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Abstract. Honey Bee Mating Optimization (HBMO) is 
a recent swarm-based optimization algorithm to solve 
highly nonlinear problems, whose based approach com-
bines the powers of simulated annealing, genetic algo-
rithms, and an effective local search heuristic to search for 
the best possible solution to the problem under investiga-
tion within a reasonable computing time. In this work, the 
HBMO-based design is carried out for a front-end ampli-
fier subject to be a subunit of a radar system in conjunction 
with a cost effective 3-D SONNET-based Support Vector 
Regression Machine (SVRM) microstrip model. All the 
matching microstrip widths, lengths are obtained on 
a chosen substrate to satisfy the maximum power delivery 
and the required noise over the required bandwidth of 
a selected transistor. The proposed HBMO-based design is 
applied to the design of a typical ultra-wide-band low 
noise amplifier with NE3512S02 on a substrate of Rogers 
4350 for the maximum output power and the noise figure 
F(f) = 1 dB within the 5-12 GHz using the T-type of micro-
strip matching circuits. Furthermore, the effectiveness and 
efficiency of the proposed HBMO based design are mani-
fested by comparing it with the Genetic Algorithm (GA), 
Particle Swarm Optimization (PSO) and the simple HBMO 
based designs. 
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1. Introduction 
Considering all the stringent requirements which in-

clude high gain, low input and output Voltage Standing 
Wave Ratio (VSWR)’s, low noise figure together with the 
low-power consumption from the low-level battery, the 
wideband miniature Low Noise Amplifier (LNA) design is 
one of the biggest challenges to Ultra -Wideband (UWB) 
transceiver integrations. To meet these stringent require-
ments, first of all, fast and low-noise, high-quality transis-

tors are needed. In fact, today’s semiconductor technology 
has been focusing on producing the microwave transistors 
with the intrinsic superior frequency characteristics. Sec-
ond issue is of course to establish the compromise inter-
relations among the power gain, the input/output VSWRs, 
the noise figure, the bias conditions (VDS, IDS) and fre-
quency (f) of the two port transistor. 

Recently, the nonlinear performance equations of the 
transistor are solved simultaneously with respect to the 
source impedance in the [z]-domain for the maximum 
power delivery and the required noise using the linear 
circuit and noise theories, by our research group to be used 
in the design of the front-end amplifier [1], [2]. Thus de-
pendences of the maximum gain GTmax under the conjugate 
matched output is obtained on the rigorous mathematical 
bases with respect to the noise figure, input VSWR 
throughout operation domain (VDS, IDS, f). 

On the other hand, one of the recently proposed 
nature inspired intelligence algorithms that have shown 
great potential and good perspective for the solutions of 
various difficult optimization problems is the HBMO [3-6]. 
The HBMO algorithm first proposed by Afshar et al. has 
been used to solve a single reservoir optimization problem 
[3], [4], clustering [5], state estimation in distribution net-
works [6]. 

In this work, we propose a HBMO design optimiza-
tion procedure given in Fig. 1 for a front-end amplifier so 
that all the matching microstrip widths, lengths { W,


 } can 

be obtained to provide the (ZS, ZL) terminations on a given 
substrate (εr, h, tanδ) for the maximum power delivery and 
the required noise over the required bandwidth of a se-
lected transistor, respectively. The HBMO procedure of the 
front-end amplifier design (Fig. 1) can be considered to be 
consisting of the following stages:   

(i) Firstly, Feasible Design Target (FDT) is built by 
solving analytically [1], [2] or numerically the highly non-
linear performance equations of the transistor for the 
maximum power delivery and the required noise to deter-
mine the necessary source ZS and load ZL impedances of 
the active device at a chosen bias condition (VDS, IDS) of the 
device as follows: 
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Fig. 1. Flow chart of the HBMO+SVRM design optimization 

procedure. 

