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Abstract. The memristor was proposed to characterize the
flux-charge relation. We propose the generalized flux-charge
relation model of memristor with neural network of smooth
hinge functions. There is effective identification algorithm
for the neural network of smooth hinge functions. The rep-
resentation capability of this model is theoretically guaran-
teed. Any functional flux-charge relation of a memristor can
be approximated by the model. We also give application ex-
amples to show that the given model can approximate the
flux-charge relation of existing piecewise linear memristor
model, the window function memristor model, and a physi-
cal memristor device.
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1. Introduction
Memristor was proposed to be the fourth basic circuit

element, in order to characterize the relation between the flux
ϕ and the charge q [1], [2]. The other three basic circuit el-
ements are the resistor (current-voltage relation), the induc-
tor (current-flux relation) and the capacitor (charge-voltage
relation). According to [1], [3], the flux-charge relation of
a charge-controlled memristor is expressed as

ϕ = ϕ(q) (1)

and the current and voltage relation is described by (note that
dq = idt and dϕ = vdt)

v(t) = M(q(t))i(t) (2)

where
M(q) = dϕ(q)/dq. (3)

Similarly, a flux-controlled memristor is expressed as:

q = q(ϕ) (4)

and the current and voltage relation is described by

i(t) =W (ϕ(t))v(t) (5)

where
W (ϕ(t)) = dq(ϕ)/dϕ. (6)

The charge-controlled memristor and the flux-controlled
memristor are also referred as the ideal memristor [2], [3].

The concept of memristor was generalized to memris-
tive systems [4], [5]. A current-controlled memristive sys-
tem is described by

ẋ = f (x, i, t), (7a)
v = R(x, i, t)i (7b)

where x is the state variable of the memristive system. The
ideal memristor is a special case of the memristive system
(letting x = q , f (x, i, t) = q̇ = i and R(x, i, t) = M(q(t))).
Similarly, a voltage-controlled memristive system is de-
scribed by

ẋ = f (x,v, t) (8a)
i = G(x,v, t)v. (8b)

The first physical memristor device was found by [6].
Then many other memristor devices with different physical
mechanisms have been proposed by researchers, see [7], [8],
[9] for examples. The mechanisms of these devices are very
complex. The memristive system is widely used to model
physical memristor devices [6], [10], [11], [12], since the
ideal memristor (1) and (4) usually can not fully describe
the behavior of the physical memristor devices. For exam-
ple, voltage dependence is observed in many physical mem-
ristor devices [8], [10], [12]. The flux-controlled memris-
tor (4) can not model the voltage dependence of the device.
There is only one variable ϕ in (4), therefore the conductance
W (ϕ(t)) in (5) can not represent the influence of the voltage
v(t) at a certain time t.

The memristive system is a generalization of the mem-
ristor in the perspective of current and voltage relation, as
v = M(q)i is generalized to v = R(x, i, t)i and charge q is
generalized to state variable x. To our best knowledge, the
generalization of the memristor in the perspective of flux-
charge relation is little studied. In this paper, we focus on
the flux-charge relation of the memristor, considering that
the memristor was originally proposed to characterize the
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missing relation between flux and charge [2]. We propose
a generalized model to describe the flux-charge relation of
the memristor based on the neural network of smooth hinge
functions. Our model has good representation capability and
thus is a suitable choice for modeling memristor devices. We
will show that with theoretical analysis and three examples.

2. Generalized Flux-Charge Relation
Model
Besides extending memristor to memristive system in

the perspective of current and voltage relation, we believe
that we can directly generalize the flux-charge relation of the
memristor. Note that current i(t) and voltage v(t) are added
as parametric variables into the memristive system to form
a more general and complex system. We add the current i(t)
and voltage v(t) into the flux-charge relation of the memris-
tor as a generalization. The ϕ = ϕ(q) relation of a charge-
controlled memristor can be generalized to ϕ = ϕ(q, i), and
the q = q(ϕ) relation of a flux-controlled memristor can be
generalized to q = q(ϕ,v). We use the neural network of
smooth hinge functions to represent the generalized flux-
charge relation of the memristor.

Specifically, a generalized charge-controlled memristor
is given by

ϕ(q, i) = a0q(t)+b0i(t)+ c0 + (9)
Σ

m
k=1ηk ln(1+ exp(akq(t)+bki(t)+ ck)).

In (9), ln(1 + exp(akq(t) + bki(t) + ck) is the base func-
tion of the neural network of smooth hinge functions [13],
m is the number of base functions, ak,bk,ck,ηk are pa-
rameters. Similar to v(t) = M(q(t))i(t), M(q) = dϕ(q)/dq
of (1), the current and voltage relation of (9) is given by
v(t) = dϕ(q,i)

dt = ∂ϕ(q,i)
∂q i(t)+ ∂ϕ(q,i)

∂i
di(t)

dt . Similarly, a gener-
alized flux-controlled memristor is given by

q(ϕ,v) = a0ϕ(t)+b0v(t)+ c0 + (10)
Σ

m
k=1ηk ln(1+ exp(akϕ(t)+bkv(t)+ ck)).

