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Abstract. Collaborative beamforming has been widely 
used in wireless sensor networks to improve the directivity 
of signals in long-distance transmission. The performance 
of collaborative beamforming has been well analyzed for 
the case without phase offset in the literature. However, the 
phase ambiguity caused by carrier phase jitter or offset 
between the transmitter and receiver nodes always exists in 
a practical system. Although the effects of imperfect phase 
have been studied for uniform node distribution and Tik-
honov phase noise model, the performance analysis of 
collaborative beamforming with arbitrary node distribu-
tions and any phase offset which may have various prob-
ability density functions (PDFs) depending on phase-
locked loop circuits is still an open issue. This paper pro-
poses a unified method to evaluate the performance of 
collaborative beamforming in the case of phase noise. 
Since non-parametric kernel method is used to build the 
PDFs of node and phase offset, the proposed non-paramet-
ric approach can provide accurate performance analysis 
for various node and phase noise distributions which may 
or may not be represented by explicit PDF functions. Com-
puter simulation is conducted to verify validity of the pro-
posed method. 
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1. Introduction 
Wireless sensor networks (WSNs) are widely used for 

monitoring and control in military, environmental, health 
and commercial systems [1]. A WSN usually consists of 
hundreds of small, battery-powered and wirelessly con-
nected sensors. Each sensor in a WSN usually has limited 
communication range due to cost and resource constraints. 
A preferred solution to increase communication range and 
save transmission energy is the distributed or collaborative 
beamforming. Collaborative beamforming is achieved by 

adjusting the initial phase of each node to form a beam in 
the desired direction as shown in Fig. 1. Therefore, inter-
ference at other directions is suppressed and signal at the 
receiver becomes dominant.  

Several collaborative beamforming methods have 
been investigated in the literature [2–5]. However, the 
characteristics of beampatterns were seldom studied. The 
authors in [6] analyzed the performance of collaborative 
beamforming using the random array theory developed in 
[7] based on the assumption that sensor nodes are uni-
formly distributed in a WSN. Furthermore, the effects of 
imperfect phase have been studied in [6] when the posi-
tions of nodes follow a uniform distribution and phase 
noise is subject to Tikhonov distribution. In a large WSN, 
when sensor nodes drop from an airplane for example, the 
positions of nodes are affected by many factors such as 
wind speed and direction, sensor releasing mechanism, and 
height of releasing point. According to the central limit 
theorem, the combined effect of these factors results in 
Gaussian node distribution. Therefore, the beampattern 
characteristics for the Gaussian node distribution in [8] 
provided a unified performance analysis for large WSNs. 
The total effect of these factors may change in small WSNs. 
In this case, node distribution may not be described by 
Gaussian distribution. To present a unified analysis of 
collaborative beamforming for arbitrary node distributions 
and any size of WSNs, a non-parametric method was pro-
posed to evaluate the performance of collaborative beam-
forming in [9]. 
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Fig. 1. Collaborative beamforming in WSNs. 
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It should be noted that the effects of imperfect phase 
was only studied for the case that the positions of nodes 
follow a uniform distribution and the phase offset is subject 
to Tikhonov distribution whereas both [8] and [9] do not 
take the phase offset into consideration. Therefore, the 
performance analysis of collaborative beamforming with 
arbitrary node distributions and any phase offset which 
may have various distributions depended on phase-locked 
loop (PLL) circuits is still an open issue. This paper pre-
sents analysis of collaborative beamforming for the case of 
imperfect phase synchronization. The basic idea of the 
proposed method is to model the probability density func-
tions (PDFs) of node and phase offset distributions using 
the non-parametric kernel method and then derive the 
beampattern properties based on the estimated PDFs. The 
non-parametric kernel method is an attractive and powerful 
tool to estimate the PDF of an actual distribution from 
survey data and has a wide range of applications in ma-
chine learning, bioinformatics, and computer vision [10]. 
Since kernel density estimators asymptotically converge to 
any PDF, the application of kernel density estimation en-
ables the proposed method to be independent from the 
assumptions of the underlying node and phase noise distri-
butions. 