(ii) Second stage is the design optimization of the 
microstrip widths, lengths { W,


 } of the input/output 

matching circuits using the HBMO with the royal jelly, to 
provide the necessary source ZS(ωi) and load ZL(ωi) imped-
ances, respectively to the device. Thus, in this design opti-
mization procedure, the microstrip widths and lengths 
{ W,


 } on a selected substrate (εr, h, tanδ) are directly used 

by the HBMO algorithm (Fig. 2) and the cost function is 
evaluated by means of the SVRM microstrip model 
(Fig. 3). The 3-D SONNET–based SVRM model of the 
microstrip [7], [8] is employed that provides an accurate, 
fast and cost effective generalization from the highly 
nonlinear discrete mapping from the input domain M(R4) 
of the microstrip width, substrate (εr, h) and frequency (f) 
to the output domain of either the characteristic impedance 
Z0 or effective dielectric constant εeff. 

(iii) Finally the proposed HBMO–based design is ap-
plied to the design of a typical ultra-wide-band LNA with 
NE3512S02 on a substrate of Rogers 4350 (εr = 3.48, 
h = 1.524 mm, tanδ = 0.003) for the maximum output 
power and the noise figure F(f) = 1 dB within the  
5-12 GHz using the T-type of microstrip matching circuits. 
Furthermore the completed amplifier design is also com-
pared with the GA, PSO and the simple HBMO designs 

and the proposed HBMO design is resulted with its out-
standing performance, besides the verification is also made 
using the circuit simulator AWR. 

 
Fig. 2.  Flow chart of the HBMO algorithm. 

 
Fig. 3.  The cost effective SVRM modeling of microstrip lines. 

The article is organized as follows: Sections 2 and 3 
give the objective and variables of the design optimization 
of the matching circuits. The HBMO with the royal jelly 
feed algorithm takes place in Section 4. As a test vehicle of 
the presented methodology, design of typical wideband 
low-noise amplifiers using T-type of microstrip matching 
circuits is discussed comparatively with the GA, PSO and 
the simple HBMO designs in Section 5 with together their 
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validated performances. Finally the paper ends with con-
clusions in Section 6. 

2. Design Objectives  

2.1 Objective for Determination of FDT 

In this design optimization problem, the design ob-
jective is the maximum output power delivery and the 
required noise. For this purpose, firstly the gain GT is 
maximized with respect to the ZS under the matched output 
port provided that required noise F is satisfied, which can 
be expressed as: load ZL impedances of the active device at 
a chosen bias condition (VDS, IDS) of the device as follows: 

 (Z ) M (Z , Z )out LS S
PLG GT AVPavs

    (4) 
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Here zij, i, j = 1, 2 and Rn, Fmin and Zopt = ropt + jxopt are 
respectively, the z-parameters obtained by conversion of 
the [S]- parameters and noise [N]- parameters at an opera-
tion condition {(VDS, IDS), f}. 

Thus, hereafter the problem of determination of the 
source impedance ZS = rS + jxS of a microwave transistor 
can be described as a mathematically constrained optimi-
zation problem so that the gain GAV(rS, xS) given by (5) 
will be maximized and simultaneously the required noise 
figure will be met using the F(rS,xS) equation (6) at each 
sample frequency throughout the required operation band-
width. Thereby the multi-objective cost function of this 
constrained optimization process can be expressed as: 

 1 AV SG (r , , )
2 Se (r , , ) ( )S ix f
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with the following constraints  
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In (7), Ψ1and Ψ2 are the weighting coefficients which 
can be chosen during the optimization process by trial, 
which in our case are taken as unity. Thus, the smaller cost 
is the fitter optimization process we have. 

