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Abstract. Parallel implementation of the discrete Green’s
function formulation of the finite-difference time-domain
(DGF-FDTD) method was developed on a multicore cen-
tral processing unit. DGF-FDTD avoids computations of
the electromagnetic field in free-space cells and does not
require domain termination by absorbing boundary condi-
tions. Computed DGF-FDTD solutions are compatible with
the FDTD grid enabling the perfect hybridization of FDTD
with the use of time-domain integral equation methods. The
developed implementation can be applied to simulations of
antenna characteristics. For the sake of example, arrays of
Yagi-Uda antennas were simulated with the use of parallel
DGF-FDTD. The efficiency of parallel computations was in-
vestigated as a function of the number of current elements in
the FDTD grid. Although the developed method does not ap-
ply the fast Fourier transform for convolution computations,
advantages stemming from the application of DGF-FDTD
instead of FDTD can be demonstrated for one-dimensional
wire antennas when simulation results are post-processed by
the near-to-far-field transformation.
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1. Introduction
Recently, several computational techniques facilitating

the finite-difference time-domain (FDTD) method [1] were
developed based on the discrete Green’s function (DGF)
[2], [3], [4], [5]. DGF is the impulse response of a system
of finite-difference equations defined on a discrete domain.
The convolution of DGF with current sources exciting that
domain allows to obtain the FDTD solution without execu-

tion of the standard FDTD update procedure throughout the
entire domain. Moreover, DGF-based computations do not
need absorbing boundary conditions (ABCs) for simulations
of the radiation and scattering problems in the FDTD grid.
Therefore, DGF has been applied to FDTD simulations of
antennas with savings in runtime and memory usage [6], [7],
[8], [9].

In [6], the DGF-based scattering formulation of the
FDTD method (DGF-FDTD) was developed for antenna
simulations. It computes currents at conducting surfaces
with the use of the march-on-in-time scheme (i.e., the evolu-
tion of antenna currents is computed one time step at a time
based on currents computed for previous time steps). Sim-
ilarly to the FDTD method, DGF-FDTD allows to obtain
wideband frequency characteristics of an antenna in a sin-
gle simulation run. Although DGF-FDTD solves the time-
domain electric field integral equation, it is inherently dis-
crete and the whole formulation is much more straightfor-
ward in comparison to other methods based on time-domain
integral equations [9].

Recently, DGF-FDTD has been coupled with the
FDTD method [10], [11], hence consistent with the dis-
crete theory of electromagnetism hybridization of FDTD
was developed. Because FDTD solutions have their own
dispersion, anisotropy, and stability properties, the coupling
of FDTD and integral-equation methods requires discrete
equivalents to the integral operator and the Green’s func-
tion (i.e., DGF) [4]. Using FDTD method hybridized with
DGF, simulation scenarios involving interacting transmitters
and scatterers can be tackled without computations of the
field in free-space cells between these objects. Moreover, the
transmitters and scatterers can be simulated separately and
a system response can be obtained in terms of the diakoptics
approach (i.e., as a response of interacting multi-port sub-
systems) [12]. Currently, commercial FDTD solvers allow
running two-stage simulations with the source of radiation
simulated at the first stage and multiple simulations of the
irradiation at the second stage [13]. Hence, many different
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objects weakly coupled with the source of radiation can be
simulated with savings in runtime. Such FDTD simulations,
as well as other applications of the diakoptics in the FDTD
method, can take advantage of DGF-FDTD.

In spite of the mentioned above advantages of the DGF-
FDTD method, its parallel implementations on modern com-
puting architectures, such as multicore central processing
units (CPUs) and graphics processing units (GPUs), have
attracted little attention so far. Therefore, the parallel im-
plementation of the DGF-FDTD method on CPU was devel-
oped. It has recently been reported that the application of the
fast Fourier transform (FFT) for spatial convolution compu-
tations leads to favorable throughput of DGF-FDTD com-
pared to the standard FDTD method [8]. The presented here
parallel DGF-FDTD implementation does not employ FFT
for acceleration of the convolution computations. In spite
of that, advantages due to the application of DGF-FDTD
instead of FDTD can be demonstrated for one-dimensional
wire antennas (especially when simulation results are post-
processed by the near-to-far-field (NTFF) transformation).

