a resolution of 15 cm in range do-
main which is sufficient enough to separate target scat-
terers. Polarization is horizontal. The signal used by the 
radar is an LFM pulse with a width of 100 µs. Radar PRF 
is 1 kHz. But, the HRRP sequence is downsampled to 
a repetition frequency of 40 Hz. The frame length of the 
HRRPs is 40 m. Each HRRP vector consists of 130 range 
elements. In addition, the -3dB bandwidth of the pre-pro-
cessing filter has been chosen to be 0.02π. 

4.1 Model Quality Test 

Here the Akaike information criterion (AIC) is used 
to evaluate the quality and fitness of the models. It can be 
used as a tool for comparison between different models. If 
the observed HRRP sequence in a segment is denoted by Z   
and the number of independent parameters in the model M 
is denoted by p, we have: 

 AIC	= -2log൫PሺY|Mሻ൯+2p (33) 

where log൫PሺY|Mሻ൯ is the likelihood of observed sequence 
for model M. The smaller the AIC, the better the model 
will be. Forcing Q and R to be diagonal, the number of all 
parameters of PCA+DS will be 
	q×ሺn+1ሻ+2n2+3n+d×ሺq+1ሻ+d2, in which d, q, and n are 
dimensionality of z, y, and x, respectively. But, there are 
some dependencies between parameters. These dependen-
cies are due to orthonormality of PCA bases in matrix A 
and symmetry of matrix Ψ. Thus, a value of 
q×(q-1)/2+q+d×(d-1)/2 must be subtracted from the num-
ber of parameters. So, the number of independent parame-
ters in PCA+DS will be: 

p=q×(n+1)+2n2+3n+d×(q+1)+d2 

 - ቀq×
q-1

2
+q+d×

d-1

2
ቁ . (34) 

Here we want to compare PCA+DS model with FA model 
(for further information about FA see [7], [14]). So, HRRP 
sequence for three different targets including F-15, MIG-
21, and Tornado is simulated during a maneuver. Theses 
sequences then were split into some segments using the 
algorithm described in Section 3.2. The AIC values for 
some segments can be found in Tab. 1. 6 PCA coefficients 
are used for PCA+DS and 6 factors for FA. Hidden state 
vector dimensionality in PCA+DS is equal to 4. 

As can be seen from Tab. 1, PCA+DS outperforms FA in 
modeling sequence of HRRPs. In Tab. 1 both number of 
principal components in PCA+DS and number of factors in 
FA have been set to 6. With these conditions, 
computational burden for PCA+DS model is more than 
computational burden for FA model. So, we have increased 
the number of factors even up to 20 in FA. The 
corresponding -AIC values is shown in Fig. 4 for 3 
different segments for F-15. The -AIC values for PCA+DS 
model with 6 principal components is denoted by straight 
lines along the horizontal axis. It is still seen that PCA+DS 
outperforms FA.  

4.2 Target Recognition Results 

A radar target recognition scenario has been consid-
ered with three jet fighters including F-15, MIG-21, and 
Tornado which approximately have similar shapes and 
dimensionalities. To make recognition more difficult 
an identical maneuver has been used for training all three 



126 A. AJORLOO, M. HADAVI, M. H.BASTANI, M. M. NAYEBI, RADAR HRRP MODELING USING DYNAMIC SYSTEM FOR RADAR … 

 FA PCA+DS 
F-15 MIG-21 Tornado F-15 MIG-21 Tornado 

F-15 93.5 2.6 6.4 91.6 1.3 0 
MIG-21 1.8 93.6 8.3 4.7 93.6 0.9 
Tornado 4.7 3.8 85.3 3.7 5.1 99.1 

Total recognition rate (%) 90.5 95.0 

Tab. 2. Confusion Matrix and Average Recognition Rates for PCA+DS and FA. 

  

 
Fig. 4.  Values of –AIC vs. number of factors in FA for 3 dif-

ferent segments. Corresponding –AIC values for PCA 
+ DS with 6 PCs has been showed by straight lines. 

fighters. Then, using segmentation method described in 
Section 3.2, the training maneuver were divided into 15, 
13, and 15 segments for F-15, MIG-21, and Tornado, re-
spectively. For test data some maneuvers have been used 
which are completely different from the training maneuver. 
Each test maneuver is split into some segments which are 
inputs to the target recognition system. Recognition results 
for PCA+DS method was compared to FA method. 6 PCA 
coefficients were considered for PCA+DS and 6 factors for 
FA. Hidden state vector dimensionality in PCA+DS is 
equal to 4. Tab. 2 shows confusion matrix and recognition 
rates for PCA+DS and FA. Total recognition rate for 
PCA+DS is equal to 95% compared to FA total recognition 
rate of 90.5%. It should be noted that total recognition rates 
have been not computed by averaging over correct recog-
nition rates of each target and they have been obtained by 
involving all segments (for all three fighters) used in the 
test phase.  

5. Conclusion 
To model dependency between consecutive samples 

of HRRP, dynamic system (DS) was proposed. Using PCA 
coefficients extracted from HRRP sequence, PCA+DS 
model was presented for HRRP sequence modeling. The 
whole HRRP sequence is divided into a few segments and 
modeling is done independently for each segment. So, 
a segmentation algorithm was proposed. Using AIC as 
a criterion for modeling quality, superiority of PCA+DS 
was shown over FA. In addition, recognition results using 
the method based on PCA+DS was shown that can achieve 
better results compared to method based on FA.     
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