2.2 Design Objective of the Matching 
Networks  

Thus, we have the transistor terminations given by (1) 
and (2). In the design optimization procedure, the gain of 
the input/output matching two-port terminated by the com-
plex conjugate of the obtained in the previous subsection, 
is maximized over the required bandwidth: 

  ( ) (1- ( , ))Minimum G fiTi i
cost   

 
      (11) 

where 

 is the design variable vector which consists of the 

microstrip widths and lengths of the problem matching 
circuit and GTi is the power gain of the same matching 
circuit at the sample frequency fi. In the worked example 
T-type matching circuits are considered to be designed. 
The proposed method can be applied without any difficulty 
to another different type of matching circuit such as - or 
L-types or any other kind of matching circuits. In that case, 
the gain function ( , )G fiTi


  given in (11) should be evalu-

ated for the considered matching circuit. 

3. Design Variables: Microstrip 
Widths and Lengths W,

 
  

Design variables are the microstrip widths, lengths 
{ W,


 } of the input/output matching networks on a se-

lected substrate {εr, h, tanδ}, which are mapped in the 
continuous manner to the characteristic impedance Z0 and 
the dielectric constant εeff of the equivalent transmission 
line to be used in the design optimization process via the 
two 3-D SONNET-based SVRMs [7], [8]. Here, the input 
domain of the microstrip SVRM model is four-dimen-
sioned M(R4) within {0.1 mm ≤ W ≤ 4.6 mm, 2 ≤ εr ≤ 10, 
0.1 mm ≤ h ≤ 2.2 mm, 2 GHz ≤ f ≤ 14 GHz} and the output 
domains of the Z0 and εeff correspond to {3 Ω ≤ Z0 ≤

 240 Ω} 
and {1.5 ≤ εeff ≤ 9.7}, respectively. The mathematical bases 
of Support Vector Regression can be found in [7] in 
details. 
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3.1 Building Knowledge-Based Microstrip 
SVRM Model  

Knowledge-based Microstrip SVRM is given as block 
diagram in Fig. 3 where the quasi-TEM microstrip analysis 
formulae [10] is used as a coarse SVRM model data base 
by means of which 

h w 5 5 4 10 1000freqn n n n          

number of ( , )x yi i
   data pairs are obtained to train the 

coarse SVRM, where nfreq, nε, nh, nw are the number of the 
samples for the frequency, the dielectric constant, the sub-
strate height and width, respectively. Tab. 1 gives the accu-
racy of the “Z0” coarse model with the number of the SVs 
and the radius of selection tube ϵ. 402 and 367 fine SVs 
obtained from 3-D SONNET simulator are used to train the 
fine “Z0” and “εeff”  SVRMs, respectively with the accu-
racy at least 99.4 % (Fig. 4b). Thus the substantial reduc-
tion (up to 60 %) is obtained utilizing sparseness of the 
standard SVRM in number of the expensive fine discrete 
training data with the negligible loss in the predictive accu-
racy and the resulted fine microstrip SVRM model can be 
considered as accurate as the 3-D EM simulator [9] and as 
fast as the analytical formulae [10]. The typical compara-
tive prediction curves of the microstrip SVRM model take 
place in Figs. 4a and 4b which give variations of the char-
acteristic impedance Z0 and the effective dielectric constant 
εeff with microstrip width W resulted from the fine SVRM 
model for various dielectrics with h = 1.28 mm at  4 GHz, 
respectively.  
 

Epsilon (ϵ) Number of SVs Accuracy (%) 

0.05 583 99.4 
0.07 402 98.6 
0.1 279 97.9 

Tab. 1.  Accuracy of the coarse SVRM model. 

In the next section, “HBMO with Royal Jelly” algo-
rithm will be given to determine the matching microstrip 
widths, lengths { W,


 } on a chosen substrate {εr, h, tanδ} 

to satisfy the required noise and the maximum power de-
livery over the required bandwidth of a selected transistor. 

The FDT is determined using the simple HBMO ver-
sion without the Royal Jelly. 