2. DGF-FDTD Method
The DGF-FDTD method represents FDTD update

equations by means of the convolution of the current sources
(J, M) and dyadic DGF (Gee, Geh, Ghe, Ghh) [6]:[

E |ni jk
ηH |ni jk

]
=

∑
n′i′ j′k′

[
Gee |n−n′

i−i′ j− j′k−k′ Geh |n−n′
i−i′ j− j′k−k′

Ghe |n−n′
i−i′ j− j′k−k′ Ghh |n−n′

i−i′ j− j′k−k′

][
ηJeq |n

′
i′ j′k′

Meq |n
′

i′ j′k′

]
(1)

where:
Jeq |ni jk= (sxsysz)

−1c∆tJ |ni jk, (2)

Meq |ni jk= (sxsysz)
−1c∆tM |ni jk . (3)

In (1)–(3), sp = c∆t/∆p denotes the Courant number, c is
the speed of light, ∆t is the time-step size, ∆p is the
discretization-step size along the p-direction (p = x,y,z), η

is the intrinsic impedance of free space, n is the time index,
and i, j,k are the spatial indices in the grid. Equation (1)
is referred to as the convolution formulation of the FDTD
method [6]. If the length of DGF waveforms is equal to the
number of time steps in the FDTD simulation, this formu-
lation returns the same results as the direct FDTD method
(assuming infinite numerical precision of computations).

Only the Gee component of DGF is presented here for
the sake of brevity. Its analytic closed-form expression in
infinite free space takes the following form for the (i, j,k)
cell [5]:
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∑
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Gee,yz |ni jk=
n−2

∑
m=αy+βy+γy

(
n+m

2m+2

)
gyz |mi jk, (5)

Gee,zz |ni jk =−sxsyszU |n−1
δ |i jk +

n−2

∑
m=max(α f ,z+β f ,z+γ f ,z−1,0)

(
n+m
2m+2

)
fzz |m+1

i jk +

n−2

∑
m=αh,z+βh,z+γh,z

(
n+m
2m+2

)
hzz |mi jk

(6)

where:
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Other terms denote: αx = max(−i − 1, i), βx = | j|,
γx = max(−k,k − 1), αy = |i|, βy = max( j,− j − 1),
γy = max(−k,k− 1), α f ,z = αh,z = |i|, β f ,z = βh,z = | j|,
γ f ,z = |k|, γh,z = max(|k|−1,0). U |n and δ |i jk respectively
denote the unit step and Kronecker delta functions. Expres-
sions for other Gee components can be obtained rotating the
subscripts x,y,z and the corresponding summation indices.

Let us consider an antenna made of a perfect electric
conductor (PEC) simulated inside the FDTD grid. For nodes
in the grid belonging to PEC, the total electric field is equal
to zero:

Etotal
p |ni jk= E inc

p |ni jk +Escat
p |ni jk= 0 (i, j,k, p) ∈ PEC (11)

where Etotal , E inc and Escat denote respectively total, inci-
dent and scattered electric field. (i, j,k, p) denotes the p-
component of the field belonging to the (i, j,k) cell in the
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grid. With the use of (1), the scattered electric field can be
obtained from currents induced on the antenna due to the in-
cidence of the electric field:

Escat
p |ni jk=

∑
(i′, j′,k′,p′)∈PEC

n−1

∑
n′=0

Gee,pp′ |n−n′
i−i′ j− j′k−k′ η(Jeq)p′ |n

′
i′ j′k′ .

(12)

Then, the equation relating the incident electric field
and currents induced on the antenna can be obtained using
(11)–(12):

E inc
p |ni jk=

− ∆t
ε0

∑
(i′, j′,k′,p′)∈PEC

n−1

∑
n′=0

Gee,pp′ |n−n′
i−i′ j− j′k−k′ (sxsysz)

−1Jp′ |n
′

i′ j′k′

(13)

where (i, j,k, p) ∈ PEC. For n = 1, the Gee component of
DGF (4)–(6) reduces to:

Gee |i jk=−(sxsysz)δ |i jk I (14)

where I = diag(1,1,1) denotes the unit dyad. Hence, one
obtains from (13) the time-marching procedure for compu-
tations of the time evolution of the antenna currents based on
the incident electric field:

Jp |n−1
i jk =

ε0

∆t
E inc

p |ni jk +

∑
(i′, j′,k′,p′)∈PEC

n−2

∑
n′=0

Gee,pp′ |n−n′
i−i′ j− j′k−k′ (sxsysz)

−1Jp′ |n
′

i′ j′k′ .

