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Abstract. In this article, an excited oscillator which is 
analyzed by using a multi-time linear analytical model is 
proposed. An obtained closed-form solution can be ex-
ploited not only to explain phenomena in the beat and 
locked states that are mostly studied in literature but also 
in an additional state called the non-locked state. With the 
proposed analysis, it is found that the non-locked state of 
the oscillator behaves similarly to the up-conversion proc-
ess. It provides a new point-of-view to the phase noise 
oscillator. Moreover, our principle indicates that the im-
portant factor defining the behavior in each state and state 
transition is the transfer function of the system. The pro-
posed mathematical model is verified by the experimental 
and numerical results. 
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1. Introduction 
Nowadays, an electronic circuit [1], [2] which has 

small size and low-power consuming is in high demand 
due to an increasing in commercial competition. For this 
reason, a circuit combining many functions of different 
electronic circuits is extensively developed. For example, 
based on the behavior of an oscillator circuit that is forced 
by an input signal, FM-to-AM conversion circuit [3], FSK-
to-ASK conversion circuit [4], demodulating circuit [5], 
[6], or frequency divider circuit [7] could be possibly 
made. Nonetheless, bringing forced oscillator into the 
broader applications, more study of circuit behavior should 
be further investigated.  

From previous works [8-11], it is found that there are 
two states considered as fundamental phenomena of the 
excited oscillator, namely, the beat state and the locked 

state. The beat state exists when the input frequency is 
close to a locked range, the system’s output signal behaves 
like a frequency modulation but contains an unsymmetri-
cal-sideband in frequency-domain. The unsymmetrical-
sideband has a deviation frequency equal to a frequency 
difference between the input frequency and the free-run-
ning frequency, called the beat frequency. In the past, vari-
ous of the mathematical models [12-16] was proposed, 
these models illustrate that the unsymmetrical sideband 
will be shifted towards the free-running frequency when 
the input frequency is moved closely to a locked range. 
However, in these studies have not been stated how much 
the amplitude of each component should be. The mathe-
matical model proposed in this article will provide the 
clarification in this issue. 

Another state is the locked state in which the output 
signal of the system synchronizes with the input signal. In 
the other word, the output frequency is equal to the input 
frequency. The output amplitude is constant and the output 
phase is shifted compared to the input signal. With these 
characteristics of the system in this state, the system is thus 
applied for a FM-to-AM conversion circuit [3], FSK-to-
ASK conversion circuit [4], demodulating circuit [5], [6], 
or frequency divider circuit [7]. In general, the objective of 
the analysis in this state is the finding of an accuracy 
locked condition or a locked-range equation, which they 
are associated. In the study of [8], [9], [17], [18], the graph 
of the locked ranges is the symmetrical V shape where the 
x-axis and the y-axis are amplitude and frequency of the 
input signal, respectively. The symmetrical V shape is 
a linear relationship between these variables which is de-
rived only from the elements of the feedback circuit. How-
ever, based on the studying in this paper, the locked-range 
shape is not symmetrical due to the non-linear relationship 
between both variables which derives not only from the 
elements of the amplifier but also from the elements of the 
feedback circuit. Additionally, it is found that the ampli-
tude and phase of output signal will change if the input 
frequency changes. This phenomenon is applied for FM-to-
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AM circuits [3] and FSK-to-ASK conversion circuit [4] but 
the explanation about this phenomenon is not given in 
these researches. But with our proposed model, this phe-
nomenon can be clearly explained. 

In practical, rather than those two states previously 
described, there is another state of the excited oscillation 
system that has never been discussed in the literature. It is 
the multiplication phenomenon between the free-running 
signal and the forced response signal. This state appears 
when the input frequency is far from the free-running fre-
quency. In case of the frequency of the input signal is 
much less than that of the free-running signal, the system 
will behave similar to the up-conversion process [19] of 
a low-frequency noise signal in an oscillator. The behavior 
in this state will be discussed in this article. 

Recently, K. Prompak et al. [20] studied the phenom-
ena of an external excited system in physics application 
and proposed a mathematical model to explain such phe-
nomena. The model was based on the principle of funda-
mental system analysis, system transfer function and inde-
pendence of parameters. From the inspired features of the 
model in [20], the concept is extended to electrical oscilla-
tion system to explain the behavior of the system.  