4. HBMO with Royal Jelly for the 
Amplifier’s Matching Network 
Design Problem 

4.1 Working Stages of the Proposed HBMO  

The HBMO with Royal Jelly for the design of the T-
type microstrip front-end amplifier problem can be 
described in the following stages (Fig. 2): 

Stage 1:  Definition of input data 

In this stage, the number of the Drone bees (NDrone), 
maximum iteration number (tmax), sizes of the genetic in- 
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Fig. 4.  Comparative variations of (a) Characteristic impedance 
Z0, (b) Effective dielectric constant εeff  vs width of the 
analytical formulations, Fine Model and the 3-D 
SONNET simulation on the substrate εr = 3.48, 
h = 1.524 mm at f = 8 GHz. 

heritance of the Master Queen QM and each Drone bee Dj, 
(mQ, mD); maximum number of feeding times of the Master 
Queen QM with Royal Jelly (NRJ), Maximum (Emax) and 
minimum (Emin) energies of the Queen at the start and end 
of the mating flights, respectively, and the required cost 
costreq are defined by the user. In the algorithm, the num-
bers of the Hive (NHive), Brood (NBrood), Larva (NLarva), 
Fertilization (Nfertilization) are set equal to (NGen)which is 
taken to be equal to tmax and the total egg number 
NEgg = (NGen)

5. 

Stage 2: Define Queen Q and Drone’s D populations with 
their genetic inheritances 

 

t_ [ , , ....., ]N1 2 Hive

_ [ , ,....., ]N1 2 Drone

Q population Q Q Q

tD population D D D




  (12) 

where Qi and Dj members of the Queen and Drone popula-
tion are defined based on the optimization variables, re-
spectively as below: 

1 2 3
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Dj Dj Dj

j
Dj Dj Dj x

w w w
Q

w w w
D

 
  
 

 
  
 

  

  

                     (13) 
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Furthermore genetic inheritance belonging to each 
Queen Qi and Drone Dj are also defined in terms of the 
optimization variables as follows: 

 1 2 3 1 2 3

1 2 3 1 2 32 3 2 3

, , , ,

, , , ,iGen jGen

x x

W W W W W W
Q D

L L L L L L

   
    
   

   (14) 

Wi = [wi]mx 1, Li = [i]mx 1, i = 1,2,3 and mQ = 1000 for 
Queens and mD = 100 for each Drone bee as the user-
defined parameters.  

The genetic inheritance of a Queen bee QiGen in (14) 
is completely passed to the next generation while only 
DjGen belonging to the NDrs drones which had successful 
mating flights passed down to the next generation by being 
collected into the Queen Bee’s spermatheca. In the next 
stage, initialization of the Queen and Drones population 
and generation of the Genetic inheritances will be given.  

Stage 3: Initialize the Queen and Drones population and 
their genetic inheritances 

Initialize all the elements of the Q_population to zero 
excluding the first one: Qi = 0, i ≠ 1, the first Queen will be 
called hereafter as the Master Queen QM that will give birth 
to the members of all the hives. The Master Queen QM, the 
D_Population and their genetic inheritances defined in  
(12-14) are randomly initialized as follows: 

 1 2 2[C C ]rand(.) C rand(.)w     , (15) 

 3 4 4[C C ]rand(.) C rand(.)   .  (16) 

where Ci, i = 1, 3 and i = 2, 4 are the given upper and lower 
boundaries for the widths and lengths of the microstrip 
lines, respectively. Rand (.) is a random generator which 
generates random values  (0, 1). Then calculate Fitness 
Values of Master Queen QM and the D_ Population in (12) 
using either (7) or (8-11). In the next stage, spermatheca of 
the Master Queen QM will be generated. 

