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Abstract. In this paper, an efficient computational frame-
work for the full-wave design by optimization of complex mi-
crowave passive devices, such as antennas, filters, and multi-
plexers, is described. The framework consists of a computa-
tional engine, a 3D object modeler, and a graphical user in-
terface. The computational engine, which is based on a finite
element method with curvilinear higher-order tetrahedral el-
ements, is coupled with built-in or external gradient-based
optimization procedures. For speed, a model order reduction
technique is used and the gradient computation is achieved
by perturbation with geometry deformation, processed on
the level of the individual mesh nodes. To maximize per-
formance, the framework is targeted to multicore CPU ar-
chitectures and its extended version can also use multiple
GPUs. To illustrate the accuracy and high efficiency of the
framework, we provide examples of simulations of a dielec-
tric resonator antenna and full-wave design by optimization
of two diplexers involving tens of unknowns, and show that
the design can be completed within the duration of a few
simulations using industry-standard FEM solvers. The ac-
curacy of the design is confirmed by measurements.
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1. Introduction
Computer aided design CAD combines simulation with

optimization, and as such involves extensive simulation. Be-
cause of the distributed character of microwave circuits and
the fact that full-wave simulations are time consuming, mi-
crowave CAD is usually associated with techniques based
on simplified equivalents, surrogate models, or fast numer-
ical methods whose applicability is limited to specific ge-

ometries. When it comes to the design of passive structures
of arbitrary shape, possibly loaded with inhomogeneous ma-
terial, design by optimization becomes extremely time con-
suming. This is because the full-wave techniques suitable
for solving the underlying Maxwell’s equation are numeri-
cally expensive. If the number of design variables is small,
a direct full-wave optimization may be successful, but as the
complexity of the circuit grows and the number of the de-
sign variables increases, the use of direct optimization with
full-wave methods is considered impractical, due to the poor
convergence of gradient-based techniques and the high cost
of a single design iteration. To alleviate this problem, tech-
niques such as space-mapping [13] have been devised. In
space mapping, optimization is carried out with a low-cost
coarse model, and the full-wave solution is used only to cal-
ibrate the coarse model. However, space-mapping requires
the provision of a coarse model; such a model may not be
readily available, or may unsuitable for use with gradient-
based optimization techniques. On the other hand, engi-
neers would prefer to use a single CAD tool that would yield
the final design, rather than having to employ different soft-
ware packages or develop procedures to integrate them. This
situation motivated us to create a framework for fast full-
wave CAD of complex microwave devices, which consists
of a highly accurate and efficient computational engine com-
bined with 3D object modeler, both integrated with gradient-
based optimization procedures. At the heart of the frame-
work is a multithreaded finite element method solver based
on higher-order curvilinear tetrahedral elements and a fast
frequency sweep technique that uses the model order reduc-
tion concept. This solver and the optimization procedures
are coupled to the solid object modeler to evaluate the mesh
perturbation and to quickly compute high-quality gradients.

2. Computational Engine
To perform a full-wave analysis of a 3-dimensional

problem occurring in microwave passive component design,
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it is necessary to solve the vector Helmholtz equation within
the desired frequency band. The problem in general involves
lossy and anisotropic media. For simplicity, let us assume
a lossless case with isotropic dielectrics. For this class of
problems, the Helmholtz equation to be solved is

∇×µ−1
∇×E−ω

2
εE = 0 (1)

with proper boundary conditions on PEC, PMC surfaces, and
excitation at ports. Any numerical technique for solving this
boundary value problem (BVP) should be flexible in terms
of its ability to handle irregular geometry and a variety of
media. One technique that meets these criteria is the finite
element method (FEM) in the frequency domain. We use
this method in our design-by-optimization framework.