Organization in this paper begins with the idea and 
mathematical analysis proposed in [20] which is given in 
Section 2. In Section 3, this model is later applied to ana-
lyze and explain the behavior of an oscillator circuit that is 
stimulated by an external signal. Section 4 illustrates the 
results in three states of the system obtained from the 
simulation and experiment. Finally, conclusions of this 
article are drawn in Section 5. 

2. Analysis of Linear System Based on 
the Technique of [20] 
From the idea of research proposed in [20] which is 

a principle of multi-time technique, a system can be con-
sidered by two relative parameters. These parameters are t, 
which is an inherent time parameter of a natural response 
of a system ( ( )n

y t ), and t , which is another time parame-

ter of a forced response ( ( )f
y t ). Since an external signal is 

fed into the system after the system starts oscillation by 
amount of time, e.g. tD , hence, let the relationship be-
tween these parameters be t tt = +D . Based on this con-
sideration, a complete response of the system is  

 ( ) ( ) ( ),
n f

y t y t yt t= +   (1) 

and the differential equation of the system is 
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where ,
i i
a b  are coefficients of the system and ( )x t  is 

an external signal. When the system is oscillated, the out-
put signal can be written as 
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constant. For the forced response, it can be determined by 
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where a form of the solution ( )f
y t  is dependent on ( )x t . 

The complete solution can be rewritten as 

 ( ) ( ) ( ) ( )0
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f d f
y t K Y y e t yat t w t-é ù= - +ê úë û   (5) 
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From (5), it is apparent that the amplitude of the first term 
is not a constant but it is a summing of a constant and the 
forced response. This result is different from the complete 
solution derived by the conventional analysis [21], [22]. 

3. Phenomena of an Oscillator Excited 
by an Input Signal 
In this section, three states of fundamental behavior of 

an oscillator that is excited by an input signal are studied. 
Let the exciting signal be a sine wave which is  

 ( ) ( )cos
f f

x Xt w t=   (6) 

where Xf and ωf are amplitude and frequency of the exter-
nal input. From (6), both Xf and ωf  are parameters that can 
be varied. However, in order to clearly understand the 
influence of both parameters to the system, firstly, Xf  is set 
to be a small, fixed constant and later its influence will be 
considered. Therefore, behavior of the system, especially 
during state changing from non-locked state to beat state 
and to the locked state is studied through the parameter ωf. 
The closed-form solution obtained by using an analysis 
technique of [20] is considered by changing ωf  from value 
that is much less than until equal to the free-running fre-
quency (ωd). 

3.1 Analysis of an Oscillator based on Multi-
Time Technique 

To study behavior of an electrical oscillation system, 
a second order system consisted of an amplifier and a feed-
back network as shown in Fig. 1 is employed. From ana-
lytical technique of [20], the second order differential 
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equation when the system is excited by an external signal 
thus is 

 
( ) ( ) ( )

( ) ( ) ( )
2

2 1 0

, 2 , ,
S n n

y t y t y t

b x b x b x

t x w t w t

t t t

¢¢ ¢+ +
¢¢ ¢= + +

  (7) 

where ( ),y t t  is an output signal which is composed of 

a natural response ( ( )
n
y t ) and a forced response ( ( )f

y t ), 

( )x t is the forcing function given in (6), ωn is natural 

frequency, 
2 1 0
, ,b b b  are the system’s coefficients, and 

S
x  is 

damping factor of the system. As given in (7), it is seen 
that all the coefficients in (7) are derived by considering 
not only from the amplifier but also the feedback network. 

Since the system is demanded to generate a constant-
amplitude signal by itself, the damping factor has to be 
a very small value. From (7), the natural response ( ( )

n
y t ) 

in oscillation state can be written as 

 ( ) ( )cos
n Sat d
y t Y tw=   (8) 

where 
Sat
Y represents saturated voltage of an amplifier and 

21
d n S

w w x= -  represents free-running frequency. If the 

system is not perturbed, this signal is therefore the output 
signal generated by the oscillator in a normal state. 