Stage 4:  Generate the Master Queen’s spermatheca 
(Mating Flights) 

At the start of the mating, Master Queen QM flies with 
her maximum energy Emax. A drone is randomly selected 
from the drone population in (12) and mates with the 
Master Queen QM probabilistically using an annealing 
function as follows: 

 
( )

Prob(Q , D) eM

f
E t

 
 
 
 
 




    (17) 

where f f fQ D jM
   , 

MQf  is Fitness of the Master 

Queen QM, D jf  is Fitness of the jth Drone, Dj and the 

finesses are evaluated using the cost function defined by 
(7) and (13). 

The calculated Prob(QM, D) of the mating flight is 
compared with a random value ϵ (0, 1) and if it is greater 

than the random value, the mating will be assumed to be 
successful attempt and the corresponding Drone’s sperms 
(Drone’s genetic inheritances) will be added to the sper-
matheca:  

 Prob(Q , D) Rand(.)M  . (18) 

After each mating Master Queen’s energy level is de-
creased with the random decaying coefficient: 

 α(t) ϵ ( 0, 1) , ( 1) E( ) x ( )E t t t  . (19) 

If the current energy level of the Master Queen Bee 
QM is lower than the minimum level, the mating flights will 
be stopped, thus the Master Queen QM can fly back to the 
Hive to give births to new members of the colony as given 
in the stages (5-6), otherwise the mating flights will be 
continued until there are no more drones in the D popula-
tion to be mated. 

Stage 5: Generate the Genetic Pool (GP) 

If a mating flight is successful, the Master Queen Bee 
QM will accept all the sperms of the partner drone into her 
spermatheca to generate the genetic pool with her genetic 
inheritance, from where new generation of the entire 
colony will have their genetic identities. Size of the genetic 
pool will be increased with the number of the successfully 
performed mating flights, and the Master Queen QM ‘s 
genetic inheritance completely passes to next generation  
while solely the DjGen s belonging to the NDrs drones having 
successful mating flights till the end of her mating flight, 
thus the genetic pool can be defined as 

 

, ,1 2 3

, , ,1 1 1 2 3

1, 2,3
1 1
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GP
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 
 
  

      

   (20) 

Here m = 1000 + 100NDrs and NDrs ≤ NDrone is the number of 
the drones each of which had a successful mating flight 
with the Master Queen Bee QM. Thus, in this stage we have 
a search space having a huge capacity with 
(m)6 = (1000 + 100NDrs)

6 number of different random solu-
tions for the T-matching circuit that means at least 1018 
solutions with NDrs = 0. In the following stage, generation 
of Egg population (Solution Space) from this genetic pool 
(Search Space) will be given by the crossing over process. 

Stage 6:  Generate the Egg population 

In the proposed HBMO algorithm, gender of all new 
born members of the colony will be assumed as female, 
thus each solution can be considered as a potential Master 
Queen Bee candidate. The Egg_ population is defined as: 

 

t[Egg , Egg ,.., Egg ]N1 2 Egg

, ,1 2 3

, ,1 2 3
2 3

Egg population

w w wEgg Egg Eggi i i
Eggi

Egg Egg Eggi i i x




 
 
 
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  (21) 



RADIOENGINEERING, VOL. 23, NO. 1, APRIL 2014 139 

i = 1,...,Negg, which is generated by crossing over among 
the corresponding elements of the genetic pool: 

 

(K ,1)n

'(K ,1)nGPjEggi

w WjEgg jGPi

L j




 (22) 

Kn and K’n are randomly generated integers 
 (1, 1000 + 100NDrs).Thus a sub-search space is generated 
as a solution space by this Egg population within the 
complete search space defined by the genetic pool with the 
Negg= (Ngen)

5=(tmax)
5  couples which will be sorted rapidly 

for the best solution in the next stage. 