In the finite element method, the starting point is the
weak form of (1)∫

V
W ·

(
∇×µ−1

∇×E− k0
2
εrE

)
dV = 0. (2)

The above equation is solved in the discrete domain and
converted to a system of linear equations by means of the
Galerkin procedure. To this end, the computational domain
is meshed and the field within each mesh element (volumes,
surfaces, and edges) is represented as a linear combination
of vector basis functions W . Solving this system using the
Galerkin method yields the impedance parameters of the N-
port device [1]:

Z( jω) = jωµ0BT · (K− k2
0M)−1 ·B (3)

where K,M are sparse matrices defined as:

K =
∫∫∫

V

(∇×N ·µ−1
r ∇×N)dV, (4)

M =
∫∫∫

V

(N · εrN)dV (5)

and N are the basis functions defined over the elements. Ma-
trix B is constructed by taking the excitation vectors in the
ports as columns. Each column vector is defined by one
modal field on the port surface S with proper normalization.
In the proposed approach, the set of hierarchical basis func-
tions defined over curvilinear, second-order tetrahedral ele-
ments proposed in [2] was used.
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Fig. 1. Illustration of 4-node linear (a) and 10-node curvilinear
(b) tetrahedral mesh elements.

This allows very good accuracy to be achieved in the
geometric modeling of curved surfaces, at the same time re-
ducing the number of mesh tetrahedra. To obtain the high-
est accuracy without excessive use of computer resources,
we use error indicators to mark regions that require a finer
mesh. The public-domain Netgen mesher [3] is used to ob-
tain a conformal mesh. To ensure high mesh quality, the
mesh is generated through an adaptive process in which er-
ror indicators are computed for each tetrahedron and the re-
gions with the highest errors are remeshed. The process
stops when the results stabilize.

The linear problem arising is defined in (3) and is large
and sparse. Design of a microwave component requires sev-
eral iterations of the optimization procedure. In each itera-
tion, the response is evaluated within a frequency band of
interest. If a standard discrete frequency sweep is used,
the system of linear equations generated at each iteration
must be solved anew at each frequency point, which leads
to a high computational cost for the FEM analysis. For this
reason, it is essential to apply one of the acceleration tech-
niques often referred to as fast frequency sweep.

2.1 Fast Frequency Sweep with MOR
To obtain run-time savings, several advanced tech-

niques for performing fast frequency sweep have been de-
veloped. One way to reduce the duration of the frequency
response evaluation that is often encountered in commercial
software is to use adaptive interpolation. In this approach,
often called adaptive frequency sampling, a wideband re-
sponse is interpolated from the results obtained for carefully
selected frequency points. The points for interpolation are
determined automatically [4]. As a result, the response is
sampled more densely where needed. Another option to ac-
celerate simulation within a specified frequency band is to
apply a subspace projection technique. The main idea in
this approach is to find a low-dimensional space in which
an approximate solution to a large system of FEM equations
can be found. Since the reduced problem is small, it can
be efficiently solved for a high number of frequency points.
There are several subspace projection algorithms, including
asymptotic waveform evaluation (AWE) [5, 6], the reduced
basis method (RBM) [7], and moment-matching model or-
der reduction (MOR), which use the Krylov subspace to find
the projection basis [8], [9]. Once the projection basis V has
been found, the original FEM matrices are transformed to
the reduced matrices in the following way:

K̂ =V T ·K ·V, (6)

M̂ =V T ·M ·V, (7)

B̂ =V T ·B. (8)

The reduced problem has the form

Z( jω)≈ Ẑ( jω) = jωµ0B̂T · (K̂− k2
0M̂)−1 · B̂. (9)
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The order P of the reduced model is defined as the num-
ber vectors that span the projection basis V . For many practi-
cal problems in the CAD of passive components, the order of
the model is a few orders of magnitude lower than the origi-
nal order. For example, in the case of filter design, the mini-
mum order of the reduced model may be as low as the order
of the filter (or the order of highest channel filter, in the mul-
tiplexer case) times the number of ports. If one is interested
in out-of-band responses, including spurious passbands, then
the size of the projection basis needs to be increased, but is
in any case much smaller than the size of the original system.
Finally, MOR can be used in selected regions and nested to
generate extremely compact reduced-order models for FEM
problems that involve a large number of unknowns [18].

