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Abstract. We present optimizations of patch antenna arrays
using genetic algorithms and highly accurate full-wave solu-
tions of the corresponding radiation problems with the mul-
tilevel fast multipole algorithm (MLFMA). Arrays of finite
extent are analyzed by using MLFMA, which accounts for
all mutual couplings between array elements efficiently and
accurately. Using the superposition principle, the number of
solutions required for the optimization of an array is reduced
to the number of array elements, without resorting to any
periodicity and similarity assumptions. Based on numeri-
cal experiments, genetic optimizations are improved by con-
sidering alternative mutation, crossover, and elitism mecha-
nisms. We show that the developed optimization environment
based on genetic algorithms and MLFMA provides efficient
and effective optimizations of antenna excitations, which
cannot be obtained with array-factor approaches, even for
relatively simple arrays with identical elements.
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1. Introduction
Antenna arrays often need to be optimized for de-

sired radiation characteristics, such as lower side-lobe lev-
els, wider or narrower beamwidths, and higher radiations
at desired directions [1]–[6]. Optimizations of the direc-
tive gain for beam-steering are well known in the literature
as exemplars of array optimizations [7]. Given an arrange-
ment of antennas usually with fixed positions, a particular
aim is to determine a set of source values (excitations) that
provide the desired radiation pattern, e.g., maximum direc-
tive gain at a specific direction. Along this direction, opti-
mizations using the array-factor approach and similar ana-
lytical methods are known to provide rapid designs of ex-
citations [8], while their accuracy and reliability may dete-
riorate significantly in many cases, particularly when mu-
tual couplings between antennas have significant effects on

overall radiation patterns [9],[10]. These antenna interac-
tions can be modeled very accurately via full-wave solvers
based on error-controllable applications of Maxwell’s equa-
tions, while these solvers must be very efficient for reason-
able optimization times [11]. In addition, the integration of
these solvers into optimization mechanisms may not be triv-
ial [12].

In this work, we present an optimization environment
based on genetic algorithms [13], which are supported by
full-wave simulations with the multilevel fast multipole al-
gorithm (MLFMA) [14],[15]. Patch antenna arrays of finite
extent are formulated with the electric-field integral equa-
tion (EFIE) [16] in phasor domain and solved iteratively
via MLFMA that provides fast and accurate matrix-vector
multiplications required for iterative solutions. Without any
simplification and assumptions such as periodicity and simi-
larity of array elements, the superposition principle [17] is
used to reduce the total number of MLFMA solutions to
the number of elements. Complex radiated fields obtained
with MLFMA-accelerated solutions are used by genetic al-
gorithms for optimizations of excitations to obtain desired
radiation characteristics. Using MLFMA, all mutual cou-
plings between array elements are accurately included in the
optimizations. Convergences of genetic optimizations are
improved significantly by modifying major operations, such
as mutation, crossover, and elitism. The effectiveness of the
constructed optimization environment is demonstrated on an
array of 5×5 patch antennas. We show that, despite its rela-
tively simple geometry, such an array can be optimized very
effectively with genetic algorithms and MLFMA solutions,
in contrast to the array-factor approach. We further present
the radiation patterns with optimal directive gains in various
directions obtained by the optimizations of antenna excita-
tions.

Details of array optimizations via a full-wave solver are
considered in the next section, which also presents some im-
portant parameters of MLFMA simulations of antenna ar-
rays. Section 3 is devoted to genetic algorithms, including
improvements for efficient optimizations, followed by nu-
merical results in Section 4 and concluding remarks in Sec-
tion 5.
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Fig. 1. A 5 × 5 array involving a periodic arrangement of
3 cm × 3 cm patch antennas.

2. Optimizations of Arrays Using Full-
Wave Simulations
Figure 1 presents a 5×5 array of patch antennas, which

is considered as a test problem in this paper. The patch an-
tennas of size 3 cm × 3 cm are arranged periodically with
6 cm periods, and each antenna is excited from its feed port
at the bottom, where the source is modeled as current in-
jection. The antennas are oriented in the same direction,
even though this is not a restriction using a full-wave solver.
Using a simulation environment, our aim is to find the most
appropriate source values such that the far-zone radiation
of the overall array satisfies desired characteristics as much
as possible. In this particular case, we maximize the direc-
tive gain in various desired directions when the frequency
is fixed to 2.45 GHz. While the optimization operations,
improvements, and results in this paper are demonstrated on
the 5× 5 array in Fig. 1, they can be generalized to arbi-
trary arrays with different (and especially larger) numbers
of elements, without any periodicity, infinity, or similarity
assumptions.