(15)

These antenna currents can be employed for compu-
tations of radiation characteristics. In the developed code,
the NTFF transformation is implemented based on formula-
tion [1]. However, the far-field pattern is computed directly
from the antenna currents. Therefore, for the NTFF compu-
tations, savings in runtime and memory usage are obtained
in comparison to FDTD because the DGF-FDTD method
does not need to employ the equivalence principle at a closed
surface enclosing the antenna. Moreover, the computed an-
tenna currents can be employed for excitation of the total-
field scattered-field interface in FDTD simulations [11].

3. Parallel DGF-FDTD Solver
The method was implemented in double precision us-

ing the C programming language. A single iteration of the
time-marching procedure of the developed parallel DGF-
FDTD solver is implemented as presented in Fig. 1. In the
parallel DGF-FDTD implementation, all tasks are executed
by a set of parallel CPU threads. The OpenMP parallel pro-
gramming standard was employed for implementation of the
algorithm in software.

Fig. 1. Flowchart of the developed algorithm.

A single iteration of the time-marching procedure of
the parallel DGF-FDTD method is implemented as follows
(refer to Fig. 1):

• Buffer of the electric field incident at PEC elements
(Einc) is set to zero with the use of parallel threads.

• Contributions to Einc from current sources feeding the
antenna are computed in parallel for each PEC element.

• Contributions to Einc from infinitesimally narrow gap
sources within PEC elements are computed in parallel
for each PEC element.

• The DGF-FDTD update procedure (15) is executed in
parallel for each PEC element.

• The current sources feeding the antenna are updated in
parallel for each source.
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• The electric field measured at the current sources feed-
ing the antenna is computed in parallel for each source.

• The frequency-domain buffers for the NTFF transfor-
mation are updated in parallel for each PEC element
and current source.

The method requires the generation of DGF waveforms
(the init DGF step) corresponding to the currents at the an-
tenna. The DGF generation is a part of the pre-processing
stage or, alternatively, the DGF waveforms can be read from
a file on a hard drive. Unfortunately, the DGF generation
currently requires significant processor time. In the devel-
oped parallel DGF-FDTD solver, the hardware accelerated
methods of the DGF generation [14], [15], [16] are available
for antenna simulations. Although the DGF generation is
an active topic of research in computational electromagnet-
ics, these computations still remain a bottleneck for appli-
cations of the DGF-FDTD method. Therefore, DGF wave-
forms are truncated to speed up computations, and the win-
dowing technique [17] is applicable for increasing the ac-
curacy of results. However, such an approximation of DGF
deteriorates the compatibility of DGF-FDTD with the direct
FDTD method. Alternatively, the approximation of dyadic
DGF can be obtained from scalar DGF by the truncation
of scalar DGF when this function approaches zero (i.e., the
steady state). This idea was already employed in the DGF-
FDTD simulations [9] with the use of the DGF formulation
derived based on scalar DGF [6]. In the developed solver,
dyadic DGF is generated from (4)–(10) without intermediate
computations of scalar DGF. Therefore, the latter approach
to the DGF generation [9] cannot currently be applied in our
DGF-FDTD solver. If the accuracy or stability of the DGF-
FDTD computations is not satisfactory, then increasing the
DGF window length is a solution to these problems. Finally,
taking DGF waveforms whose length is equal to the number
of time steps in a simulation always assures the same results
as returned by the direct FDTD method.

The runtime scaling of the DGF-FDTD convolution
computations executed over M PEC elements is of order
(M2ns), where ns denotes the DGF length (computational
cost of the DGF generation is excluded from consideration).
On the other hand, the direct FDTD computations require to
update all cells in the three-dimensional domain containing
the antenna. The runtime scaling of these computations is of
order (N3), where N3 denotes the number of cells in a cubic
domain. Therefore, the efficiency of the DGF-FDTD method
is higher than the direct FDTD method if a small number of
sparsely distributed PEC elements is simulated within a large
domain.