For a forced response ( )f
y t  which is related to the 

external signal, it can be derived by 

 ( ) ( ) ( )
( ) ( ) ( )
2

2 1 0

2

.
f S n f n f
y y y

b x b x b x

t x w t w t

t t t

¢¢ ¢+ +
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  (9) 

By given 
f d

w w , the forced response resulted by ( )x t  

thus is 

 ( ) ( ) ( )( )cos .
f f f f f
y X H Ht w w t w= +   (10) 

From (10), the important parameters are 
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which is the magnitude response of the oscillator. By con-
sidering typical oscillators such as Wien-bridge, Twin-T or 
Colpitts circuits, their normalized magnitude responses as 
shown in Fig. 2 are similar to that of a low-Q low-pass 
filter. It implies that any signal will be eliminated if it is 
outside the pass-band of the system,  

 11
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( ) tan f

f

f

b
H

b b

w
w

w
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  (12) 

which is the phase response. In Fig. 3, the phase response 
of Wien-bridge, Twin-T and Colpitts circuits are depicted. 

As can be seen, the graph of Wien-bridge circuit is inverse 
compared to those of Twin-T and Colpitts circuits. But 
when the feedback network is included in consideration, 
phase of the oscillated signal will be 360 degrees which 
achieves the Barkhausen’s condition. 

From the idea given in [20], the complete solution 
thus can be written as 

  ( )( ) ( )
( )( )

( , )

( ) cos cos

( ) cos

Sat f f f f d

f f f f

y t

Y X H H t

X H H

t

w w t w w

w w t w

é ù= - +ê úë û
+ +

  (13) 

which is seen that the amplitude of the natural term 
changes according to the forced response. Although this 
equation covers all the coefficients derived from necessary 
elements of the amplifier and the feedback network, it is 
not complicated since these coefficients are collected in 
a form of the transfer function. The obtained transfer func-
tion will be an important factor employed to identify each 
state of the system. The equation given in (13) will be used 
to describe behavior of the circuit when both frequency 
(ωf) and amplitude of the input signal is varied. 

X Y

 
Fig. 1. Model of an oscillator based on a feedback structure. 

 
Fig. 2.  Normalized magnitude response ( )

f
H w of Wien-

bridge, Twin-T and Colpitts circuits. 

 
Fig. 3.  Phase response ( )fH w of Wien-brigde, Twin-T and 

Colpitts circuits. 
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3.2 Non-Locked State 

This state is the state in which the oscillator is not 
synchronized with the external signal. The different 
frequency between the input frequency and the free-
running frequency is much larger. In the other word, the 
input signal does not achieve the locked condition of the 
system. From (13), tD  in the relationship of t tt = +D  is 
assumed to be zero [20], it thus yields 

     

( ) ( )
( )

( ) ( )
( )

( ) cos( )

cos
2

cos
2

( ) cos( ( )).

Sat d

d f d f
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d f
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H t
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X

H

X H t H

w

w w w w

w w

w w w w

w w

w w w

=
æ ö- - ÷ç ÷ç ÷- ç ÷ç ÷- - ÷çè ø
æ ö+ + ÷ç ÷ç ÷- ç ÷ç ÷- + ÷çè ø

+ +

  (14) 

As shown in (14), ( )y t  is a combination of four signals 

with different frequency, which are free-running frequency 
ωd (inherent frequency of the system), external-signal fre-
quency ωf, modulating frequency ωd – ωf, and modulating 
frequency ωd + ωf. Moreover, it is found that the amplitude 
of each term depends on the transfer function of the sys-
tem, except that of the free-running frequency term. 

The non-locked state can be divided into 2 cases. The 
first case is when ωf << ωd as shown in Fig. 4. In this case, 
frequency components are similar to those of an AM signal 
whose carrier frequency is ωd, information frequency is ωf, 
and side-band frequencies are ωd – ωf and ωd + ωf. Since 
the ωf term is a part of the output signal, this output signal 
then cannot be directly used as the AM signal. However, 
the system output is fed back through a band-pass filter 
(see Fig. 1) which can eliminate the ωf term. Then, a pure 
AM signal can be obtained from the output of the feedback 
network. In addition, if an input signal is a noise signal, 
(13) shows that the noise signal will simultaneously disturb 
amplitude (

Sat
Y ) of the free-running signal which is directly  

f
w f d

w w-

Sat
Y

d
w

f d
w w+

( )f f
X H w

( )
2
f d

f

H
X

w w- ( )
2
f d

f

H
X

w w+

 
Fig. 4. The non-locked state when ωf << ωd. 

addition as shown in the second term. The noise distur-
bance to the amplitude of the free-running signal corre-
sponds to the up-conversion which is disturbing process 
generally found in oscillators [19]. This disturbance results 

in the unwanted sidebands as given by the second and the 
third terms in (14). 