The reduced model can be efficiently evaluated, since
computing its response Ẑ( jω) involves solving a small sys-
tem of linear equations.

The ideas presented here can be generalized to the
lossy case with anisotropic media described by complex
frequency-dependent permittivity or permeability tensors.

3. Geometry Modeler
An efficient design-by-optimization procedure requires

a versatile solid geometry kernel that allows a variety of
structures to be constructed. Moreover, the structure needs to
be parameterized so that the design space may be explored
during optimization. In other words, the kernel should al-
low a set of parameters that define certain geometrical di-
mensions of the constructed structure to be treated as design
variables. Changing the values of these parameters should
result in the reconstruction of the geometry. As the geome-
try evolves through optimization, the structure must remain
consistent: that is, edges, faces, or volumes cannot disappear
or emerge.

In order to achieve the required versatility, the mod-
eling framework is based on a constructive solid geometry
(CSG) approach in which structures are built from primitive
shapes, such as boxes, cylinders, and rectangles. Each prim-
itive has a set of parameters that defines its dimensions, thus
allowing easy parameterization. Also, Boolean operations
(union or subtraction) can be performed on these primitives,
allowing for the quick construction of moderately complex
parameterized structures. Unfortunately, the CSG is too re-
strictive when it comes to more complex shapes. However,
sophisticated structures can be obtained employing concepts
used in the boundary representation (Brep) approach, such as
rotations, mirroring, extrusions, cloning, and filleting. For
this reason, the CSG in the geometry kernel has been aug-
mented with Brep operations. Moreover, the user may intro-
duce multilevel relative coordinate systems, all of which will
considerably enhance the modeling capabilities.

To implement the geometry definition and transforma-
tion module, we used the widely known and proven open

source Open CASCADE software development platform
[12]. This provides procedures for geometrical computa-
tions and data exchange. The platform is actively maintained
and new features, such as parallelization, are continuously
added.

One of the advanced features of the geometry kernel of
the framework, and one which is crucial for efficient shape
optimization, is the ability to track deformations of a geom-
etry while preserving its topological properties. During opti-
mization, the design variables, namely the parameters defin-
ing the structure, are altered, resulting in a need to recon-
struct the geometry after each change. Moreover, when gra-
dient optimization methods are used, the sensitivities of the
goal function need to be computed in each iteration, which
involves several simulations of the structure with small per-
turbations in the parameters. The deformations are tracked
each time the geometry is perturbed, and this is done in par-
allel for the entire set of optimization parameters. The geom-
etry changes are bound to the mesh movements. As a result,
multiple mesh generations are omitted and, instead, the mesh
is generated only once per iteration. It is then modified ac-
cording to the deformation data. Usually only a small part of
the mesh needs to be modified; for example, some vertices
might be moved. Not only does this speed up computation,
but it also makes the sensitivities more accurate, effectively
making gradient optimization possible.

4. Optimizer
In almost every design cycle of passive microwave

components that uses an electromagnetic simulator as a re-
sponse prediction tool, much effort is associated with the nu-
merical tuning of the final high-accuracy model. This tuning
may be manual or automated (that is, based on optimization).
However, the selection of the proper optimization scheme for
a given problem is of great importance, since the cost of the
process is usually very high.

In general, optimization schemes can be divided into
two groups: global and local algorithms. Global techniques
allow the global minimum of the cost function to be found,
and mostly use nondeterministic algorithms. Genetic algo-
rithms, particle swarm optimization, and simulated anneal-
ing techniques belong to this group. Such techniques usu-
ally need a high number of cost-function evaluations, and
are therefore not recommended for cases where a single cost-
function evaluation is time consuming.

Fast optimization techniques rely on the gradients of
the cost function to predict the direction of its movement in
the optimization space. Gradient methods are an example
of local schemes, which means that they stop when a local
minimum is reached. Fortunately, this is not a problem, if
the cost function has no local minima in the neighborhood
of the starting point.

