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Abstract. In this paper, T-shaped electromagnetic band-
gap is loaded on a coupled transmission line itself and its 
electric performance is studied. Results show that micro-
wave slow-wave effect can be enhanced and therefore, size 
reduction of a transmission-line-based circuit is possible. 
However, the transmission-line-based circuits characterize 
varied phase responses against frequency, which becomes 
a disadvantage where constant phase response is required. 
Consequently, a phase-compensation technique is further 
presented and studied. For demonstration purpose,  
an 8-way coupled-line power divider with 22.5 degree 
phase shifts between adjacent output ports, based on the 
studied slow-wave structure and phase-compensation tech-
nique, is developed. Results show both compact circuit 
architecture and improved phase imbalance are realized, 
confirming the investigated circuit structures and analyz-
ing methodologies. 
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1. Introduction 
In microwave engineering, transmission lines are 

generally utilized to constitute all kinds of components, 
circuits, and matching networks, as well as antenna feeding 
networks. Moreover, quarter-wavelength transmission lines, 
i.e., electric lengths of 90, are extensively employed to, 
for example, parallel-coupled filters [1]-[3], directional 
couplers [4]-[7], power dividers [8]-[11], impedance trans-
formers and so on. However, circuit areas of these compo-
nents may be bulky since they basically consist of quarter 
wavelengths (even half wavelengths). Therefore, compact 
circuit topologies are attractive for system volume and cost 
considerations. In general, compactness of a circuit can be 
implemented by loading transmission line stubs [12], [13], 
meandering quarter-wavelength transmission lines [14], 
[15], enhancing capacitive coupling [16], [17], periodically 

loaded electromagnetic bandgaps (EBGs) [6], [18], loading 
transmission line with lumped components [19], [20], etc. 
It seems that transmission line loading stubs can exhibit 
some interesting characteristics like achieving large divi-
sion ratio in microwave power divider designs [21], while 
meandering a section of transmission line has a disadvan-
tage of increasing discontinuities. Also, using inter-digital-
like technique can enhance distributed capacitance but, it 
suffers from fabrication difficulty when coupling fingers 
become too small. The lumped components, especially for 
lumped inductors, will exhibit resonance and loss at high 
frequencies, hence, it cannot be applicable to 
RF/microwave frequency band. The EBG structure, real-
ized generally by etching some holes or other shapes on the 
ground plane, can create slow-wave effects, correspond-
ingly, reducing circuit area. But, it results in a patterned 
ground, thus destroying the ground integrity. Another tech-
nique to implement slow-wave effects is by etching pat-
terns on a transmission line itself, which is also a kind of 
EBG structure. It is an interesting concept since the ground 
integrity holds, thus facilitating practical engineering. In 
2000, Xue et al. [22] first proposed such a method and 
subsequently, some improved topologies were studied 
extensively [23]-[25]. Also, many potential applications are 
investigated [26]-[28]. 

On the other hand, phase imbalance is an important 
parameter in engineering such as balanced mixers, push-
pull amplifiers, antenna feeding networks, and so on. How-
ever, transmission-line-based microwave circuits achieve 
a matched state only at the center operation frequency. This 
means its phase response is related to the frequency. When 
offsetting from the center frequency, the phase also devi-
ates from the desired value. Therefore, the phase imbalance 
must be compensated, especially for the case where con-
stant phase response is required. In 2000, Piernas et al. [29] 
first introduced a short-circuited transmission-line stub 
with quarter wavelength at the center frequency. The stub 
is attached to one of output ports of a rat-race hybrid. Re-
sults indicate that the phase imbalance is greatly improved. 
Later, Eom et al. [30] further studied an improved topology 
where two pairs of short/open circuited stubs are shunt on 
both sides of a coupled transmission line. With this archi-
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tecture, wideband phase shifter having good phase re-
sponse is observed. 

In this paper, we first investigate a planar slow-wave 
structure with EBG cells, where the cell is etched on a pair 
of coupled transmission line itself. Its equivalent circuit 
model, based on the distributed inductance and capacitance 
of transmission lines, is formulated and further simplified 
based on the even- and odd-mode analyses. The slow-wave 
effects are also studied, and results show that size reduc-
tion is achievable. Subsequently, we study a pair of short/ 
open circuited stubs attached to a section of transmission 
line. Its phase response against frequency is analyzed. It 
indicates that by properly setting the characteristic imped-
ance of the pair of short/open stubs, wideband phase 
compensation can be implemented. For demonstration, 
an 8-way coupled-line power divider with 22.5 phase 
shifts between adjacent ports is designed. Good results 
from simulations and experimental data confirm the studied 
circuit architecture and analyzing methodology. 