In any optimization problem, various sets of values for
the optimization variables need to be tested. In our optimiza-
tions, each trial corresponds to the solution of a computa-
tional problem, where excitations of array elements are used
to generate the overall radiation pattern. If mutual couplings
between array elements (patch antennas) are to be consid-
ered, each set of excitations creates a unique distribution of
the electric current on antenna surfaces. On the other hand,
using the superposition principle, one can reduce the num-
ber of current-density computations to the number of array
elements, without omitting mutual couplings. In each solu-
tion, only one antenna is excited with a unit source, while all

others are passive (with zero source). Hence, for the array in
Fig. 1, a total of 25 solutions are actually needed. Once all
these solutions are completed, far-field radiation patterns are
stored in memory to be used many times during optimiza-
tions.

In order to include all mutual couplings between ar-
ray elements, we use a full-wave solver based on MLFMA.
Although the number of numerical solutions can be re-
duced significantly via the superposition principle, MLFMA
is needed to accelerate solutions without sacrificing the ac-
curacy of results. The radiation problems are formulated
with EFIE, which is suitable for open surfaces with zero
thickness. After the triangulation of surfaces, Rao-Wilton-
Glisson functions [16] are employed to expand the electric
current density. Using 400–500 unknowns per antenna, ap-
proximately 10,000 unknowns are used to model the en-
tire array in Fig. 1. The resulting dense matrix equations
are solved iteratively, where MLFMA is used to acceler-
ate matrix-vector multiplications and to reduce the compu-
tational complexity to a linearithmic level.

MLFMA is well known in the literature [15], and de-
tails of this powerful algorithm are omitted in this paper for
the sake of brevity. Nevertheless, there are several issues
regarding the use of MLFMA for the optimization of ar-
rays. In general, an iterative solution using MLFMA has
two major stages, namely, setup and solution parts. During
a setup part, near-zone interactions that are between nearby
discretization elements are computed and stored in memory.
Far-zone interactions, however, are calculated on the fly in
each matrix-vector multiplication. Since excitation only af-
fects the right-hand side of matrix equations, near-zone inter-
actions are fixed and do not change for a given optimization
problem. Therefore, only one setup part needs to be executed
for the optimization of an array. In fact, if the geometry and
discretization do not change, the same set of near-field inter-
actions can be used for different optimizations of the same
array. The results presented in this paper are obtained by us-
ing a single set of near-field interactions related to the 5×5
array depicted in Fig. 1.

Using identical elements in an array may further im-
prove the efficiency of MLFMA solutions. Since such
elements can be discretized identically, near-field interac-
tions as well as radiation/receiving patterns used during
aggregation-translation-disaggregation cycles of MLFMA
contain many identical numerical elements. Processing time
and storage requirements can be reduced via careful index-
ing operations, while these may deteriorate the applicability
of the solver to general problems involving non-identical and
aperiodic arrays. In fact, for a relatively small array, such as
depicted in Fig. 1, all required solutions can be performed in
minutes (in the MATLAB [18] environment) without resort-
ing to any such indexing operations.

Finally, we list the accuracy parameters of array simu-
lations using MLFMA. All interactions are calculated with
maximum 1% error. Near-field interactions are computed
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Fig. 2. Description of major operations and probability rates used in the improved genetic algorithms.

by extracting the singularity of the Green’s function and di-
viding triangular integrations into analytical and computa-

tional parts. In far-zone interactions, excess bandwidth for-
mulas [14] are used to determine truncation numbers. Be-
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tween levels, Lagrange interpolations with 2×2 stencils are
used to match sampling rates of radiated and incoming fields.
Iterative solutions are performed with 0.001 target resid-
ual errors, which can be reached in 70–100 iterations using
GMRES [19] without preconditioning for the 5×5 array in
Fig. 1.

3. Genetic Algorithms for Array Opti-
mizations
Being among most popular heuristic optimization tech-

niques, genetic algorithms are suitable particularly for elec-
tromagnetic problems by providing great flexibility in terms
of cost functions [13]. Similar to other heuristic algorithms,
however, performance of genetic algorithms may vary sig-
nificantly depending on their parameters, and they must be
carefully designed for a given problem. In general, genetic
algorithms work on pools of individuals, each of which rep-
resents a trial for the optimization. The trial information is
coded as a chromosome, which is used in evolution opera-
tions, such as crossover, mutation, elitism, and in general,
creating new generations. Each trial also has a success rate
(fitness), which corresponds to the directive gain in a desired
direction in our optimizations.