As full-wave optimization is time consuming, we have
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decided to use gradient techniques. The basic challenge
in the application of gradient optimization techniques with
FEM comes from the fact that the three-dimensional finite el-
ement method uses a discrete geometry definition described
by a mesh. To compute the gradient, the geometry is per-
turbed and the response of the structure is recalculated. The
gradient can be then evaluated using the finite difference ap-
proach. At this stage, two scenarios are possible:

• remesh the geometry after its perturbation; or

• evaluate the mesh perturbation without remeshing.

The first option is easy to realize with most FEM code.
However, since the perturbation is usually small for the gra-
dient computation, the remeshing of the geometry can intro-
duce additional errors that can affect the quality of the gra-
dient. The perturbed problem is regenerated from scratch,
and so the global FEM matrix properties also change. Ad-
ditionally, for complex structures, the remeshing time can
be substantial. The second option is in many ways superior:
the remeshing error can be eliminated and the data generated
for the unperturbed FEM problem can be reused. Since only
a small number of nodes are usually affected by the pertur-
bation arising from the change in one design variable xi, the
updates to the global FEM matrices, denoted ∆Ki and ∆Mi,
are very sparse and cheap to evaluate. Once the perturbation
matrices are known, the gradients can be evaluated relatively
cheaply using adjoint sensitivities [14].

Mesh perturbation methods need to allow the move-
ment of the mesh nodes with the change in geometry to be
traced for arbitrary complex solids. As discussed in the pre-
vious section, this is achieved by coupling the optimization
procedures to the 3D modeler used to input the problem ge-
ometry. Fig. 2 shows examples of local mesh perturbation
for the complex geometries that can be found in combline
filters used in base stations.

Fig. 2. Examples of mesh–node movement (red arrows) when
geometry description is modified: a) iris width , b) tap–
probe radius, c) tuning-screw length change.

4.1 Zero-Pole Filter Optimization of Filters
and Multiplexers

The performance of the optimization strongly depends
on the definition of the cost function. Since FEM is often

used for complex filter and multiplexer design, we devel-
oped a cost function that is customized for this purpose. In
microwave filter design, the response of the filter is usually
described with a rational function defined by the positions
of its zeros and poles. For many types of filters, the ideal
reference response can be derived analytically, as in the case
of generalized Chebyshev bandpass filters [10]. As has been
shown in [15], [16], [17], in such cases, the cost function
F for filter optimization can be defined using the zeros and
poles of transfer functions as

F = ‖pr− po‖+‖zr− zo‖ (10)

where pr and zr are the vectors of reference zeros and poles,
while po and zo are the vectors of zeros and poles of the
rational representation of the response of the device being
optimized. The zeros and poles can be defined for the scat-
tering parameters s11 or s21, or for both s11 and s21. To con-
struct the rational model of the response from the simulated
results, a direct interpolation or vector-fitting technique can
be used [11].

The zero-pole-based algorithm can be generalized to
multiplexer design. In this case, the return loss response of
each channel filter in the channel passband can be treated
as the response of a simple double-terminated filter. For ex-
ample, in the case of a diplexer that has a common port
number 1 and two channel outputs numbered 2 and 3, the
zero-pole-based optimization can be defined using the filter-
ing characteristics s22, s33, and optionally s21 and s31. In the
result, it is possible to optimize the return loss response of
all channels at the same time.

5. Parallel Implementation
For optimal performance, the computational engine

was designed in such a way that it can use all cores avail-
able in the workstation or server during the critical phases
of simulation. All modern CPUs use multiple cores, and
a new trend uses manycore architectures. The simplest par-
allelization strategy is to assign a separate problem to each
core or processor. In this way, the problem can be solved
for several frequency points or excitations concurrently. In
practice, however, the number of excitation is limited and
this strategy is not scalable to a larger number of cores or
processors. Carrying out computations at several frequency
points simultaneously can be highly efficient in terms of the
utilization of CPU cores, but the RAM usage increases lin-
early with the number of frequency points. As RAM is cru-
cial for solving larger problems, and the number of cores on
high-end servers exceeds ten, and since fast frequency sweep
can be achieved with matrix factorization at one frequency
point, a parallelization strategy based on spectral decompo-
sition does not seem to be the right way to take advantage of
computer resources.