2. System Description 
Considering a geometric model in [6], [8–9] with N  

sensor nodes, the Cartesian coordinates of the kth sensor 
node are denoted by (xk, yk). The corresponding spherical 

coordinates are   2 2 1, tan k

k

y
k k k k xr x y     . The loca-

tion vectors r and ψ  for all nodes can be written as: 
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Since collaborative beamforming is generally used for 
long-distance transmission, this paper focuses on the radia-
tion pattern in the far-field region. Assuming that the posi-
tion of the destination base station is  0,A   in spherical 

coordinates, performance analysis for collaborative beam-
forming is to obtain the characteristics of beampatterns at 
the point  ,A   where  ,    . The wavelength of 

signal is  . The distance between the kth sensor node and 

point  ,A   is: 
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where A>>rk in the far-field region.  

To form a beam at the desired direction  0,A   for 

long-distance and high-speed transmission, the initial phase 
of node k  should be synchronized as: 

  2
0k kd

    (3) 

where  0kd   is the distance between the kth sensor node 

and destination base station  0,A  . Due to the phase ambi-

guity caused by carrier phase jitter or offset between the 
transmitter and receiver nodes, the initial phase of node k  
becomes: 
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where k  corresponds to the phase offset and is assumed 

to be an i.i.d. random variable. The corresponding array 
factor, given the realizations of node locations  ,r ψ  and 

phase offset φ , is written as: 
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where  1, ,
T

N φ  . Without loss of generality, the 

azimuth direction of the destination base station 0  is 

assumed to be 0 and the array factor is given by: 
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where    24 sina a    ,    1 2, , , ,
N

Nz z z   z  , 

and  2sinkr
k kz 

   . Since kz  is related to the spherical 

coordinates  ,k kr   of node k  and the sensors in WSNs 

are usually randomly and densely deployed in a certain 
area, kz  is a random variable which may have different 

PDFs depending on the deployment methods and environ-
ments. Phase offset also has various distributions caused by 
different PLL circuits. 

The far-field beampattern can be defined as: 
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Beampattern describes the array gains in the whole re-
gion  ,    . The objective of collaborative beam-

forming is to enhance the array gain at the direction of des-
tination and suppress the gains at other directions. Since 

 | ,P  z φ  contains the random variable kz  and k , the 

characteristics of beampatterns should be derived in 
statistical sense. 

3. Average Characteristics of 
Beampattern 
Since the performance of collaborative beamforming 

depends on distributions of the sensor node and phase 
offset, the PDFs of kz  and k  should be calculated. There 

are parametric and non-parametric methods for estimating 
the PDFs of kz  and k . The parametric methods can only 

be used for specific node distributions such as uniform and 
Gaussian distributions in [6], [8]. In Sections 3 and 4, 
a non-parametric method is developed to evaluate the 
performance of collaborative beamforming for all nodes 
and phase offset distributions with or without explicit 
PDFs.  

The basic procedure of non-parametric estimation is 
to create an approximation of the PDF from a set of survey 
measurements (or called sample points). Assuming that the 
survey set  1 2, , , Mz z z  with size M is available for kz , 

the estimated PDF of kz  can be obtained using non-para-

metric Gaussian kernel method [10], [11]: 
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where exp() is the Gaussian kernel function and the 
smoothing constant h  is the width of kernel function 
which can be determined by Expectation–maximization 
(EM) method in [10], [11]. It should be noted that the non-
parametric method (8) is a one-dimensional Gaussian Mix-
ture Model (GMM). Many non-parametric estimators such 
as histogram method, orthogonal series, and other kernel 
methods can effectively estimate the PDF and have the 
similar performance. Gaussian kernel method was chosen 
due to its similarity with the Euclidean distance and its 
better smoothing and continuous properties even with 
a small number of samples [11]. Another reason is that it is 
easy to integrate and differentiate and can lead to mathe-
matically tractable solution. 

Broadly, there are two ways to obtain sample points: 
empirical model and field measurements. Take node model 
as an example, different deployment methods and environ-
ments will lead to various node distributions. Several 
distributions with or without explicit PDFs (uniform [6], 
Gaussian [8], and differential [12]) have been proposed to 
describe the distribution of sensor nodes in a WSN. For 

empirical model with explicit PDFs such as uniform and 
Gaussian distributions, numerical methods [13], [14] or 
Matlab functions such as “rand” and “normrnd” can be 
used to generate random variables which follow the desired 
PDF. These random variables are used as sample points. 
For empirical model without explicit PDF such as Diffe-
rential distribution, sample points can also be generated 
through computer simulations which follow the special 
deploy methods. The deploy method of Differential 
distribution will be presented in Section 5. For the case 
without the prior information on empirical model, field 
measurement is a useful method to obtain sample points. If 
both empirical model and field measurements are not avail-
able, the problem of performance analysis of Collaborative 
Beamforming for WSNs will become unsolvable. 