Stage 7: Accelerated exploration for the new Master 
Queen Bee  

During this phase, all the new born members of the 
Egg Population will be passing from the five steps to ex-
plore rapidly the search space for the selection of the new 
Master Queen QM (The Best solution). These five steps can 
be given with their sizes as follows: 

1-Fertilization (Nfertilization), 2-Larva (NLarva), 3-Brood 
(Nbrood), 4-Hive (NHive), and 5-Generation (NGen), size of 
each of these steps is equal to maximum iteration number 
which is taken to be equal to 20 in our application. The 
accelerated exploration is based on the “sorting” step by 
step and can briefly be summarized as follows: In each 
step, the current entire population is divided into the sub-
populations having (NGen) members, then the best member 
with the minimum cost value of each sub-population is 
promoted to the next step, and the rest members are dis-
carded. 

For NDrs = 5, we have m = 1000 + 100x5 and 1500 
elements for each of WjGP and LjGP vector of the genetic 
pool as given in (20), thus the complete search space con-
sists of 15006 = 11.4 x1018 (Wj, j) couples, among which 
NEgg = 205 = 3.200.000 (Wj, j) pairs are passed to the Egg 
population by crossing over to generate the solution space. 
Sorting these 205 sub-groups, total 204 eggs (the solutions 
having the minimum cost values belonging to the sub-
groups) are fertilized and promoted to the “Larva” stage. 
Then repeating the same process in the “Larva” stage, 203 
larvas will be promoted to the “Brood” stage. So on, at the 
end of the competition among the queens of the 202 = 400 
Hives, only 20 best solutions will be passed to the “Gen-
eration” stage as the Master Queen Candidates. Since it-
eration is equal to “Generation” number, Master Queen 
Candidate of each Generation/Iteration will be compared 
with the current Master Queen Bee. In this final step, only 
(Wj, j) couples having the minimum cost of the competi-
tion will be chosen as the new Master Queen Bee which 
will take new mating flights to give born to new members 
of the next generation of the colony. These steps can be 
considered as the accelerated selection of the fittest mem-
ber of the entire colony. The algorithm terminates if it 
reaches either the maximum iteration/generation number or 
the required cost.  

Stage 8: Feeding of the Master Queen Bee with Royal 
Jelly 

Royal Jelly Feed aims at increasing the accuracy of the 
solution by minimizing the cost obtained from the global 
search. Therefore each element of the Master Queen Bee 
QM is either increased or decreased by the incremental 
steps NRJ while the other elements remain the same, de-
pending on the cost variation. Thus, the accuracy of the 
solution is increased by minimizing the cost value which is 
the final solution in the form of: 

  

2 3

, ,1 2 3

, ,1 2 3
x

w w wQ Q QM M MQM
Q Q QM M M


 
 
 
  
  

  (23) 

4.2 Characteristics the Proposed HBMO  

In this work, the proposed HBMO algorithm is used 
effectively and efficiently to design a front-end amplifier. 
The features of the HBMO version can briefly be summa-
rized as follows: Our HBMO algorithm works effectively 
with a single Queen called as the Master Queen and gener-
ated randomly between predefined upper and lower limita-
tions together with her versatile genetic inheritance and has 
the duty of give birth to the members of the Nhive hives of 
the colony instead of one hive. The rest of Queen Popula-
tion is used for registration of the Queens of the Nhive hives 
from where the Master Queen QM will be selected. Divi-
sion of the entire colony into the Nhive hives facilitates 
“Sorting” process applied to the sub-colonies step by step, 
in the other words the search for the new Candidates is 
performed in a reduced number of sub-matrices instead of 
making a search for a single gigantic matrix. This gains the 
algorithm both simplicity and efficiency. The mating proc-
ess is also simplified to only energy-based probabilistic 
decision rule to enable the more fittest solutions, and fur-
thermore “Egg population” is defined as a random selec-
tion process based on a crossing over to generate search 
space as a sub-space of the entire huge solution space, 
besides “Royal Jelly” feed is used in algorithm to make 
a local search in order to improve the fitness of the Master 
Queen bee at the end of the each generation or iteration. 
Thus the comparison with the counterpart population-based 
algorithms verified that a robust and fast convergent algo-
rithm with the minimal problem information is resulted for 
the design of a front-end amplifier. 