Furthermore, future generations of workstations are
likely to have even more cores than are available at present.
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Our assumption is that the FEM solver should be able to
take advantage of both multicore and manycore processors.
We therefore developed two versions, one for CPU-only ar-
chitectures, and an extended version for hybrid multicore–
manycore platforms. The basic version, geared towards mul-
ticore CPUs, uses OpenMP directives and libraries tuned to
parallel execution for matrix generation and the computation
of the projection basis needed for the fast frequency sweep
technique.

The use of concurrent computations for matrix genera-
tion is particularly important in design by optimization using
FEM, as the matrix needs to be generated anew at each de-
sign iteration. The impressive speed gains of this step can
be achieved when one or more than one manycore platforms
(e.g., graphics processing units) are available in the system.
In such an environment, thousands of threads are run in par-
allel, leading to very efficient utilization of computational re-
sources. As explained in [19], concurrency within one GPU
is exploited at various stages. In our case all cores available
on the CPU and GPUs are used [20], [21]. This task can be
off-loaded entirely to a GPU if the matrix is not too large.
The generation of large matrices is much more challenging.
In this case, one or more GPUs are used in parallel to eval-
uate integrals and to assemble the fragments of a global sys-
tem matrix, while the CPUs control the process, collect the
submatrices furnished by GPUs, and coalesce them using
all cores, working concurrently with the GPUs. Since the
momory on a GPU is limited the large matrices are gener-
ated in an iterative process. In each iteration of the finite-
element matrix generation, the subset of tetrahedra is pro-
cessed in such a manner that batches of tetrahedra are per-
formed in parallel (on the level of CUDA blocks); for each
tetrahedron, Gaussian quadrature is parallelized (on the level
of CUDA blocks); dense matrix computations (products and
sums) are parallelized (on the level of CUDA threads); and
concurrent streams (Hyper-Q) are assigned to each variant of
the numerical integration. With double-precision arithmetic,
the GPU-accelerated matrix generation of over 5 million un-
knowns can be carried out on a single GPU - NVIDIA Tesla
K40 GPU (2880 CUDA cores, 12 GB) - in a matter of tens
of seconds, as opposed to a high-end server with 2 CPUs -
2 INTEL Xeon Sandy Bridge E5-2687W (total 32 logical
cores, 3.1 GHz) equipped with 128 GB RAM - that requires
several minutes. According to the results of our recent re-
ported in [21] this translates to a 13-fold speed-up

Another process in which parallelization is employed
in the integrated design-by-optimization framework is the
computation of gradients. This requires invoking the 3D
solid modeler and computing the geometry deformation with
respect to each variable. Since OpenCascade, the math li-
brary we are using in the modeler, is not thread-safe, we
launch a separate process for each variable, so that the mul-
ticore architecture can be made use of. The number of pro-
cesses that are launched simultaneously is equal to the num-
ber of cores.

6. Computational Examples
To demonstrate the efficiency of the proposed frame-

work, some examples of advanced simulation and design-
by-optimization are given. For all structures, we give the
simulation details with the number of variables and the or-
der of finite elements used along with the running time. We
compare the results with reference data or with measured re-
sults.

6.1 Dielectric Resonator Antenna
We start with the numerical analysis of the cavity-backed di-
electric resonator antenna (DRA) fed with coax line. The
structure of the antenna is shown in Figure 3, and a detailed
description, including all dimensions and measurement re-
sults, can be found in [22]. The cavity is partially filled with
two layers of lossy dielectric materials. The mesh in the open
region is truncated using an absorbing boundary condition.
The antenna is a moderately complex structure, but is good
example to show the performance of model order reduction
on lossy problems.
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slot

strip
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Fig. 3. Geometry of cavity-backed dielectric resonator antenna.
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Fig. 5. Computed radiation pattern of DRA using near-to-far
field transformation in the plane φ = 0.