Similarly, the estimated PDF of k  can be modeled 

as: 
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where  1 2, , , L    with size L  is the survey set for k . 

The minimum values of M  and L  for achieving relatively 
accurate results using the kernel method can be determined 
using the method in [9].   

3.1 Average Beampattern 

The average beampattern of z  and φ  is defined as: 

     , | ,avP E P  z φ z φ  (10) 

It can be seen from Appendix A that the average 
beampattern is derived as: 
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(11) is the average power level of the sidelobe. The second 
term represents the average beampattern of the mainlobe, 
which depends on the node location, the spatial distribution 
of the sensor nodes and the phase offset A. Different 
spatial distributions will lead to different waves of Pav(). 
The uniform distribution assumption results in nulls and 
sidelobes, whereas the average beampattern based on 
Gaussian distribution has no nulls. 

In the case of perfect phase synchronization 0t   

( 1, ,t L  ),  avP   becomes: 
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Note that (12) is the average beampattern derived for 
the case without phase offset in [9]. Thus the proposed 
average beampattern (11) for the case with phase noise 
reduces to that of the case without phase offset when phase 
offset tends to 0. Since A  1, the phase offset A will 
degrade the array gains in the whole region   [–π, π). 
Therefore A2 is called as degradation factor. This implies 
that accurate phase synchronization will increase array gain 
at the desired direction. 

It should be noted that (11) and (12) provide approxi-
mations of the average beampatterns from a set of survey 
measurements for the cases with or without phase noise, 
respectively. It is important to analyze the relationship 
between the proposed average beampattern and the average 
beampatterns for uniform [6] and Gaussian [8] node cases. 
It has been shown in Appendix B that the average beam-
pattern derived using the proposed method becomes Gaus-
sian [8] or uniform [6] average beampattern when the 
nodes are subject to corresponding distribution and phase 
offset tends to 0. This gives a sanity check for the proposed 
method. 

3.2 3dB Beamwidth 

The 3dB beamwidth is defined as the angle 3dB at 
which the power of the average beampattern drops 3 dB 
below its maximum value at 0   [6], [8]: 

  3 1 / 2,av dBP N   . (13) 

3dB describes the width of mainlobe. Generally, 
a sharp mainbeam property is desirable for collaborative 
beamforming. Substituting (11) into (13) yields: 
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Several numerical methods such as Matlab function 
“fsolve” can be used to calculate a(3dB). After solving 
a(3dB), 3dB can be obtained: 
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3.3 3dB Sidelobe Region 

The 3dB sidelobe region is defined as the range be-
tween the angle sidelobe and   as follows: Sidelobe Re-
gion = {  sidelobe    π} [8]. Two examples of the 3dB 
sidelobe region for uniform and Gaussian node distribu-
tions are shown in Fig. 2. The 3 dB sidelobe region is used 
to show the region within which the average of the side-
lobe beampattern falls between 1/N and 2/N. Since the 
dominant nonnegligible sidelobe peaks are within the range 
between 3dB and sidelobe, larger sidelobe will lead to stronger 
interference at the undesired directions. The angle sidelobe 
should satisfy [8]: 

   2
av sidelobeP

N
  . (16) 

It should be noted that there may be several solutions 
for (16). To make sure that the average of the sidelobe 
beampattern falls below 2/N, the maximum value of the 
solutions will be chosen as sidelobe. The steps to obtain 
sidelobe are listed here: 

(1) Set   = [1°, 1.1°, …,180°]. 

(2) Substitute i into (16) and calculate  
error(i) = Pav(i) – 2/N. 

(3) If error(i – 1)·error(i + 1) < 0, then record  ´j = i. 

(4) Finally get sidelobe = max(´j). 
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Fig. 2. Definition of 3dB sidelobe region. 