For the second case, it is when  ωf >> ωd  as shown in 
Fig. 5. In practical, the ωd + ωf  term may not be appeared 
because it will be eliminated by characteristic of amplitude 
response ( ( )

d f
H w w+ ) of the system and frequency re-

sponse of active devices (such as a slew rate in op-amp 
[23]). Similarly for the ωd - ωf  term, it will not be appeared 
because it is eliminated by amplitude response 
( ( )

d f
H w w- ) of the system. 

f
w
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2
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Fig. 5. The non-locked state when ωf >> ωd. 

3.3 Beat State 

In previous subsection, before the system changes 
from the non-locked state to the beat state, the system 
demonstrates two interesting phenomena when the ampli-
tude of the input signal is fixed and the input signal fre-
quency (ωf) moves to the free-running frequency (ωd) 
where (14) and the ωf << ωd case are considered.  

First phenomenon is that values of 

( ) / 2
f d f
X H w w+  and of ( ) / 2

f d f
X H w w-  will de-

crease and eventually are significantly less than other 
terms, then both terms can be neglected. The other phe-

nomenon is that value of ( )
f

H w  is a constant at the begin-

ning and gradually increases according to a frequency 
response. Both phenomena are depicted in Fig. 6. In case 

of ωf >> ωd, the phenomenon of ( )
f

H w  is similar to that 

of the ωf << ωd case but for ( ) / 2
f d f
X H w w+  and 

( ) / 2
f d f
X H w w- , they will not be appeared according to 

the transfer functions as described in the previous sub-
section. Therefore, the output of the system is given as the 
following. 

( ) cos( ) ( ) cos( ( ))
Sat d f f f f

y t Y t X H t Hw w w w= + +   (15) 

In (15), it expresses an equivalent equation which is fa-
miliar in physics, beat phenomena [24]. But for electronic 
oscillation circuits, it provides different behaviors [12-16]. 
By considering the case ωf < ωd, using a relation of Carte-
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sian coordinate [19], and letting wD  be a beat frequency 
which is the difference between the free-running frequency 
and the external signal frequency (Δω = ωd – ωf), (15) is 
rewritten as 

 ( ) ( )( )cos
Sat f

y t Y t tw q= +   (16) 

where 

    ( )
( )( )
( )( )

1
sin

tan
1 cos

f

f
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  (17) 

and 

 ( ) .f

f
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X
k H
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Simultaneously, it is assumed that ( )Sat f f
Y X H w , 

amplitude of the signal shown in (16) is approximated as 

( )
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From (18), it is found that k  varies linearly with a ratio of 
/

f Sat
X Y  whereas k  depends on nonlinearly characteristic 

of ( )fH w . Moreover, it is found that in the locked condi-

tion (described in the next subsection), the circuit will not 
be in the locked state if  1k < . 
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Fig. 6. Phenomenon of the circuit when ωf moving into beat 

state. 

When the system is in this state, θ(t) will be a periodic 

function whose frequency is Δω. It causes ( )y t  to behave 

as a FM signal, whose an instantaneous frequency of ( )y t  

in this state is 

( )( )
( ) ( )( )( )
1

1 cos .

f d

n n

f
n

d
t t

dt

k n t H

w q w

w w w
¥

=

+ =

+D - D -å
  (19) 

This equation points out that the output frequency deviates 
periodically from the free-running frequency and the 

deviation strength depends on k . By solving (19), the 
output signal equation in this state thus is 

( )

( ) ( )( )( )
1

cos 1 sin .
n

n

Sat d f
n

y t

k
Y t n t H

n
w w w

¥

=

=
æ ö÷ç ÷ç + - D - ÷ç ÷÷çè ø

å
  (20) 

In order to gain insight into the behavior in this state, 
the frequency components of the output signal will be 
determined. In case that the input frequency (ωf1) is above 
the non-locked state range and a locked condition cannot 
be achieved, the frequency difference is Δωf1. In this 
situation, k shown in (20) is a small value and also for k2, 
k3,… which can be neglected. Hence, the spectrum of the 
output signal in this situation is 

     

( ) ( )
( )( )

( ) ( )( )
1 1

1 1
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2

sin .
2

Sat d

Sat f f

Sat d f f

y t Y t

k
Y t H

k
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w w

w w w

=

+ +
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  (21) 