5. Worked Example  
The user-defined parameters of the HBMO algorithms 

are set to the following values in the design of the front-
end amplifier: NDrone = 20, tmax = NGen = 20, mQ = 1000, 
mD = 100, NRj = 1000, Emax = 1, Emin = 0.2, costreq = 0.02. 

In the work example, NE3512S02 is selected as the 
microwave transistor and its minimum noise figure Fmin(f) 
profiles are given in Fig. 5 at several bias conditions.  
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Fig. 5.  Noise Figure Profiles at several bias conditions. 

Furthermore, the maximum gain GTmax(f) variations 
constrained by the minimum noise figures Fmin(f) and 
F = 1 dB  are evaluated numerically using the HBMO and 
compared the analytical counterparts [1], [2] which are 
taken place in Figs. 6 and 7 at several bias conditions, 
respectively.  
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Fig. 6.  Constrained Maximum gain GTmax(f) by Fmin(f). 
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Fig. 7. Constrained Maximum Gain by Freq ≥ Fmin frequency 

characteristics at the bias condition (VDS = 2 V, 
IDS = 10 mA). 

The gain performance GTmax (f) constrained by 
F = 1 dB at the bias condition (2 V, 10 mA) is designed on 
the substrate of Rogers 4350 (εr = 3.48, h = 1.524 mm, 
tanδ = 0.003, t = 0.001 mm) along the bandwidth of  
5-12 GHz. The solution spaces of the T-type matching 
circuits in Fig. 8 are shown in Tab. 2.  

 
Fig. 8.  LNA with T- type Microstrip Matching Networks. 

 

W1 (mm) W2 (mm) W3 (mm) W4(mm) W5 (mm) W6 (mm) 
4.58 4.99 4.32 1.28 3.79 4.13 

ℓ1 (mm) ℓ2 (mm) ℓ3 (mm) ℓ4 (mm) ℓ5 (mm) ℓ6 (mm) 
13.93 5.37 0.77 1.73 5.65 14.36 

Tab. 2.  Solutions of the T type input and output microstrip 
matching elements for the maximum output power and 
the noise figure F(f) = 1 dB. 

Impedance mismatching at the input and output ports 
are given as compared with the Genetic Algorithm (GA), 
Particle Swarm Optimization (PSO) and HBMO with and 
without Royal Jelly in Figs. 9 and 10, respectively.  
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Fig. 9.  Comparison of algorithm for impedance mismatching 

at the input port. 
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Fig. 10.  Comparison of algorithm for impedance mismatching 

at the output port. 

The resulted gain, noise performances, input and 
output reflections of the amplifier designed by HBMO with 
Royal Jelly are given in Figs. 11, 12, 13, 14, respectively 
as compared with the targeted performances and obtained 
by the AWR circuit and 3-D EM simulators.  
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Fig. 11.  Comparative gain performance of the amplifier for the 

maximum power delivery and the noise figure of 
F(f) = 1 dB. 
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Fig. 12.  Synthesized noise performance of the T-type amplifier. 
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Fig. 13.  Input reflection of the T-type amplifier. 
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Fig. 14.  Output reflection of the T-type amplifier. 

Furthermore the cost and execution time with 
iteration number of the used counterpart’s algorithms 
which are GA, PSO, and HBMO with and without Royal 
Jelly are given in Fig. 15.  

0 5 10 15 20 25
0

5

10

15

Iteration

 C
os

t

 

 

0 5 10 15 20 25
0

100

200

300

E
xe

cu
ti

on
 T

im
e 

(S
ec

)

HBMO & Royal Jelly Cost
PSO Cost
GA Cost
HBMO Cost
HBMO & Royal Jelly Time
PSO Time
GA Time
HBMO Time

 
Fig. 15. Cost and execution time variations for PSO, GA and 

HBMO & Royal Jelly. 

