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Abstract. An optical wireless relay channel (OWRC) is
a classical three node network consisting of source, relay
and destination nodes with optical wireless connectivity. The
channel law is assumed Gaussian. This paper studies the
bounds on minimum energy per bit required for reliable com-
munication over an OWRC. It is shown that capacity of an
OWRC is concave and energy per bit is monotonically in-
creasing in square of the peak optical signal power, and
consequently the minimum energy per bit is inversely pro-
portional to the square root of asymptotic capacity at low
signal to noise ratio. This has been used to develop upper
and lower bound on energy per bit as a function of peak sig-
nal power, mean to peak power ratio, and variance of chan-
nel noise. The upper and lower bounds on minimum energy
per bit derived in this paper correspond respectively to the
decode and forward lower bound and the min-max cut upper
bound on OWRC capacity.
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1. Introduction
Information theory provides the scientific and theoreti-

cal foundation for the development of today’s most beloved
computers, smart phones and the Internet. Channel capacity
is the central concept within information theory and draws
the boundary between the physically possible and impossi-
ble in terms of reliable data rates. ”A mathematical theory of
communication” [1] laid the foundations of information the-
ory that focused on determining and achieving the capacity
of single input single output (SISO) channel.

”Two-way communication channel” [2] initiated an-
other new field of study, the network information theory
(NIT). NIT is a field that has been evolving to answer the
questions that are not directly answerable by the link based
classical information theory. NIT shifted the focus to study-

ing the capacity of networks comprising multiple transmit-
ters and receivers competing and cooperating for the capac-
ity of underlying SISO channels to communicate to one an-
other simultaneously. The problem though simple to formu-
late has defied a general solution till date. However, a lot
of work has been done to find out capacity regions for fun-
damental network structures like broadcast channel, multiple
access channel, relay channel, multiple input multiple output
(MIMO) channel amongst many others [3].

Due to higher achievable bit rate and absence of regula-
tory controls and cost optical wireless is attracting attention
for use in access network. This is despite of handicap of
short coverage distance and constraint on peak signal power
due to concern for safety of human eye. Capacity of opti-
cal wireless SISO is studied by a number of researchers [4–
6]. Research in OW systems and in particular terrestrial OW
links has for a long time attempted at increasing the avail-
ability and the reliability of the links, but recently it has been
realized that probably, the better way to design systems is
to attempt throughput maximization [7]. To overcome the
degradation of OW channel due to scintillation Chatzidia-
mantis et al. [8] proposed using relay channels. Presently
the study of OW network structures like relay and MIMO
channels have been attracting attention [9–11].

Whereas capacity has been the dominant measure for
a channel or network performance, minimum energy per bit
needed for reliable communication has evolved into an al-
ternative metric [12–14]. This metric becomes specially rel-
evant in case of sensor relay networks where battery life is
a critical design factor.

This paper studies minimum energy per bit require-
ment for reliable communication over a Gaussian optical
wireless relay channel (OWRC). OWRC is a network com-
prising three nodes, source, relay and destination, connected
through optical wireless links. The channel law for OWRC
is assumed to be Gaussian. This study finds its relevance in
view of the increasing use of wireless relay networks that
could possibly be optical. The energy per bit bounds devel-
oped in this paper correspond to the bounds on the capacity
of an OWRC in [15]. These bounds on the OWRC capacity
have been briefly discussed in Sections 2.1.1 and 2.1.2.
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The paper is organized as follows. Section 2 defines
the optical wireless relay channel and its channel capacity
and other preliminaries related to the study of energy per bit.
Sections 3 and 4 provide original results on energy per bit
for the optical wireless relay channel (OWRC). Upper and
lower bounds on the energy per bit are derived.

2. Optical Wireless Relay Channel

Source
Channel : p(y,y1|x,x1) Destination

Relay

-W -X -Y -̂W

6Y1
?
X1

Fig. 1. The relay channel.

Van Der Meulen [16] introduced the relay channel that
is a three node network: a source, a relay and a destination
node; as shown in Fig. 1. Source node is transmit only while
destination node is receive only node. The relay node re-
ceives the signal from the source node and transmits it to the
destination node. A discrete memory-less relay channel is
characterized by the triplet (X×X1, p(Y,Y1 | X ,X1),Y ×Y1).
There are four sets of alphabet, sets of input alphabet X and
X1 and output alphabet Y and Y1, and a collection of proba-
bility distribution functions p(·, · | x,x1) on Y ×Y1 space one
for each (x,x1) ∈ X ×X1. The channel law p(·, · | x,x1) is
assumed Gaussian.