From (21), it is found that the sidebands at ωf and ωd + Δωf 
depend on k  and have equal magnitude. If the input fre-
quency (ωf) is moved closely to the free-running fre-
quency, it causes amplitude of k and k2 shown in (20) 
dominant. By using the power series approximation, the 
components of the output signal will be 

( ) ( )

( )( )

( ) ( )( )

2 4

3

3

1 cos
4 16

cos
8 2

cos .
8 2

Sat d

Sat f f
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Y t H
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æ ö÷ç ÷ç+ + +÷ç ÷÷çè ø
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 (22) 

This equation shows that amplitude of ωd + Δωf  and ωd 
terms decreases whereas amplitude of ωf term increases, 
resulting in unsymmetrical sidebands. This behavior indi-
cates that the more the input frequency is close to the free-
running frequency, the more power it gets, which is con-
tradictory to the other two terms. This amplitude variation 
appears until the system moves into the locked state. How-
ever, amplitude of each component cannot be exactly de-
termined since an oscillator is always controlled by 
an amplitude adjusting mechanism which is naturally in the 
circuit. According to [9], the probability is employed to 
indicate how much the amplitude of each spectrum should 
be in this state. It is found that the probability function 
whose k is a factor given in [9] is identical to the normali-

zation of (22) by the free-running amplitude ( ( )/ Sat
y t Y ). 

3.4 Locked State 

The locked state is the state in which the output signal 
is synchronized with the external signal. In the other word, 
the output frequency is identical to the frequency of the 
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input signal where the amplitude and phase of the output 
signal are constants. This behavior is happened when the 
external signal achieves the locked condition. 

When the circuit is shifted to the locked state, it will 
generate the oscillation signal whose frequency is equal to 
that of the input frequency. Therefore 

 
( )

,
d

f

d t t

dt

w q
w

é ù+ê úë û =   

and by using 

 ( ) ( )
1

2

1
tan
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dd

dt dt
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-

é ù
ê ú= ê ú+ë û

 

hence, (17)  becomes 

 ( )( )1 cos 0.
f

k t Hw w+ D - =   (23) 

From ( )f

f

Sat

X
k H
Y

w=  and ( )cos 1f £ , the circuit condi-

tion will move toward to the locked state, if (24) is true. 

 
( )

1.
f f

Sat

X H
k

Y

w
= ³   (24) 

From (24), it is found that the locked condition depends 
directly on the input-signal amplitude and the transfer 
function, but depends inversely on the free-running signal 
amplitude. Note that, k  is not only a key factor of the 
locked condition but it also determines the amplitude of 
each component in the beat state. From the locked condi-
tion, the locked range which is 

 ( )f Sat f
X Y H w³   (25) 

can be shown in Fig. 7 where the x-axis and y-axis are the 
amplitude and frequency of the input signal, respectively. 
In Fig. 8, an asymmetrical shape of the graph is resulted 
from the inversed transfer function which is scaled by the 
free-running signal amplitude. Asymmetry of this graph 
will be obviously appeared when the input-signal 
amplitude is large. 
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Fig. 7.  The unsymmetrical locked range. 

For some types of oscillators whose order of the 
transfer function is greater than two, handout analysis of 
the transfer function may be impossible. However, the 
locked condition in (24) can be achieved by using a com-
puter simulation such as SPICE to find the amplitude 
response due to the input signal. The frequency that has 
amplitude response equal to the amplitude of the free-

running signal (
Sat
Y ) can be employed to determine the 

locked range of the circuit, as an example shown Fig. 8. 

d
w

1Sat
Y

2Sat
Y

1L
w

2L
w

 
Fig. 8.  Finding of the locked range by using amplitude 

response and voltage saturation. 

In addition, after considering (11), it is found that 

when ωf gets much closer to ωn, S
x  will usually be small in 

order to maintain an oscillation of system. Consequently, 

the value of ( )fH w  will increase rapidly due to 

( )22 2

n f
w w-  as shown in the denominator of (11). When the 

system condition reaches to the locked state, the constraint 

shown in (24) must be obtained, which is 1k  . The 

output signal of the circuit at this state can be rewritten as 

 ( ) ( ) ( )( )cos .
f f f f

y t X H t Hw w w= +  (26) 