The optimization parameters of the studied algorithms 
are given in Tab. 5, the parameters of the PSO and GA are 
taken as their default values of the MATLAB Optimization 
tool, MATLAB 2010b [20]. The cost values and execution 
times at the 20th iteration of a random run are given in 
Tab. 3 performed by the Intel Core i7 CPU, 1.60 GHz 
Processor, 6 GB RAM. Furthermore the statistical analysis 
is performed benchmarking of the selected algorithms for 
10 times of tries depicted in Tab. 4 that result in a high 
success rate of the proposed algorithm. Thus one can infer 
the effectiveness and efficiency of the proposed HBMO 
based design by comparing it with the GA, PSO and the 
simple HBMO based designs. 
 

Algorithm Cost Execution Time (Sec) 

HBMO &Royal Jelly 0.17 84 

HBMO 0.77 71 
PSO 1.15 84 
GA 1.05 89 

Tab. 3.  Benchmarking at 20th iteration. 
 

Algorithm Worst Best Mean 

HBMO &Royal Jelly 0.29 0.12 0.18 

HBMO 0.9 0.65 0.74 
GA 1.27 0.95 0.99 
PSO 1.15 0.9 0.96 

Tab. 4.  Benchmarking of cost variation for 10 tries at 20th 
iteration for all algorithms. 

 

Algorithm Population 
Maximum 
Iteration 

Special Parameters 

HBMO& 
Royal Jelly 

Iteration5 25 
NDrone= 20,  

Emax = 1, Emin = 0.2, 
NRJ Step Size = ±0.01 

HBMO Iteration5 25 
NDrone=20,  

Emax = 1, Emin = 0.2 

GA 30 25 Gaussian Mutation 

PSO 30 25 
Learning factors 

c1 = c2 = 2 

Tab. 5.  User defines parameters of the algorithms. 
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6. Conclusions  
This work has gathered the analytical and novel arti-

ficial intelligence techniques developed by our research 
team [11-19], to design a front-end amplifier that is for-
mulated as an optimization problem each ingredient of 
which is carried out rigorously on the mathematical basis. 
In fact, this front-end amplifier design is based on a con-
strained optimization problem with the different objectives 
which are the maximum signal power delivery and the 
required noise. Besides in this work, the cost effective 3-D 
SONNET-based SVRM microstrip model is used as a fast 
and accurate model worked out by our research group in 
the design process of the microstrip matching networks. 
Another originality is building of a simple and efficient 
version of the HBMO to be used in the front-end amplifier 
design. The HBMO combines the powers of simulated 
annealing, genetic algorithms to search for the best possi-
ble solution to the problem under investigation within 
a reasonable computing time. Furthermore, a simple local 
heuristic is combined with the HBMO to increase the accu-
racy without decreasing much the computational effi-
ciency. Thus, the significance of the work for the micro-
wave circuit theory can mainly be itemized as follows: 

(i) First of all, the design needs solely the fundamen-
tal microwave circuit knowledge; (ii) Design target is 
based on the potential performance of the used active de-
vice that is obtained by solving numerically the nonlinear 
gain, noise and input and output mismatching equation 
using the HBMO subject to the design objective; (iii) In the 
design of the input and output microstrip matching circuits, 
the cost effective microstrip SVRM model is used as a fast 
and accurate model so that it facilitates to obtain directly 
all the matching microstrip widths, lengths { W,


 } on 

a chosen substrate to satisfy the maximum power delivery 
and the required noise over the required bandwidth of 
a selected transistor; (iv) Microstrip matching circuit in any 
configuration can be easily synthesized by the HBMO with 
the royal jelly fast and accurately compared to the other 
counterpart evolutionary algorithms.  

It can be concluded that the paper presents an attrac-
tive design method for a front-end amplifier design based 
on the transistor potential performance, and it can be 
adapted to design of the other types of linear amplifiers.  
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