The paper is organized as follows: Section 2 presents 
and analyzes a coupled transmission line with EBG cells 
etched on the line itself. The phase-imbalance compensa-
tion technique is formulated in Section 3. In Section 4, 
a demonstration circuit that incorporates slow-wave effects 
and phase-imbalance compensation on an 8-way coupled-
line power divider is designed and its performance is inves-
tigated. Finally, a conclusion is drawn in Section 5. 

2. Coupled Transmission Line Loaded 
EBG Cells 
In microwave engineering, coupled transmission line 

has found useful applications in directional couplers, paral-
lel-coupled filters, etc. The use of coupled line to design 
power divider has an advantage of free selecting the odd-
mode impedance, hence providing design flexibility in 
practice [31]. Therefore, a pair of coupled transmission line 
is considered here. Shown in Fig. 1(a) is the studied archi-
tecture, where T-shaped stubs are placed face-to-face on 
the transmission lines. The use of T-shaped stubs, as com-
pared with the structure in [22], can create a larger distrib-
uted capacitance due to fully using the circuit area. Further, 
this enlarged capacitance, as formulated later, corresponds 
to an enhanced slow-wave factor, leading to a more com-
pact circuit area. Thus, we develop such a loaded structure 
here. For analyzing convenience, the transmission line is 
assumed to be lossless. The stub loaded coupling region 
has a length a, while the coupling gap of the coupled line is 
denoted by s. The gap can create distributed capacitances, 
which are represented by Cc. The width of the coupled line 
on each side is described by w0. Due to the etched pattern, 
its width is reduced from w0 to w0-h, thus each section of 
the narrowed strip corresponds to distributed inductance 
depicted by L0. For the T-shaped stub, all coupling gaps on 
the coupled line are set to g; these gaps can create distrib-
uted capacitances described by C1. The vertical strip of the 

T-shaped stub has a width and a height of w and hg, respec-
tively. Also, this narrow strip can be equivalent to distrib-
uted inductance denoted by L1.  Finally, each horizontal 
section of the T-shaped stub primarily creates distributed 
capacitance marked by C0. Based on this formulation, the 
pair of coupled transmission line with T-shaped stub load-
ing can be equivalent to a lumped LC circuit model illus-
trated in Fig. 1(b). 
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Fig. 1. (a) Coupled transmission line with T-shaped stub 
loading. (b) Equivalent lumped LC model. 
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Fig. 2. (a) Even-mode equivalent circuit. (b) Odd-mode 
equivalent circuit. 

With a symmetry plane replaced by an electric wall (E 
wall) or magnetic wall (M wall), the coupling region can 
be analyzed based on even- and odd-mode methods. De-
scribed in Figs. 2(a) and (b) are the equivalent circuits of 
this improved coupled-line structure under even- and odd-
mode excitations. The even- and odd-mode equivalent 
networks can also be utilized to estimate slow-wave effects 
of this coupled line. Based on transmission line theories, 
the propagation constant of a transmission line without loss 
is given by 
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 0 LC   (1) 

where 0 is the angular frequency, L and C are respectively 
the distributed series inductance and shunt capacitance per 
unit length of a transmission line. 

The large propagation constant corresponds to 
a strong slow-wave effect, which can be achieved by en-
hancing the distributed series inductance L and/or shunt 
capacitance C as formulated from (1). To simplify analy-
ses, the even-mode network shown in Fig. 2(a) is further 
evolved in which the gap coupling (capacitance C1) is 
assumed to be weak as compared to the patch capacitance 
C0. Fig. 3(a) illustrates the simplified even-mode equiva-
lent network. It is mentioned that the circuit described in 
Fig. 3(a) can be equivalent to Fig. 3(b), where 

 L = L0  (2a) 
and 
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It is noted that for the odd-mode case shown in 
Fig. 2(b), the corresponding L and C are given by 

 L = L0   (3a) 
and 
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Fig. 3.  (a) Even-mode network under a weak coupled gap 
capacitance. (b) Further simplified model. 