This equation shows that the circuit only responses to the 
influence of the input signal. Therefore, phase and ampli-
tude of the output signal depends on the phase response 
and magnitude response of the system, respectively. 
Throughout the analysis, the considered output is the out-
put of the amplifier (see Fig. 1). But in real world applica-
tion, it is difficult to correctly define the amplitude of the 
output signal in practical. Since the amplitude is controlled 
by controlling mechanism related to characteristics of the 
employed active device, for example, the voltage saturation 
and the slew-rate of an op-amp [25]. However, amplitude 
of the output signal is always not greater than the voltage 
saturation of the circuit. Let us consider the practical out-
put signal whose the amplitude is maximum, hence, (26) is 
rewritten to be 

 ( ) ( )( )cos .
Sat f f

y t Y t Hw w= +  (27) 

It is seen that phase of the output signal depends on fre-
quency of the input signal and the relationship is linear if 
the input-signal frequency is much closer to the oscillation 
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frequency (ωd). With this characteristic, the excited oscil-
lator in the locked state is thus applied to be a demodulat-
ing circuit by using the phase difference between the phase 
of the output signal and the phase of the input signal [6]. 

From the structure of the system in Fig. 1, the signal 
in (27) will be fed back through the feedback network 
which generally is the band-pass circuit, the feedback-
network output is then given by 

  ( ) ( ) ( )
( )

cos .f f

BP Sat BP f

BP f

t H
y t Y H

H

w w
w

w

æ ö+ ÷ç ÷ç ÷= ç ÷ç ÷+ ÷çè ø
 (28) 

This equation shows that not only phase of the output is 
proportional to frequency of the input signal; amplitude of 
the output also depends on frequency of the input signal as 
well. With these features, the circuit can be applied for FM 
-to-AM conversion circuit [3] and FSK-to-ASK conversion 
circuit [4]. 

4. Experimental Results 
In this section, the proposed principle is verified by 

experiment. All three states are confirmed by supplying the 
input-signal to an oscillator circuits. Moreover, in order to 
observe the behaviors clearly, both the output and input 
signals will be shown in time-domain using a low-
frequency oscillator constructed by an active device (Op-
amp) and RC passive devices. 

4.1 Non-Locked State 

The Wien-bridge oscillator depicted in Fig. 9 which 
has a second-order transfer function will be employed to 
show the behavior in the non-locked state. This circuit is 
designed to oscillate at 150 kHz ( 0.23Q m= ), where 
an op-amp is LM351 and the power supply is   5V. The 
input signal is a sinusoidal signal whose amplitude and 
frequency is 0.1 Vp and 10 kHz, respectively. 

f
R

i
R

( )
i
v t ( , )

o
v t t

CC R R
 

Fig. 9.  Structure of Wien-bridge oscillator for testing non-
locked state. 

When the input signal frequency is moved closely to 
the free-running signal frequency, there are two interesting 
behaviors occurred in the circuit. First, the sidebands move 
away from the free-running signal frequency and their 
amplitude decreases until fade away. Second, amplitude of 
the forced response slightly increases. These phenomena 
are demonstrated in Fig. 10(a-e) whose amplitude of each  

 
(a) The input frequency at 10 kHz. 

 

 
(b) The input frequency at 20 kHz. 

 
(c) The input frequency at 30 kHz.

 
(d) The input frequency at 40 kHz. 

 
(e) The input frequency at 50 kHz. 

Fig. 10.  The experimental results of the Wien-bridge oscillator for 
f d

w w  case. 
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Fig. 11.  Numerical results in time domain (top) and frequency 

components (bottom) are of Wien-bridge’s complete 
solution obtaining the proposed analysis. 

 
Fig. 12.  Amplitude of each term of the output signal in the non-

locked state when ωf << ωd  where (a), (b), (c) and (d) 
are amplitude of ωf, ωd, ωd + ωf and ωd - ωf terms, 
respectively. 

frequency component is drawn in Fig. 12. These phenom-
ena also agree well with the proposed principle given in 
Section 3.5. 

The experimental result is shown in Fig. 10(a) where 
Ch.1 and Ch.2 demonstrate the output and input signals, 
respectively. It is found that upper envelope of the output 
signal is similar to the AM signal, whereas lower envelope 
is not, due to the last term of (13). Moreover, the spectrum 
of the output signal can describe the multiplication of the 
signals shown in the first term of (13). To obtain more 
clear result, the complete solution, derived by the multi-
time analysis technique given in (13), is numerically plot-
ted in Fig. 11 where (A) is the normalized complete re-
sponse and (B) is the component of normalized complete 
response. This figure clearly illustrates that the signals in 
both domains derived from the experimental results in 
Fig. 10(a) are in accordance with the theoretical analysis as 
expressed in (13). 