For the sake of comparison, simulated antennas can
be fed from electric current sources. The developed DGF-
FDTD method can employ the one-cell gap model of source,
similarly to the direct FDTD method, instead of the infinites-
imally narrow gap model [18]. For this purpose, the com-
putations of the incident electric field in the DGF-FDTD
method [6] were modified to include contributions from such

current sources. As a result of simulation, the developed
solver returns FDTD-compatible waveforms of the incident
electric field and the antenna currents as well as far-field ra-
diation patterns.

A graphical user interface (GUI) was developed for the
DGF-FDTD solver, refer to Fig. 2, and integrated with the
in-house written FDTD simulation tool [19]. It facilitates
the edition of simulation parameters, drawing PEC elements,
running simulations, and the presentation of results. The de-
veloped GUI also provides other functionalities that help in
preparing and running DGF-FDTD simulations. In the de-
veloped GUI code, the OpenGL library was employed for vi-
sualization of computational domain and simulation results.
It allows to place PEC elements into the domain, as well as
rotate, shift and scale visualized objects. The architecture
of the developed software package simplifies the develop-
ment of its new features by using well defined design pat-
terns along with own engine for data management [19].

Fig. 2. GUI of the developed simulation tool.

4. Numerical Results
The method was tested on a machine with Intel i7-3770

3.4 GHz processor. The Courant numbers were taken as
sx = sy = sz = 0.99/

√
3 for the results presented here. In

the presented investigations, the DGF waveforms were read
from a file on a hard drive.

Fig. 3(a) presents comparison between waveforms
computed with the use of DGF-FDTD and FDTD for
a square loop antenna. It consists of 44 current elements
(43 PEC elements and a current source at the feeding point).
The spatial discretization in this simulation was taken as
∆x = ∆y = ∆z = 1 mm. The number of time steps in the sim-
ulation was set to 600, which was equal to the DGF length.
It allows to verify the correctness of the DGF-FDTD imple-
mentation for the DGF waveforms which are not distorted
by the windowing. In this test, the size of FDTD domain in
the reference simulation was sufficient to avoid reflections
from imperfect ABC. The harmonic current source excited
the antenna with the frequency set to 6.81 GHz. Fig. 3(b)
presents the error between both methods. The correctness of
the DGF-FDTD computations is validated by the error vary-
ing in the range -300 to -260 dB.
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Fig. 3. (a) Electric field waveforms computed at the feeding
point of the loop antenna simulated with the use of DGF-
FDTD and FDTD. (b) Relative error between both meth-
ods. Discontinuity of the line means that both methods
computed exactly the same result in double precision.

Arrays of Yagi-Uda antennas were considered for the
sake of benchmarking of the parallel code. The spatial dis-
cretization in these simulations was taken as ∆x = ∆y= ∆z=
3 cm. A single array element consisting of 143 current ele-
ments is presented in Fig. 4. The following configurations
of antennas in the two-dimensional arrays were considered:
1 × 2, 1 × 3, 1 × 4, 2 × 3, 2 × 4. The distances between
antennas in arrays were uniformly set to 24 cells. The modu-
lated harmonic current source excited each antenna in arrays
with the frequency band set to 350–450 MHz. The uniform
amplitude and equal phase distributions were considered in
the simulation scenario. The NTFF transformation was com-
puted with the step size set to 1◦ for discrete polar and az-
imuthal angles. The number of time steps in simulations was
set to 4000, whereas the DGF waveforms were truncated us-
ing the Hann’s window with the length set to ns = 400 sam-
ples. Such simulation parameters allowed to obtain stable
and satisfactorily accurate results. However, parameters of
the DGF truncation cannot be fixed and always depend on
the simulated problem. Since the DGF waveforms were read
from a file on a hard drive, the presented computing runtimes
are independent of the methods of the DGF generation and
truncation.