The representation capability of our model is theoret-
ically guaranteed by using the neural network of smooth
hinge functions. Any continuous function can be approxi-
mated by the neural network of smooth hinge functions to
arbitrary precision with a sufficient number of base func-
tions [13]. The memristor was proposed to characterize
the relation between flux and charge. Therefore as long as
there is a function relation between ϕ and q (in the form
of ϕ = ϕ(q, i) or q = q(ϕ,v)) of the memristor device, our
model can approximate such flux-charge relation well. As
far as we know, no existing memristor model can guarantee
such representation capability. Due to the good approxima-
tion capability of the neural network of smooth hinge func-
tions [13], the generalized flux-charge memristor model can
properly fit the experimental data of the memristor device.

The smooth hinge function ln(1+ exp(akq(t)+ bki(t)+ ck)
is differentiable in the domain. This advantage may make
further analysis of the memristor easier, compared with the
existing piecewise linear model, as will be shown in the fol-
lowing example.

Our generalized flux-charge memristor model also has
good extensibility. Parametric Variables other than i or v,
such as power p [8], can be easily added into the neural
network of smooth hinge functions, in order to get a more
precise description of the memristor device. At this situa-
tion, the base function becomes ln(1+exp(akq(t)+bki(t)+
ck p(t) + dk). Adding new variables will not change the
aforementioned representation capability and smooth char-
acteristics of the model [13]. For possible multi valued flux-
charge relation, using the masked input technique given in
[14], our model may still be able to describe such flux-charge
relation.

3. Application Examples of General-
ized Flux-Charge Relation Model
As analyzed in the last section, the representation ca-

pability of our generalized flux-charge relation model is the-
oretically guaranteed by the property of the neural network
of smooth hinge functions. In this section we give three ex-
amples to show the representation capability of our model.
We use the model to approximate two existing memristor
models, a piecewise linear flux-charge relation model and
a memristive system model. We also use our model to fit the
voltage dependent flux-charge relation of physical memris-
tor device based on experimental data.

In [1], [3], [15], the following piecewise linear flux-
charge relation is used to characterize a memristor

ϕ(q) = bq+0.5(a−b)(|q+1|− |q−1|). (11)

a,b are the parameters of the model, and we can suppose
a 6= b for general cases [1]. We show that our smooth model
can properly approximate the piecewise linear flux-charge
relation given by (11). First, we equivalently represent (11)
with hinge functions [16]

ϕ(q) = aq+(b−a)max{0,q−1}−(b−a)max{0,−q−1}.
(12)

Then according to [13], (12) can be approximated by

ϕ(q) = aq+(b−a) ln(1+ expα(q−1))/α (13)
−(b−a) ln(1+ expα(−q−1))/α,

as shown in Fig. 1. In (13), increasing parameter α can re-
duce the differences between a hinge function max{0,x} and
a smooth hinge function ln(1+ expαx)/α around the hinge
x = 0 [13]. The pinched hysteresis loops of both models are
also shown in Fig. 1. It can be seen that our model can prop-
erly approximate the existing piecewise linear model.
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There are limitations of the existing piecewise linear
model. One is that (12) is not differentiable at q=±1, which
will cause a sudden memristance change at q = ±1 (i.e.,
M(q) = dϕ(q)/dq in (2),(3) will discontinuously change be-
tween a and b). Our model does not have such limita-
tion since we use the neural network of smooth hinge func-
tions. A smooth hinge function ln(1+ expx) has a continu-
ous derivative 1/1+ exp(−x), and therefore (13) has a con-
tinuous derivative (i.e., M(q)) over the domain including
q = ±1. Another limitation of the existing piecewise linear
flux-charge relation model is that it may not properly rep-
resent the flux-charge relation of physical memristor device
(we will show that in the following example).
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Fig. 1. Approximating existing piecewise linear (PWL) model
(12) with smooth hinge function (SHF) model (13). a =
1, b = 3, α = 50. The left figure shows the flux-charge
relations of both models. The middle figure shows the
local details of both flux-charge relations around q = 1:
(12) is not differentiable at q = 1, while (13) is smooth.
The right figure shows the pinched hysteresis loops of
both models with input i(t) = 5sin(πt).

Next we use our model to approximate an existing
memristive system model. The following window function
model is given by [17] to describe the first memristor device
found by [6]:

v(t) = (RONx(t)+ROFF(1− x(t)))i(t), (14a)

dx(t)
dt

= k(1− (2x(t)−1)2p)i(t) (14b)

where x(t) is the state variable, k and p are the parameters.
This memristive system is a simplified model of the device
and widely used. According to [18], there exists a function
relation of ϕ and q of (14). More discussion on window func-
tion model can be found in [14], [19], [20], [21]. Here we
plot the ϕ−q curve of (14) through simulation, and use our
model to approximate this ϕ− q curve, as shown in Fig. 2.
Specifically, our model is given by

ϕ(q) = a0q+b0− ln(1+ expα(a1q+b1))/α. (15)

Note that for a small q, ϕ(q) ≈ a0q + b0, for a large q,
ϕ(q) ≈ (a0− a1)q+ b0− b1 and v/i = dϕ(q)/dq. The pa-
rameters are chosen such that a0 = RON , a0− a1 = ROFF ,
a0q+b0 is the approximating line for (q,ϕ) data point with
a small q and (a0 − a1)q + b0 − b1 is the approximating

line for (q,ϕ) data point with a large q. α can adjust the
degree of bending of (14) between line a0q + b0 and line
(a0−a1)q+b0−b1.