Using genetic algorithms, a critical point is to generate
a suitable map between optimization parameters and chro-
mosomes. For the initial optimizations presented in this pa-
per, real and imaginary parts of complex antenna excitations
are allowed to be in the [−1,1] range. Both ranges are di-
vided into 127 equal intervals, leading to a 7-bit coding per
variable. Hence, for the 5× 5 array in Fig. 1, each chro-
mosome contains 25× 2× 7 = 350 bits (zeros and ones) to
account for all antennas, amplitudes, and phases. As dis-
cussed in Section 4, choosing amplitudes equally may sig-
nificantly reduce the decision space, leading to more effi-
cient optimizations. In these optimizations, phases of exci-
tations are sampled in the range from 0 to 360◦, leading to
175-bit chromosomes. We note that different chromosomes
may correspond to the same scenario; for example, in the
constant-amplitude optimizations, all antennas may have the
same phase and this can occur in 128 different ways.

Obviously, the setup described above leads to huge de-
cision spaces. Using 350 bits, there are 2350 ≈ 2.3× 10105

different combinations for the excitations of antennas. Mak-
ing excitation amplitudes constant reduces this number to
4.8× 1052, which is still very challenging for high-quality
optimizations. Based on many experiments with the ge-
netic algorithms, we systematically improve optimizations
by considering convergence characteristics and modifying
optimization operations accordingly. Some important modi-
fications, especially in contrast to a conventional genetic al-
gorithm, are listed below and depicted in Fig. 2.

1. Mutations: Instead of a single mutation rate (that is
fixed to 5% in our conventional algorithm), we use

different mutation rates in the same pool to acceler-
ate convergences. Specifically, heavy, moderate, and
light mutation rates are applied to individuals, depend-
ing on their success rates. Individuals with low suc-
cess rates are exposed to heavy mutations with 25–
30% rates, i.e., each chromosome bit is changed with
25–30% probability, while more successful individu-
als are mutated less (e.g., 5% rates for the most suc-
cessful individuals) to maintain the stability. For mod-
erately successful individuals, we also use collective
mutations, e.g., changing a portion of the chromosome
rather than bit-by-bit mutations, so that badly excited
antennas can be directly eliminated.

2. Crossover Operations: Instead of a popular one-point
crossover scheme, we use bit-by-bit crossover oper-
ations between selected parents to generate children.
Specifically, after a crossover is decided (with 80%
rate) for a given pair of individuals, all corresponding
bits are exchanged with 50% probability. This way,
the variety of individuals in the pool increases signifi-
cantly, leading to more efficient optimizations.

3. Elitism: In addition to reserving the most successful
individuals for next generations, we also force them to
mate. Specifically, for a given pool at a specific gen-
eration, we let two individuals and their children sur-
vive and exist in the next generation. This approach
guarantees the quality of the pool during the entire op-
timization process.

All modifications described above (and shown in
Fig. 2), as well as the given mutation rates and crossover
probabilities, can be used for efficient optimizations of var-
ious arrays involving different numbers of elements. The
pool size and the number of generations, however, depend
on the processing time allowed for optimizations. In the op-
timizations of the 5× 5 array in Fig. 1, we use pools of 80
individuals, where the most successful individual represents
the state of the optimization. The number of generations is
limited to 2000, leading to a maximum of 160,000 trials.
An optimization with 2000 generations takes around 45 min-
utes (on a single processor in the MATLAB environment),
thanks to the superposition principle that allows for combi-
nations of radiation patterns to efficiently obtain the overall
radiation characteristics of the array. Specifically, for a given
set of complex excitation coefficients en for n = 1,2, ...,25,
the radiation pattern of the array is obtained as

f̄A(θ,φ) =
25

∑
n=1

en f̄n(θ,φ) (1)

where f̄n(θ,φ) represents the radiation pattern of the nth an-
tenna while other antennas are parasitic. Then, by calculat-
ing the power density as

pA(θ,φ) = |θ̂ · f̄A(θ,φ)|2 + |φ̂ · f̄A(θ,φ)|2 (2)
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Fig. 3. Cost functions with respect to number of generations when the conventional genetic algorithm is used for the 5× 5 array in Fig. 1 to
maximize its directive gain at various directions. The conventional genetic algorithm is used once to generate each plot.

we obtain the directive gain at any desired direction (θ0,φ0)
as

dA(θ0,φ0) =
4πpA(θ0,φ0)

Itotal
(3)

where

Itotal =
∫

π

0

∫ 2π

0
dθdφsinθpA(θ,φ). (4)
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Fig. 6. Optimization histories for 50 different trials of the im-
proved genetic algorithm to optimize the directive gain
of the 5×5 array in Fig. 1 at θ = 30◦.
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its directive gain at various directions. The improved genetic algorithm is used once to generate each plot.