W = {1,2, · · · ,2nR} is the set of messages {indices} to
be sent to the destination by the source node, where R is the
feasible rate and n is the number of bit in the code.

X = (xn(w)) belongs to the code book
{xn(1),xn(2), · · · ,Xn(2nR)} at the source node containing
n bit code words for ∀w ∈W . At time k the source transmits
Xk = (xn

k(w)).

Y1,k is the output of the source-relay link at time k.

Relay function f n
1 such that X1.k = f n

1 (Y1,1,Y1,2, · · · ,
Y1,k−1) is the relay output at time k. However, generally
block Markov coding is employed which implies X1.k =
f n
1 (Y1,k−1). The relay transmits in time slot k depending only

on what it received in time slot k−1.

Decoding rule d: d(Yk) = ŵ∈W , where Yk is the signal
received by the destination node at time k.

Error occurs when ŵ 6= w. Average probability of error
P(n)

e is defined as

P(n)
e =

2n×R

∑
w=1

P[ŵ 6= w]

2n×R (1)

for ∀w ∈W . R is the feasible rate, and capacity C is the
supremum of the set of achievable rates.

The minimum energy per bit Eb is the infimum of the

set of achievable energy per bit E(n) that is defined as

E(n) =
1

nRn

(
max

k
E(n)

s (k)+E(n)
r
)

(2)

where energy E(n)(k) for codeword k expended by the source
node is

E(n)
s (k) =

n

∑
i=1

xi(k) (3)

and the energy spent by the relay E(n)
r (k) for the code word

k is:
E(n)

r (k) = max
yn

1

( n

∑
i=1

x1i
)
. (4)

The energy per bit E(n) is achievable if there exist
a sequence of (2nR,n) codes such that probability of error
P(n)

e → 0 as n→∞. The minimum energy per bit Eb is greater
than limsupE(n).

The OWRC input signals X and X1 are inherently
power signals and non-negative. They are further subject to
both mean and peak power constraints dictated by the con-
cerns of source power conservation and safety of human eye.
These limitations translate to the following conditions on the
optical intensity signal X and X1.

X ,X1 ≥ 0, (5)
E[X ],E[X1]≤ E , (6)

Prob[X > A],Prob[X1 > A] = 0. (7)

A Gaussian OWRC is defined by the following equa-
tions:

Y1 = g1x+Z1, (8)
Y = g0x+g2x1 +Z (9)

where g0,g1,g2 are link gain as shown in Fig. 2. Z and Z1
are zero mean Gaussian random variables with variance σ2

depicting noise.

2.1 Bounds on the OWRC Capacity
The capacity theorems for general relay channels have

been established in [17]. Upper bound is based on the max-
min cut capacity [17, Theorem 4]:

C = max
p(x,x1)

min(I(X ,X1;Y ), I(X ;Y,Y1 | X1)) (10)

where I(·; ·) is the mutual information. I(X ,X1;Y ) is the mu-
tual information of the cut at the destination node (multi-
access cut); whereas I(X ;Y,Y1 | X1) is the mutual informa-
tion of the cut at source node (broadcast cut). The inner
bound given below is based on the concept of a degraded re-
lay channel modifying mutual information of broadcast cut
as I(X : Y1 | X1) [17, Theorem 1];

C ≤ max
p(x,x1)

min(I(X ,X1;Y ), I(X ;Y1 | X1)). (11)

Upper and lower bounds on the capacity of a Gaus-
sian OWRC have been derived [15]. The min-max cut upper
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bound is derived through evaluation of (10) using the con-
cept of duality [6] considering gaussian measure on the in-
put X and X1 with mean E and variance (1−α)A2 [15] .
The lower bounds are obtained by applying entropy power
inequality [3, Chap. 16.7] to 11. The lower bounds are opti-
mised by the choice of maximum entropy approaching prob-
ability measure on the input alphabet X and X1 and decode
and forward relay function. This relaying strategy is known
to yield the maximal lower bound [13]. Separate bounds for
α∈ (0, 1

2 ) and α∈ ( 1
2 ,1] have been derived in view of differ-

ent maxentropic measures applicable in these two ranges of
α.
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Fig. 2. Link gain coefficients for the relay channel.