The correctness of the antenna-array simulations was
verified by a comparison to the results of direct FDTD com-
putations. For this purpose, characteristics of a single array
element were computed. In Fig. 5, the comparison between
electric field waveforms computed at the feeding point of
a single Yagi-Uda antenna, simulated using DGF-FDTD and
FDTD, is presented. As seen, waveforms simulated using
the DGF-FDTD and FDTD methods overlap as long as the
time step is less than ns. It shows that the DGF length equal

to the number of time steps in a simulation allows to obtain
results overlapping with results of the direct FDTD method.
In Fig. 6, the comparison between far-field patterns com-
puted using DGF-FDTD and FDTD is presented for a single
Yagi-Uda antenna. As seen, the far-field patterns computed
using the DGF-FDTD and FDTD methods overlap for simu-
lation parameters taken as described above. The differences
between DGF-FDTD and FDTD are insignificant, although
FDTD employs the NTFF transformation implemented with
the use of a single Huygens surface [1], [20]. The obtained
results validate the correctness of the parallel implementa-
tion of DGF-FDTD in software.

In Fig. 7, execution runtimes are presented as a func-
tion of the number of current elements in the simulated an-
tenna arrays. Runtimes were measured for the DGF-FDTD
update loop, the NTFF transformation that is outside of the
DGF-FDTD update loop, as well as the total execution run-
times of the code were measured. For the sake of compar-
ison, results measured for the serial DGF-FDTD code are
also presented. The developed parallel DGF-FDTD imple-
mentation is maximally 4.3 times faster than its serial im-
plementation (2 × 4 array, 1144 current elements) when the
total execution runtimes are compared. It is a satisfactory re-
sult for the code executed on CPU with 4 cores and 8 threads
(hyper threading).

Fig. 4. Geometry of the Yagi-Uda antenna being an element
of the considered antenna arrays (distances and lengths
measured in grid cells).
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Fig. 5. Electric field waveforms computed at the feeding point
of a single Yagi-Uda antenna.
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Fig. 6. Exemplary far-field patterns computed for a single Yagi-
Uda antenna (values in dB, frequency of NTFF transfor-
mation was set to 390 MHz). (a) E-plane. (b) H-plane.

Execution runtimes were compared between DGF-
FDTD and FDTD. Although the developed method does not
apply FFT for convolution computations [8], advantages due
to the application of DGF-FDTD instead of FDTD can be
demonstrated for the considered one-dimensional wire an-
tennas when simulation results are post-processed by the
NTFF transformation. In the FDTD method, the standard
NTFF transformation employs the Huygens surface whose
area depends on the volume of the computational domain.
On the other hand, DGF-FDTD computes the NTFF trans-
formation from current sources feeding the antenna and cur-
rents induced on antenna wires. For a large number of ob-
servation points in the far-field zone, the NTFF computa-
tions may take significant processor time in FDTD. There-
fore, DGF-FDTD was faster than FDTD in the presented
tests for small antenna arrays. For instance, DGF-FDTD
was maximally 5.9 times faster than FDTD for a single Yagi-
Uda antenna (143 current elements). However, FDTD was
faster than DGF-FDTD for 2 × 3 and 2 × 4 arrays (858 and
1144 current elements, respectively). Fortunately, the con-
volution computations can be accelerated using FFT, hence
additional speedup of the DGF-FDTD method can still be
obtained.
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Fig. 7. Execution runtimes for serial and parallel implementa-
tions of the DGF-FDTD method. (a) Runtime of NTFF
transformation. (b) Runtime of update loop. (c) Total
execution runtime.

5. Conclusions
The parallel DGF-FDTD method was implemented on

multicore CPU. The method is applicable to simulations of
wire antennas made of PEC. Computed DGF-FDTD solu-
tions are compatible with the FDTD grid enabling the per-
fect hybridization of FDTD with the use of time-domain in-
tegral equation methods. The computational efficiency of the
developed parallel DGF-FDTD solver was investigated in
antenna simulations. Although the developed method does
not apply FFT for convolution computations, advantages due
to the application of DGF-FDTD instead of FDTD can be
demonstrated for one-dimensional antennas when simula-
tion results are post-processed by the NTFF transformation.
The presented implementation represents the intermediate
step in the process of development of the accelerated DGF-
FDTD solver executable on heterogeneous parallel process-
ing systems. This topic is planned to be reported in the
future.
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