Fig. 6. Computed 3D radiation pattern of DRA using near-to-far
field transformation.

A mesh of over 25000 elements was created, and apply-
ing QTCuN base functions, the resulting (complex-valued)
problem involved over 659,000 unknowns. The problem was
analyzed in two ways: first, using a direct solution on dis-
crete frequency points, and secondly, by applying a model
order reduction technique. The computations were carried
out on a workstation equipped with a 4-core Intel i7 870 pro-
cessor running at 2.93 GHz. The running time of the former
simulation was 60 minutes (the solve phase was 34 seconds
per frequency point), and with the application of MOR, this
time was shortened to 97 s. In the second case, only a single
factorization of the global finite element matrix was needed
to perform the frequency sweep in the whole frequency band.

In Fig. 4, the comparison of both simulation results is
shown. It can be seen that both results agree perfectly. Ad-
ditionally, very good agreement with the results published in
[22] is seen. Using the solution at the frequency of 2.4 GHz,
the antenna radiation pattern was calculated by performing

near-to-far field transformation, available within the frame-
work. The radiation pattern shown in Fig. 5 is compared to
the reference result, and once again, good accuracy can be
observed. Finally, in Fig. 6, a visualization of the 3D radia-
tion pattern of the investigated DRA is shown.

6.2 Waveguide Diplexer
The next example is a WR90 waveguide diplexer de-

sign. This device uses two eighth-order channel filters con-
nected to a tee junction (Fig. 7). The channel passbands
are 9.6 – 10 GHz and 10.2 – 10.6 GHz, with a return loss
level of 20 dB. The design began from synthesized chan-
nel filters connected to the tee. In Fig. 8, the response of
the initial design is shown. The structure was discretized
with over 305,000 tetrahedra and second-order (LTQN) basis
functions were used to construct a linear problem. This led to
a problem with 2.4 million unknowns. A single simulation of
the whole structure at 42 discrete frequency points, includ-
ing meshing and matrix generation, took over 40 minutes.
Again, a workstation with a 4-core Intel i7 870 at 2.93 GHz
was used in the computations. The solve phase took about
42 seconds per frequency point.

The geometry was parameterized with 38 independent
variables, defining the widths of all irises, resonator lengths,
and waveguides in the junction area. With the techniques
described above, we evaluated the response over the entire
band and computed sensitivity with respect to all 38 vari-
ables in just 25 minutes. The optimization scheme based
on the zero-pole cost function needed 21 iterations to en-
sure almost equiripple response in the passband. The total
time taken by the optimization was 9 hours, which is one
third of the time for a single iteration using a brute-force ap-
proach based on remeshing for gradient computations (The
estimated time for a complete design cycle for such a subop-
timal technique is about 3 weeks). The proposed framework
is customizable. In this particular computational example,
the optimization was carried out using a Matlab environment
coupled to the 3D FEM solver and geometry kernel using
COM interface API functions.

The results of the measurements of the fabricated
diplexer shown in Fig. 9 indicate the excellent quality of
the design. In this case, no additional tuning elements were
used, and yet the simulation results are in good agreement
with measurement.

Fig. 7. Structure of waveguide diplexer.
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Fig. 8. Response of the initial diplexer before numerical tuning.
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Fig. 9. Measurement of fabricated waveguide diplexer (red /
blue) vs. simulation results (dashed).

6.3 Combline Diplexer
The third example is a combline diplexer on the

GSM 1800 band. This is shown in Fig. 10. The chan-
nel filter passbands are set to 1710 – 1785 MHz and 1815 –
1880 MHz. In both channels, an additional cross-coupling
was introduced to form a quadruplet topology and to add
2 transmission zeros to improve the selectivity of the transfer
functions. The requested return loss level was set to 20 dB.