In order to clearly illustrate the multiplying phenome-
non in this state, a non-single tone signal is fed into the 

circuit. Fig. 13 shows the experimental result where the 
input signal (Ch.1) is a square wave signal with 15 kHz 
and 0.1 Vp. As can be seen, upper envelope of the output 
signal (Ch. 2) is similar to the input signal. This results 
from the multiplication of the free-running term and the 
external response term. In the frequency domain (Ch. m), 
the spectrum is divided into two parts where the low-fre-
quency part is of the external response and the other part 
consists of the free-running frequency and sidebands which 
is up converted from the low-frequency part. 

 
Fig. 13.  Experimental result in the non-locked state when the 

input signal is a non-single tone signal (the square 
wave signal). 

4.2 Beat State 

In this state, the Wien-bridge oscillator which is em-
ployed in experiment of the non-locked state will be con-
tinuously used. The sinusoidal input signal is set to the 
frequency above 55 kHz which is in a range that the 
ωd + ωf  and ωd - ωf  terms are faded away. When the input 
signal frequency is close to the locked range, the system 
will fall into the beat state. Fig. 14(a) is the experimental 
result in this state where Ch.1 is the sinusoidal input signal 

 
(a) The input frequency at 125 kHz. 

 
(b) The input frequency at 133 kHz. 
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(c) The input frequency at 137 kHz. 

Fig. 14. Experimental results in the beat state of the system. 

with 125 kHz and 0.1 Vp and Ch.2 is the output signal 
whose envelope varies slowly. This envelope is resulted 
from a narrow deviation of the free-running signal frequen-
cy which equals to the beat frequency. The spectrum of the 
output signal (Ch. m) is similar to that of a narrow–band 
FM signal but are not symmetrical. Additionally, a distance 
between each spectrum is 25 kHz. In Fig. 14(a-c), the ex-
perimental results are obtained when the input signal fre-
quency is increased. It is found that amplitude of the ωf 
term increases and amplitude of the ωd  term decrease con-
tinuously. Moreover, amplitude of ωd + Δω is apparent 
when the input signal frequency is located at 100 kHz and 
increases continuously. When the input-signal frequency is 
about 136 kHz, amplitude of both ωd and ωd + Δω terms 
decreases gradually. Finally, the system is in the locked 
state. Amplitude variation of each frequency component is 
concluded in Fig. 15. 

 
Fig. 15.  Amplitude of each frequency component in the beat 

state where (a), (b) and (c) are amplitude of ωf, ωd, and 
ωd + Δω terms, respectively. 

4.3 Locked State 

To confirm the locked range obtained from the 
proposed analysis, the Wien-bridge oscillator is employed 
in experiment as well. The locked range obtained from 
experiment and numerical results of using (25) are 
compared. In the experiment, the designed oscillator is set 
to maintain frequency at 70 kHz based on LM351 op-amp. 
To study the impact of amplitude of oscillation and 
external signals, free-running signal amplitude (VSat) is 
selected as 5 Vp, 10 Vp and 15 Vp and the sinusoidal 
external signal is chosen to be 0.1 Vp to 2 Vp.  

The experimental results are shown in Fig. 16(a) to 
(c). It is seen that the locked range is directly varied with 
the input-signal amplitude but depends inversely on the 
oscillation signal amplitude as explained in (22). In case 
that the free-running signal amplitude is 5 Vp, the locked 
range appears unsymmetrical V shape which is resulted 
from the transfer function. But for the other two cases 
(Fig. 16(b), (c)), this asymmetrical shape is not apparent. 
This is because the transfer function is scaled by the large 
oscillation signal amplitude. Additionally, the results also  
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(a) The oscillation-signal amplitude at 5 Vp. 

Fd = 70kHz, Vsat = 10V
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(b) The oscillation-signal amplitude at 10 Vp. 

Fd = 70kHz, Vsat = 15V
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(c) The oscillation-signal amplitude at 15 Vp. 

Fig. 16. Locked range of the Wien-bridge oscillator (50 kHz), 
due to the influence of amplitude of the external signal 
and the free-running signal. 
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demonstrate that the locked range obtained from the 
proposed analysis is close to the result obtained from the 
experiment. 