Interestingly, the general T-network presented in 
Fig. 3(b) can be utilized to analyze a standard transmission 
line with a given length l and characteristic impedance Z0, 
expressed by [32] 

 







2
tan0 lZ

L



  (4a) 

and 

  



0

sin
Z

l
C  .   (4b) 

The above results give a relationship between the in-
vestigated architecture and a standard transmission line, 
enabling us to characterize the circuit performance. As 
mentioned before, the strong slow-wave effects can be 
achieved by increasing the equivalent series inductance L 
and/or shunt capacitance C as described in Fig. 3(b). Struc-
turally, this can be implemented by varying the parameters 
a, h or hg shown in Fig. 1(a). Now, we further define the 
slow-wave factor k as [33] 

 
air air

LC
k

L C
   (5) 

where Lair and Cair are respectively the equivalent induc-
tance and capacitance per unit length of the structure in 
free space. 

Based on (5), the lumped L and C values can be found 
from (2), (3), or (4). It can be further related to the distrib-
uted equivalent parameters of the investigated structure, or 
a standard line. For illustration purposes, Fig. 4(a) indicates 
that the slow-wave factor k for a standard line is approxi-
mately 1.5 on a dielectric substrate (εr = 2.33 and thickness 
= 31 mil). With the T-shaped structure loaded, k ap-
proaches 2 for h = 1.2 mm and hg = 0.4 mm. This incre-
ment further follows the enhancement of equivalent induc-
tance L1, i.e., the increase of strip length hg. The enlarge-
ment of dimension h means the increase of the equivalent 
patch capacitance C0 that also leads to an increased factor 
k, as described in Fig. 4(a). With these variations, the slow- 
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Fig. 4.  (a) Slow-wave performance and transmission phase of 
the studied structure and a standard transmission line. 
(b) Frequency responses, where other structure para-
meters referred to Fig. 1(a) are a = 11, w0 = 2.1, 
w = 0.24, and g = 0.2 (units: mm). 
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wave factor k can range from 2.5 to 3 for h = 1.7 mm, 
hg = 0.4 mm and 1.5 mm respectively in the frequency band 
up to 4.5 GHz. Fig. 4(b) records the frequency responses 
under these parameter variations, where both electromag-
netic simulations and lumped LC circuit simulations are 
presented and good consistency is found, indicating the 
proposed lumped LC model works well for this structure. 
Also, Fig. 4(b) shows the S parameters are good within the 
studied frequency range. These results show that the intro-
duced T-shaped loading can effectively enhance the slow-
wave effects while, at the same time, maintaining good 
frequency responses. 

3. Phase Compensation at Microwave 
Frequencies 
The phase compensation is based on a standard trans-

mission line with its electric length of 0 and characteristic 
impedance of Z0 in our analyses. Now, we use a pair of /8 
open/short stubs centrally loaded to the standard line, as 
depicted in Fig. 5.  
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Fig. 5.  A section of transmission line centrally loaded by 

a pair of open/short stubs. 

As compared to Eom's work [30], a single pair stub shown 
here is simpler and more compact. For the loaded transmis-
sion line shown in Fig. 5, its phase responses can be de-
rived based on ABCD matrix formulation, as given by 
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Further, the transmission performance from ports 1 to 
2 is given by 
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where z = Z/Z0 is the normalized impedance, and 
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Therefore, its phase response is found to be 
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The above result indicates that, at the center 
frequency f0, the extra open/short stubs have no effect on 
the phase characteristic of the stub-loaded line itself, while 
it is possible to improve the phase-difference fluctuation or 
phase imbalance between a standard transmission line and 
this stub-loaded line. 

To further give quantitative formulations on above 
theoretical analyses, here we take a standard transmission 
line with electric length (45 + 0) as an example, where 0 
can be arbitrary. Thus, the phase difference between the 
standard line and the stub-loaded line is 45. Fig. 6 illus-
trates the simulated phase imbalance. It is seen that without 
phase compensation, i.e., the stub loading, the phase is 
linearly varied against a frequency band from 1 to 4 GHz. 
However this phenomenon can be greatly changed with the 
introducing of the pair of stub-loaded lines. Moreover, it is 
found from Fig. 6 that characteristic impedances of the 
open/short stub influence the phase imbalance. It is seen 
that with normalized stub impedance z = 2.4, a very wide-
band phase compensation can be implemented when re-
ferred to a response fluctuation of 2.5. When z is further 
higher than 2.4, for instance z = 3, an over compensation 
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will occur, while when smaller than this value, e.g., z = 1.6, 
an under compensation will suffer. For most applications, 
a phase imbalance of 2.5 is acceptable. Thus one can set 
the normalized sub impedance z approximately to 2.4, 
frequency response having wideband and small phase 
fluctuation can be readily obtained. 
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Fig. 6.  Phase responses of a standard line and the studied 

open/short stub loaded line. 