It is easy to see that the existing piecewise linear model
(12) may not properly approximate ϕ−q curve of (14) (Cir-
cle points in Fig. 2). Because circle points in Fig. 2 do not
have symmetry as (12). Our model can properly approxi-
mate the circle points. The pinched hysteresis loops show
that our model is a good approximation of memristive sys-
tem model (14). In this example, only 1 base function of
the neural network of smooth hinge functions is used. Using
other kinds of neural network instead of the neural network
of smooth hinge functions may increase the complexity of
the corresponding approximation model, as more base func-
tions and parameters may be needed.
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Fig. 2. Approximating existing memristive system model (14)
with smooth hinge function model (15). RON = 1,
ROFF = 125, k = 1, p = 5, α = 0.05, a0 = 1, a1 =−124,
b0 = 15.5, b1 = 0. The top figure shows the flux-charge
relations of both models. The bottom figure shows the
pinched hysteresis loops of both models with input i(t) =
3sin(πt +π/2).

In the third example, we show that our generalized
model is suitable to model physical memristor devices.
Specifically, we model the voltage dependent flux-charge
relation of physical AgInSbTe memristor device [9]. The
co-existence of extrinsic electrochemical metallization effect
and intrinsic memristive characteristics was confirmed in the
AgInSbTe memristor [9]. In the gradual resistance tuning
of the device, pulses with different voltage amplitudes and
5 µs width were applied to the AgInSbTe memristor device
[9]. From the experiment data, we calculate the (ϕ,q) data
for each pulse of different voltage amplitudes. Voltage de-
pendent flux-charge relation is observed, as shown in Fig. 3.
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The flux-charge relation of the device varies with different
voltage amplitudes. q = q(ϕ) can not describe such voltage
dependent flux-charge relation. Our generalized q = q(ϕ,v)
model is needed. We use our generalized model in the form
of (10) to approximate such voltage dependent flux-charge
relation. From Fig. 3 we can see that our model fits the data
well. The number of smooth hinge functions m and the pa-
rameters ai, bi, ci, i = 1, . . . ,m in (10) are artificially se-
lected. Then parameters a0, b0, c0 and ηi, i = 1, . . . ,m are
calculated by least squares method based on the experimen-
tal data.

The behavior of physical AgInSbTe memristor device
is complicated. Besides the amplitude of the pulse, the pulse
width also affects the gradual resistance tuning of the AgInS-
bTe memristor [9]. Pulses with −1V amplitude and differ-
ent widths were applied to the AgInSbTe memristor [9]. As
shown in Fig. 4, the flux-charge relation of the device varies
with the pulse widths. We can analogously model such flux-
charge relation by replacing the variable v in (10) with pulse
width ∆. Then the base function of q = q(ϕ,∆) is in the
form of ln(1+ exp(akϕ(t) + bk∆+ ck)). Fig. 4 shows that
our model fits the data properly.

4. Conclusions
In this paper, we propose the generalized flux-charge

relation model of memristor considering that the memristor
was originally proposed to characterize the flux-charge rela-
tion. Such generalization is little studied, but the example
of voltage dependent flux-charge relation of the AgInSbTe
memristor indicates that such generalization is necessary.

The usage of neural network of smooth hinge functions
theoretically guarantees the representation capability of the
model. Any functional flux-charge relation, even with multi-
ple parametric variables, can be approximated by our model.
With examples, we show that our model is capable of rep-
resenting the existing memristor models, and approximating
voltage dependent flux-charge relation of physical memris-
tor device.

Besides the three examples given in this paper, our
model can be applied to model other types of memristors.
Because the representation capability of the model is theo-
retically guaranteed and there is effective identification al-
gorithm for the neural network of smooth hinge functions
[13]. Given the (ϕ,q) data of the specific memristor, our
model can be applied to model the memristor.
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Fig. 3. Approximate the voltage dependent flux-charge relation
of the AgInSbTe memristor. The ϕ(t) at the nth pulse
is calculated by ϕ(t) = nAv∆, where Av is the amplitude
and ∆ is the width of the pulse. Similarly, q(t) at the
nth pulse is calculated by q(t) = Σn

k=1ik∆, where ik is the
current measured at the kth pulse. 10 smooth hinge base
functions are used in the model.
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Fig. 4. Approximate the flux-charge relation of the AgInSbTe
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