3.4 Average Directivity 

The directivity is used to describe how much radiated 
energy is contained at the desired direction, which is 
defined as: 
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Then, the average directivity is defined as 
Dav = Ez, [D(z)]. Furthermore, the lower bound of Dav can 
be obtained as: 
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Substituting (11) into (18) gives: 
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The normalized directivity is defined as: 

 * /av avD D N . (20) 

4. Random Characteristics of 
Beampattern 
The properties of the average beanpattern are derived 

in Section 3. This section presents analysis for the statisti-
cal distribution of beampattern for arbitrary node and phase 
offset distributions using the proposed non-parametric 
method. The array factor of (6) can be rewritten as [6]: 
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The distribution of the array factor is approximated by the 
complex Gaussian distribution in [6], [8], its PDF is:  

  
22

, 2 2

1
, exp

2 2 2

yx
X Y

x y x y

y mx m
f x y

   

    
 
 

 (22) 

where mx, σx
2, my, and σy

2 are the means and variances of 
X  and Y , respectively. The complementary cumulative 

distribution function (CCDF) of a beampattern, which is 
defined as the probability that the radiated power density in 
the direction of   exceeds a threshold power, is given by 

[9]: 
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To make the CCDF solvable, mx, σx
2, my, and σy

2 
should be calculated first. Since zk and k  are independent, 

the joint PDF for these two variables can be obtained from 
(8) and (9): 
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From (21) and (24), the means and variances of X  
and Y  are derived as: 
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(25) 

Several numerical methods such as Matlab function 
“dblquad” can be used to calculate the above quantities. 

 
Fig. 3. Differential deployment Method in [12]. 

5. Simulation Results 
Both uniform and Gaussian distributions in [6] and [8] 

are selected to validate the proposed method for explicit 
node distribution functions. The differential distribution in 
[12] is chosen to simulate inexplicit node distributions in 
practical WSNs. To deploy the differential node distribu-
tion [12], it is assumed that the network covers a disk area 
divided into L  levels from the center to the outside as 
shown in Fig. 3. Each level has same length but different 
node densities. Nodes are randomly and uniformly distrib-
uted in each level. L  is set to 5 and node probability densi-
ties for levels 1 to 5 are 29.55 %, 27.18 %, 22.41 %, 
15.23 %, and 5.63 % respectively [12]. Node probability 
density shows the percent of sensors located at each level. 
Therefore the PDF of differential distribution cannot be 
represented by an explicit expression. The number of sen-
sor nodes is N = 16. To compare the three distributions 
under the same coverage area of the sensor nodes, the nor-
malized radius /R R   of uniform and differential distri-
butions is set to 3  [8].   is the standard deviation of the 
Gaussian distribution. R  is the radius of the disk. In this 
case, both uniform and differential distributions have the 
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same radius R  and 99.73 % of all sensor nodes are located 
in the disk of radius R  for Gaussian distribution. 

A typical phase jitter model for PLL circuits, which 
assumes that the phase offset has a Tikhonov distribution, 
is used to generate the phase noise: 

    2

2
1

0

1 cos( )
exp

2

x
f x

I








 
   

 
 (26) 

where σφ
2 is the variance of the phase noise, and In(x) is the 

nth-order modified Bessel function of the first kind. This 
phase model was also used in [6] to simulate the phase 
offset. The variance of phase noise σφ

2 is related to the loop 
Signal-Noise-Ratio (SNR) of the PLL by: 

 
2

1







 . (27) 

The corresponding degradation factor derived from 
(26) is given by [6]: 

     2 2

2
2

1 1
1 0/A I I

 
  

 . (28) 

5.1 Modeling the Degradation Factor by 
Kernel Method 

This experiment is to evaluate the non-parametric 
kernel method for estimating the degradation factor A2 of 
phase noise from survey data. Phase noise is modeled as 
Tikhonov random variable, and its theoretical degradation 
factor A2 can be obtained from (28). The theoretical and 
estimated degradation factors of the Tikhonov distribution 
with different loop SNRs using the theoretical degradation 
factor (28) and estimated degradation factor (33) are 
plotted in Fig. 4. It can be seen that the theoretical and 
estimated degradation factors are basically the same with 
different loop SNRs. Fig. 4 shows that the proposed 
equation for degradation factor estimation (33) is effective. 
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Fig. 4. Degradation factor comparison. 

5.2 Characteristics of Beampatten 

Since the effective of the non-parametric method to 
evaluate the performance of collaborative beamforming 
with perfect phase synchronization for different node dis-
tributions has been verified in [9], this paper focuses on 
analysis of effects of the phase noise applied in beampat-
tern properties.  