4. Demonstrating on an 8-Way 
Coupled-Line Power Divider 
Based on the above analyses, we demonstrate here 

an 8-way coupled-line power divider with 22.5 phase 
shifts between arbitrary adjacent output ports. The devel-
oped power divider features a reduced circuit size and 
flattened phase shifts. It is designed on a microwave sub-
strate with a relative permittivity of 2.33 and a thickness of 
31 mil. 

Layout of the studied power divider is shown in 
Fig. 7(a). As compared to a conventional coupled-line 
divider, the coupling region is replaced by loading T-
shaped elements, i.e., EBG slow-wave structures. Mean-
while, to implement 22.5 phase difference between final 
output ports, the output phase shifts for the first, second, 
and third power-division stages are 90, 45, and 22.5, 
respectively. It is realized by differentiating the transmis-
sion-line length between output ports of each stage. Mean-
while, the phase compensation is carried out at each stage, 
thus the open/short stub is respectively attached to one of 
the output ports at each stage. For clarity, Fig. 7(b) depicts 
a single divider unit. The slow-wave factor k, as analyzed 
in Section 2, is 2.23 in this circuit design, and characteristic 
impedance of the phase-compensation stubs is set as 
Z = 120 . With optimal full-wave EM simulations (simu-
lator: Ansoft Ensemble 8.0), a compact 8-way power di-
vider with 22.5 phase difference between output ports is 
designed. For each stage of the divider, all coupling region 
and the open/short stubs have the same structure parame-
ters. Referring to Figs. 1(a) and 7(b), these are (units: mm) 
a = 11, w0 = 2.1, h = 1.7, hg = 1.5, w = 0.24, g = 0.2, 
s = 0.8, b = 12.5, d = 1, ls = 11.15, ws = 0.24, hi = 2.5, and 
w1 = 2.35, while parameters di and ei for the first, second 
and third stage are respectively 10.9 and 32.1, 5.3 and 15.5, 

4.3 and 9.6. With this design, it is found the circuit area is 
reduced to 60% as compared to the conventional topology. 
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Fig. 7.  (a) Studied compact 8-way coupled-line power divider 
with 22.5 phase shifts between output ports.  
(b) A single divider unit. 

The optimally designed circuit is fabricated on a sub-
strate mentioned above. Electric performance of the built 
circuit is measured by using an Agilent vector network 
analyzer, N9918A. Fig. 8 depicts the measured and simu-
lated frequency responses of the developed circuit, where 
solid markers represent simulated results, while lines with 
hollow markers denote measured data. It can be seen from 
Fig. 8(a) that when referred to 9.5  0.5 dB, the insertion 
losses (|Sn1|, n = 2, 3, …, 9) cover a frequency range from 
2.05 to 2.75 GHz, as compared to the theoretical values of 
9.0 dB. The extra losses are due to the circuit conductor 
and dielectric losses. The return losses (|Snn|, n =1, 2, …, 9) 
and isolation responses (|Sij|, i, j = 2, 3, …, 9, i  j) are all 
better than 15 dB within this range, as described in 
Figs. 8(b) and (c). Notice that the port isolations from 
simulations are not presented in Fig. 8(c) for brevity. The 
phase responses between adjacent output ports, as recorded 
in Fig. 8(d), indicate almost constant phase differences for 
all output ports within the observed frequency band. As 
compared with the conventional coupled-line power 
divider, these results clearly indicate that the studied slow- 
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Fig. 8. Electric performance of the developed divider.  
(a) Transmission responses. (b) Return losses. (c) Port 
isolations. (d) Transmission phase responses. 

wave structure and phase-compensation technique are 
effective to be employed in developing such kind of 
circuit. 

5. Conclusion 
It shows that the presented T-shaped EBG structure 

etched on transmission line itself can exhibit slow-wave 
effects while maintaining good frequency responses within 
the studied frequency range. Potentially, it can be utilized 
to design a microwave circuit with reduced circuit area. On 
the other hand, a pair of open/short stubs with 1/8 wave-
length attached to a standard transmission line can effec-
tively change its phase response. Consequently, it can be 
employed to perform phase compensation as required. 
Based on these results, we investigate an 8-way coupled-
line power divider with reduced circuit size and improved 
output phase imbalance. For demonstration, such a power 
divider is optimally designed, built, and experimentally 
examined. Measured responses have validated the predi-
cated results, and good consistency is observed, convincing 
the presented techniques. It is believed that the studied 
techniques and circuit topologies are useful to be poten-
tially applied to contemporary microwave systems. 
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