2.1.1 Capacity Bounds for 0 < α < 1
2

For 0 < α < 1
2 the capacity of an OWRC, operating un-

der peak power A and mean to peak power ratio α is upper
bounded by [15]

C(A,αA)≤

C(

(
g1g2+g0

√
g2

0+g2
1−g2

2

)2
(1−α)A2

(g2
0+g2

1)σ
2 ) if g2

0+g2
1

g2
2

> 1,

C(
(g2

0+g2
1)(1−α)A2

σ2 ) otherwise
(12)

where C(x) = 1
2 log(1+ x) and C(A,αA) is the capacity

when peak signal is A and mean signal power is αA and it
is lower bounded by

C(A,αA)≤


C(

(
g0
√

g2
1−g2

2+g2
√

g2
1−g2

0

)2
e2µ(1−α)A2

2πeσ2g2
1(1−µα)2 );

if g0, g2 > g1

C(
g2

1e2µ(1−α)A2

2πeσ2(1−µα)2 ); otherwise

(13)

where µ is the unique solution of the following equation,

α =
1
µ∗
− e−µ∗

1− e−µ∗ .

2.1.2 Capacity Bounds for 1
2 ≤ α≤ 1

When 1
2 ≤ α≤ 1 the capacity of an OWRC with peak signal

A is upper bounded by [15],

C(A,αA)≤

C(

(
g1g2+g0

√
g2

0+g2
1−g2

2

)2
A2

4(g2
0+g2

1)σ
2 ) if g2

1
g2

0+g2
2
> 1,

C(
(g2

0+g2
1)A

2

4σ2 ) otherwise,
(14)

is lower bounded by

C(A,αA)≤


C(

g2
1A2

2πeσ2 ); if g0, g2 ≤ g1,

C(

(
g0
√

g2
1−g2

2+g2
√

g2
1−g2

0

)2
A2

2πeσ2g2
1

); otherwise.

From the above expressions for the capacity of an
OWRC in equations (12), (13), (14), (15) it is obvious that
in general the capacity can be expressed as

C(A,αA) = C(
βA2

σ2 )≥ C(
α2A2

σ2 ) (15)

where β > 0 is the the coefficient of A2. β is a function of
link gains g0,g1,g2 and mean to peak power ratio α. We will
use these capacity bounds to work out energy per bit require-
ments in the next section.

3. Energy per Bit for OWRC
For bounding the energy per bit Eb we need to establish

it is a non decreasing function of A2. To do this it is required
to be shown that the capacity of an ORWC is concave in
A2. Before we proceed to prove concavity of capacity of an
OWRC let us define it in general terms as.

Definition 1 (Capacity of OWRC). With peak power A and
mean E to peak power ratio α = E

A at the source and relay
node, capacity of the OWRC is

Ck(A, αA) =
1
k

sup
E(X)≤E
E(X1)≤E

P(X>A=0)
P(X1>A=0)

I(Xk;Y k), (16)

C(A, αA) = sup
k

Ck(A, αA) (17)

= lim
k→∞

Ck(A, αA). (18)

Lemma 2 (Concavity of Capacity of OWRC). The capac-
ity of an OWRC under average and peak power constraints
(5-7) satisfies the following:

1. C(A, αA)≥ 0 if A > 0 and tends to ∞ as A→ ∞.

2. C(A, αA)→ 0 as A→ 0.

3. C(A, αA) is concave and strictly increasing in A2.

4. C2(A, αA) is concave and strictly increasing in A2.

5. A2

C2(A, αA) is non decreasing in A, ∀A > 0.

Proof. 1. Since C(A, αA) is greater than or equal to
C(α2A2

σ2 ) which is strictly larger than zero for ∀A > 0
and approaches ∞ as A→ ∞.
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2. Since the upper and lower bounds [15] on C(A, αA)
go to zero as A→ 0.

3. Ck(A,αA) is concave in A2. Therefore, C(A,αA) =
supk Ck(A,αA) is concave being a supremum of a con-
cave function [18, Theorem D, p. 16]. Because of
concavity and prepositions (1) and (2) of this lemma,
that is C(A,αA) = 0 at A = 0 and C(A,αA)→∞ when
A → ∞, C(A,αA) is monotonically non decreasing
function in A.