To confirm that frequency, amplitude and phase of 
the output signal depend on the input-signal frequency, this 
relationship is confirmed by the computer simulation. The 
Wien-bridge oscillator whose frequency is 95 kHz and 
amplitude is 4 Vp is set up. Fig. 17 shows the simulation 
result of circuit when applying the input signal whose am-
plitude is 50 mVp. In this figure, Ch.1 is the 95 kHz input 
signal, Ch.2 is the output signal of the amplifier and Ch.3 
is the output signal of the feedback network. It can be seen 
in this figure that phase shift of the output signals (Ch.2, 
Ch.3) are obtained from the input signal (Ch.1). It is found 
that the output signal of the amplifier (Ch.2) is saturated by 
amplitude adjusting mechanism. 

Ch.1

Ch.2

Ch.3

Input signal (mV)

Amplifier output signal (V)

Feedback network output signal (V)

Time (mS)  
Fig. 17.  Simulation result of Wien-bridge oscillator having 

95 kHz and 4 Vp by feeding sine wave. 

Due to amplitude limiting of the circuit as shown in 
Fig. 17, it thus makes the consideration of the amplifier’s 
output signal in time domain difficult. Hence, amplitude 
variation of the output signal will be only considered at the 
feedback-network which is shown in Fig 18.  
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Fig. 18.  Simulation result of amplitude variation of the 

feedback-network output with respect to the input-
signal frequency. 

The variation of graph shows a curve whose maximum 
point is at 94.5 kHz. This curve is corresponding to 
frequency response of the feedback network described in 

(24). With this feature in the locked state, the forced 
oscillator can be applied for FM-to-AM conversion circuit. 

From the simulation result as shown in Fig. 19, the 
phase relation in the locked state is demonstrated where 
(· ) denotes the phase relation of the amplifier output and 
(  ) represents the phase relation of the feedback-network 
output. It can be seen that phase shift in both output signals 
are resemble but not identical. The reason is because of the 
phase shift property of the feedback network. The output of 
the feedback network will have a very small phase shift 
when the input-signal frequency is very close to the natural 
frequency of the feedback circuit, having the structure 
similar to the band-pass filter or the tuned circuit. With the 
phase shifting property, the oscillator in the locked state 
can therefore be applied for the demodulating circuit. 
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Fig. 19.  Phase shifting of the output signal of the amplifier   

(· ) and the feedback network ( ) compared at each 
input-signal frequency. 

5. Conclusion 
This article proposes the study of fundamental be-

havior of the oscillation system fed by a single tone signal. 
This study is based on the multi-time analytical model. The 
closed form solution obtained by the proposed model can 
be employed to explain all behaviors in 3 states and also 
during the state transition. 

For the oscillator in the non-locked state, it expresses 
the multiplication behavior between the free-running signal 
and the forced response. The product of the multiplication 
depends on the transfer function of the system. This state 
occurs when the input frequency is much far from the free-
running signal frequency. In case that the input signal fre-
quency is much less than the free-running signal frequency, 
the output signal will behave like an AM signal added with 
the forced response of the information signal (if the input 
signal is considered as an information signal). Therefore, 
the circuit in this state can be applied for the AM modula-
tor. On the contrary, if the input signal is a low-frequency 
noise signal, the sidebands of the free-running signal fre-
quency will become a skirt-like spectrum [26]. This be-
havior is according to the noise up-conversion process. It 
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implies that the proposed mathematical model provides a 
new point of view to an issue of disturbance due to the 
low-frequency noise signal.  

When the input frequency is close enough to the 
locked range, both sidebands will fade away and the sys-
tem will be in the beat state. The output signal behaves 
similar to the narrow-band FM signal whose the sidebands 
are not symmetrical. The solution in this state also can 
answer the question that how much the probability should 
be. This probability function depends on the transfer func-
tion, the input signal amplitude and the oscillation signal 
amplitude. When the input signal frequency is in the 
locked range, overall power of the output signal will over-
come that of the forced response signal. 

Finally, the locked state, the locked condition or the 
locked range depends on the input signal amplitude, the 
free-running signal amplitude and the transfer function, 
which is a function of the input signal. Because the char-
acteristic of the transfer function is not linear, the locked 
range thus has unsymmetrical V shape. Moreover, the 
amplitude and phase of output signal are varied with the 
input signal frequency. The circuit in this state can be ap-
plied for the FM-to-PM and FM-to-AM convertor. 
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