The structure was discretized with 0.53 million tetrahe-
dral elements, which led to a linear system of equations of
3.0 million unknowns. For this problem, the running time
for point-by-point frequency sweep with just 34 frequency
points is 22 minutes 30 s on a dual Intel Xeon X5960 CPU
server with all 12 cores engaged. This included a single-
threaded mesh generation, which took about 2 minutes 30 s.

The diplexer geometry was parameterized with 32 vari-
ables, controlling tuning screws and excitation of the res-
onators from the coaxial line inputs. With the application of
the framework described in this paper, the response of the
structure with sensitivities over all parameters can be com-

puted in only 13 minutes. In Tab. 1, a comparison of the
execution times of different simulation modes is shown. It is
worth noting that the overhead associated with the compu-
tation of 32 sensitivities over the MOR is just 168 seconds,
or 5.25 seconds per variable. When this time is compared
with the duration of direct point-by-point FEM simulation
at 34 frequency points (1230 s), the overhead per variable is
marginal – just 0.42%.

Simulation type Time [s]
Direct freq. sweep (34 fp.) 1230

MOR sweep + sensitivities (32 var.) 481
MOR sweep no sensitivities 313

Tab. 1. Execution time of simulator in different modes for
combline diplexer (meshing and geometry processing
time not included).

To show the impact of multiple cores on the duration of the
computations, we have collected in Tab. 2 the execution time for the
most important stages of the simulation and the different number
of threads engaged. It can be seen that the current implementation
gives a significant speed-up when multicore architectures are used.

Time [s]
Number of threads 1 2 6 12
Matrix generation 143 66 39 34

MOR 693 370 251 220
Sensitivities 260 164 152 157

Other 111 82 74 70
Total time 1207 682 516 481

Tab. 2. Execution times of selected computational routines ex-
ecuted during optimization (MOR + sensitivity compu-
tation) vs. the number of threads for combline diplexer
(meshing time not included).

The zero-pole-based optimization was implemented via
a COM interface and needed 40 iteration to converge to the re-
sult shown in Fig. 11; the total time needed for the optimization
was only 520 minutes. The progress of the optimization, shown in
Fig. 12, confirms the excellent properties of the zero-pole cost func-
tion adapted for multiplexer design—starting from a poor initial
response, the optimization technique converged without becoming
stuck in a local minimum. The results for the running time given
above and the monotonic convergence of the optimization confirm
that the approach described in this paper ensures the quick compu-
tation of high-quality gradients.

To demonstrate the accuracy of the proposed design-by-
optimization approach, the filter was fabricated (Fig. 13) and mea-
sured. The results shown in Fig. 14 once again show the excellent
quality of the design.

7 Conclusion

In this paper, an efficient framework for the fast simulation and op-
timization of passive high-frequency devices through the applica-
tion of the 3D finite element method has been demonstrated. Most
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Fig. 10. Structure of combline diplexer for GSM 1800 band.
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Fig. 11. Results of diplexer response before (dashed) and after
(solid) numerical optimization.
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Fig. 12. Progress of optimization: values of the cost function in
subsequent iterations.

Fig. 13. Manufactured prototype of combline diplexer.
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Fig. 14. Results of measurement of fabricated combline diplexer
(red/blue) vs. simulation results (dashed).

concepts described in the this paper have been integrated in the soft-
ware package [23], whose components can be called from Matlab
using an API. This adds flexibility and allows the framework to be
adapted to specific computational tasks or optimization techniques,
as demonstrated in this paper for diplexer design. Details related
to the running time and the size of the problems are given for the
nontrivial examples of a dielectric resonator antenna with lossy di-
electrics and two designs of complex microwave diplexers, in or-
der to demonstrate the efficiency of the approach. Measurement
confirms the high accuracy of the computations and the usefulness
of the framework for fullwave design by optimization of complex
practical circuits.
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