4. As C(A,αA) is non-negative, increasing and concave
function in A2 so C2(A,αA) is also concave in A2 [18,
Theorem C, p. 16].

5. It follows from the concavity of C2(A,αA) that for any
0 < A1 < A2

A2
1

A2
2
C2(A2,αA2)+

A2
2−A2

1

A2
2

C2(0,0)≤C2(A1,αA1).

Because C(0,0) = 0, the above relation translates to

A2
1

A2
2
C2(A2,αA2) ≤ C2(A12,αA12),

A2
1

C2(A12,αA1)
≤ A2

2
C2(A2,αA2)

. (19)

Equation (19) shows that A2

C2(A,αA) is a non decreasing

function in A2.

Lemma 3 (Minimum Energy per Bit for OWRC). When the
source and relay nodes have same peak power A and mean
power E constraints and A≥ 0 and 0 < α≤ 1, the minimum
energy per bit Eb for OWRC is given by

E2
b = lim

A→0

2α2A2

C2(A,αA)
. (20)

Proof. The achievability and weak converse can be estab-
lished by showing that

E2
b = inf

A>0

2α2A2

C2(A,αA)
. (21)

The proposition (5) of Lemma 2 allows replacement of
inf by lim.

Achievability: There exists E ′ > 0 and ε > 0 such that

E >

√
2α2A′2

C2(A′,αA′)

= inf
A>0

2αA
C(A,αA)

+ ε. (22)

Thus there exists R <C(A′,αA′) that can be achieved
using random coding with average and peak power
constraints. This proves achievability of E.

Weak Converse: We need to prove that for any sequence
(2nRn ,n) of codes with P(n)

e → 0

liminfE(n)2 ≥ E2
b

= inf
A>0

2α2A2

C2(A,αA)
.

Fano’s inequality yields

Rn ≤C(An,αAn)+
1
n
(P(n)

e )+RnP(n)
e . (23)

Therefore,

Rn ≥
C(An,αAn)+

1
n (P

(n)
e )

(1−P(n)
e )

.

Now by applying definition of energy per bit (2)

E(n)2 ≥ 2α2A2

R2
n

≥ 2α2A2 (1−P(n)
e )

2

(C(An,αAn)+
1
n H(P(n)

e ))
2

=
2α2A2

C2(An,αAn)
× (1−P(n))

2

(1+
1
n H(P(n)

e )

C(An,αAn)
)

2

≥ Eb
(1−P(n))

2

(1+
1
n H(P(n)

e )

C(An,αAn)
)

2 , (24)

P(n)
e → 0, C(An,αAn) > 0 and H(P(n)

e ) > 0 yields
liminfE(n) ≥ Eb.

4. Bounds on Energy per Bit

4.1 Energy Per Bit
From (20), energy per nat is

Eb =

√
lim

A2→0

2α2A2

C2(A,αA)
(25)

and C(A,αA) can be expressed in the generic form as

C(A,αA) =
1
2

log(1+βA2). (26)

This yields the energy per nat Enat as

Enat =
2α√

β
(27)

and energy per bit Eb is
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Eb =
2α√

β
log2. (28)

4.2 Lower Bound on Energy per Bit
Energy per bit for the upper bound on capacity of

OWRC (12), (14) will yield the lower bound on energy per
bit. The bounds are as follows:

Proposition 4. For 0 < α < 1
2 the lower bound on Eb is

Eb ≥
2 α σ log2

1−α

√
g2

0 +g2
1

g1g2 +g0

√
g2

0 +g2
1

. (29)

Proof. Applying (28) to upper bound on OWRC capacity
(12) we have

Eb ≥ α σ log2
(1−α)

min
(

min
g2

o+g2
1>g2

2

√
g2

0 +g2
1

g1 g2 +g0

√
g2

0 +g2
1−g2

2︸ ︷︷ ︸
k1

,

min
g2

o+g2
1≤g2

2

1√
g2

0 +g2
1︸ ︷︷ ︸

k2

)
. (30)

Assuming g2
o +g2

1 ≤ g2
2,

k1 =

√
g2

0 +g2
1

g1 g2 +g0

√
g2

0 +g2
1−g2

2

≤ f

√
g2

0 +g2
1

g1

√
g2

0 +g2
1 +g0

√
g2

0 +g2
1

(31)

=
1√

g2
0 +g2

1

= k2 (32)

where (f) stems from i) replacement of g2 by
√

g2
o +g2

1, and

ii) dropping of g2
2 from

√
g2

0 +g2
1−g2

2 in the denominator.