This simulation is conducted to compare the beampat-
tern characteristics of three node distributions between the 
cases with or without phase noise. The beampattern charac-
teristics of uniform, Gaussian, and differential distributions 
for the case without phase noise are obtained from [6], [8], 
and [9], respectively, while the proposed method is used to 
analyze the performance of the cases that phase synchroni-
zation is imperfect. In order to compare the proposed 
method with the method considering phase noise, theoreti-
cal values [6] including average beampattern, 3dB width, 
3dB sidelobe region, and normalized directivity derived for 
the case of uniform node distribution and Tikhonov phase 
noise model are also added in the simulation. The perform-
ance analysis of CCDF for this case is not provided in [6]. 
The average beampatterns of three distributions are shown 
in Figs. 5-7 respectively.  

 
Fig. 5. Average beampattern comparison for uniform node 

distribution. 

 
Fig. 6. Average beampattern comparison for Gaussian node 

distribution. 
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Fig. 7. Average beampattern comparison for differential node 

distribution.  

The loop SNR for phase noise is set to be 5 dB in 
those figures. It can be seen that the degradation factor 
pulls down the array gain at the desired direction about 
1.7 dB whereas the floor of the average beampattern 
remains unchanged at 10 log(1/16) = –12 dB. 

The 3dB width, 3dB sidelobe region, normalized 
directivity and CCDF of the three node distributions for the 
cases with or without phase noise are shown in Figs. 8-11 
respectively. Figs. 8-10 show that the beampattern proper-
ties of the case with phase noise will tend to those of the 
case without phase noise as the loop SNR increases, which 
matches the results in (11) and (12). Since the degradation 
factor pulls down the average beampattern in the whole 
region   [–π, π), 3dB width, 3dB sidelobe region, and 
CCDF of the case with phase noise are smaller than those 
of the case without phase noise as shown in Figs. 8, 9, and 
11. It can be seen from Figs. 5-7 that both of the mainlobe 
and sidelobe are affected by the degradation factor. How-
ever, Fig. 10 shows that the case with phase noise has 
smaller normalized directivity than the case without phase 
noise. This implies that the desired direction loses more 
power than the other directions. Fig. 5 and Figs. 8-10 also 
show that the estimated and theoretical beampattern 
properties are basically same for the case of uniform node 
distribution and Tikhonov phase noise model, which means 
the proposed method is effective. 
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Fig. 8. 3dB width comparison. 
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Fig. 9. 3dB sidelobe region comparison. 
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Fig. 10. Normalized directivity comparison. 

 
Fig. 11. CCDF comparison when the normalized radius is 2 

and / 8  . 

6. Conclusions 
This paper proposes a unified method to evaluate the 

performance of collaborative beamforming with phase 
noise. Some characteristics of collaborative beamforming 
such as average beampattern, 3dB width, 3dB sidelobe 
region, average directivity, and CCDF are derived using 
the proposed method. Since the non-parametric kernel 
method is used to build the PDFs of node and phase offset 
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distributions, the proposed non-parametric approach can 
provide accurate performance analysis for various node 
and phase noise distributions which may or may not be 
represented by explicit PDF functions. The theoretical 
analysis and simulation results show that the proposed 
method is effective for arbitrary node distributions and any 
phase offset. 

Appendix  

A. Derivation of the average beampattern 

Substituting (7), (8), and (9) into (10), gives: 
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where  
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Substituting (30) into (29), gives: 
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Note that 0h  , 0s   when M  , L   
[15]. When the sizes of survey sets M  and L  are large 
enough,  avP   can be further simplified as: 
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where 
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B. Proposition 1: The average beampattern derived using 
the proposed method will become that of the Gaussian [8] 
or uniform [6] case when the nodes are subject to the 
corresponding distribution and phase offset tends to 0. 

Proof: In the case of the perfect phase synchronization, the 
proposed average beampattern (11) reduces to (12) and 
equation (12) can be rewritten as: 
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Since tz  is a random variable, the proposed average 

beampattern Pav() for Gaussian case becomes: 
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where 2  is the variance of the Gaussian distribution. As 
M  , the proposed average beampattern for Gaussian 
case becomes: 
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Equation (36) shows that the average beampattern de-
rived using the proposed method will become the Gaussian 
average beampattern in [8] when the nodes are subject to 
the Gaussian distribution and phase offset tends to 0. The 
relationship between the proposed average beampattern 
and uniform average beampattern in [6] has the similar 
conclusion.  
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