Proposition 5. For 1
2 < α≤ 1 the lower bound on Eb is

Eb ≥
2 σ log2

√
g2

0 +g2
1

g1g2 +g0

√
g2

0 +g2
1

. (33)

Proof. This is obtained using (28) and (14) in a fashion sim-
ilar to that of proposition 4.

4.3 Upper Bound on Energy per Bit
This bound corresponds to decode and forward lower

bound on capacity of OWRC (13) and (15).

Proposition 6. For 0 < α < 1
2 the upper bound on Eb is

Eb ≤ 2α σ λ(α) log2 min
(

1
g0 +g2

,
1
g1

)
(34)

where λ(α) =
√

2πe(1−µα)

eµ(1−µα) .

Proof. Using the decode forward lower bound on capacity
(13) and (28) we get

Eb ≤ 2α σ λ(α) log2 min
(

min
g0,g2≥g1

1
g1

,

min
g0,g2<g1

g1

g0

√
g2

1−g2
2 +g2

√
g2

1−g2
0︸ ︷︷ ︸

k3

)
. (35)

Now if k3 is closely observed in the light of above con-
dition and assume lowest possible values of g0 and g2 that is
negligibly small compared to g1 we get

k3 =
g1

g0

√
g2

1−g2
2 +g2

√
g2

1−g2
0

<
g1

g0g1 +g2g1

=
1

g0 +g2
. (36)

That results in the upper bound on Eb given in this
proposition.

Proposition 7. For 0 < α < 1
2 the upper bound on Eb is

Eb ≤
√

2πe σ log2 min
(

1
g0 +g2

,
1
g1

)
. (37)

Proof. This can be proved on the same lines as the proof of
proposition 6.

y y y
Source Relay Destination

w 1-w

Fig. 3. Setup of relay channel for simulation.

Energy per bit as a function of source-relay distance
for the relay channel set up in Fig. 3 is shown in Fig. 4.
The source-destination distance is set equal to 1. The relay
node is positioned anywhere between the source and destina-
tion. Let the source-relay distance be w, 0≤ w≤ 1. The link
gain gi,(i = 0,1,2) is inversely proportional to the square of
link distance as per free space path loss principle. Without
loss of generality assuming g0 = 1, the normalised source-
relay and relay-destination link gains are g1 = w−2 and
g2 = (1−w)−2. With these assumptions bounds on mini-
mum energy per bit (29), (33), (34), (37) as function of relay
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location w are plotted. Minimum energy per bit EB has been
normalised to the standard deviation of noise σ in the plot.
The upper and lower bounds on Eb diverge if relay node is
in the vicinity of source node. The bounds are convergent
when the relay node is near the destination. If the relay is
placed midway between the source and destination nodes
normalised minimum energy per bit Eb

σ
for reliable commu-

nication under decode and forward strategy is −2.9 dB and
0.7 dB for α = 0.3 and 0.5≤ α≤ 1 respectively.

0 0.2 0.4 0.6 0.8 1
−100

−80

−60

−40

−20

0

20

40

60

80

Source−relay distance w

E
b/ σ

 (
dB

)

 

 

E UB (34), α=0.3

E LB (29). α=0.3

E UB (37), 0.5 < α < 1

E LB (33), 0.5 < α < 1

Fig. 4. Lower and upper bounds on energy per bit for an OWRC
for α = 0.3 (29, 34) and 0.5≤ α < 1 (33, 37).

5. Conclusion
It has been proven that the capacity of a Gaussian

OWRC is a monotonically increasing concave function in
the square of peak signal A2. It is also shown that energy per
bit is a non decreasing function in A2. Using these results
upper and lower bounds on minimum energy per bit (29),
(33), (34), (37) required for reliable communication over an
OWRC are derived. Minimum energy per bit being an im-
portant performance metric will help develop better theoreti-
cal understanding of optical wireless relay channels and net-
works.
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