4. Numerical Results
Figure 3 presents the results of the optimizations using

the conventional genetic algorithm (described in Section 3)
for the 5×5 array in Fig. 1. The directive gain of the array is
maximized at various directions on the z-x plane from θ = 0
to 90◦. For each optimization, the directive gain in the opti-
mization direction is plotted with respect to the generations
from 1 to 150. We note that the conventional genetic algo-
rithm uses pools of 80 individuals, single-point crossover
operations, 5% fixed mutation rate, and a standard elitism
with two individuals. Both amplitudes and phases of exci-
tations are considered as optimization parameters. We also
note that all optimizations are stopped far below the 2000
limit due to the convergence of individuals (to each other).
It can be observed that some optimizations, e.g., those for
smaller optimization angles, are quite efficient with signif-
icant enhancements of the directive gain. In many cases,
however, the genetic algorithm does not seem to improve the
quality of the pools sufficiently. For example, at θ = 45◦, the
directive gain increases only from 8.49 to 9.30, where the
optimization stagnates.

Figure 4 presents the results of similar optimizations
using the improved genetic algorithm for the 5×5 array. As
described in Section 3, the improved algorithm uses bit-by-
bit crossover operations, success-based mutation rates, and a

family elitism involving two individuals and their children,
without a change in the pool size (80 individuals). In addi-
tion, in the optimizations presented in Fig. 4, only phases of
antenna excitations are considered; but, this only stabilizes
the optimizations (see below) while major improvements are
due to the modification of the optimization algorithm. It
can be observed that the optimizations are improved signif-
icantly, especially for problematic cases with higher opti-
mization angles. In general, each optimization dramatically
increases the directive gain at the desired direction, at least
3 times of the best case in the initial pool.

Figure 5 depicts the comparison of the final optimiza-
tion results using the conventional and improved genetic
algorithms. The maximized directive gain is plotted with
respect to the optimization angle from 0 to 90◦. Obviously,
the improved genetic algorithm provides much better results
than the conventional one, especially at higher optimization
angles. Selecting constant excitation amplitudes and opti-
mizing only excitation phases further stabilize optimizations
by limiting the decision space. This is mostly visible at 20◦,
where an unusual dip for the improved genetic algorithm is
eliminated in the amplitude-constant case.

Genetic algorithms are based on randomly generated
pools and their evolutions via random operations. There-
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fore, the optimization history results in Figs. 3 and 4 tend to
change in each execution, while they correctly represent the
general behaviors of the conventional and improved genetic
algorithms. In fact, as desired in all optimization studies, the
final results in Fig. 5 change slightly for different executions.
In order to demonstrate the stability of optimizations, Fig. 6
presents 50 different optimization histories when the im-
proved genetic algorithm is used to maximize the directive
gain at θ = 30◦. It can be observed that, while the optimiza-
tion histories may vary significantly, the final results (the
most successful individuals in the converged pools) are very
similar to each other. Specifically, the maximized value of
the directive gain is in the range from 31.6 to 32.6, despite
different qualities of pools at earlier generations.

Next, in order to demonstrate the effectiveness of ge-
netic algorithms, Fig. 7 presents a comparison of the di-
rective gain values obtained with the improved genetic
algorithm and random selections of excitations. Among
1,000,000 random trials, the maximum directive gain at
θ = 30◦ is only 13.94, while this value is easily exceeded by
the genetic algorithm with 1200 trials (15 generations with
a pool of 80 individuals). Then, with only 200 generations
and a total of 16,000 trials, the directive gain is further in-
creased to 28.33, which seems extremely difficult to reach
via random trials.

Figure 8 presents the far-zone radiation patterns of the
5× 5 array when its directive gain is optimized at different
angles from θ = 0◦ to 90◦. The normalized electric field

intensity is plotted in a 20 dB range on the z-x plane as a
function of the bistatic angle. In addition, the directive gain
(DG) values at the optimization angles are indicated in the
dBi scale. It can be observed that, with the optimization of
the directive gain, a main lobe of the radiation is directed
at the desired direction. Since the array is planar and its
radiation is symmetric with respect to the array plane, opti-
mizations at smaller angles lead to two main lobes, one of
which is at the desired direction (θ0) and the other one is at
180◦−θ0. These lobes are combined at higher optimization
angles, while another lobe appears in the opposite direction
due to 2-D structure of the array.

Finally, in order to demonstrate the need for full-wave
solutions in the optimizations, Fig. 9 depicts an optimized ra-
diation pattern obtained with MLFMA solutions in compar-
ison to a corresponding pattern obtained via the array-factor
approach. Excitation phase values required for maximizing
the directive gain at θ = 30◦ (obtained with the improved
genetic algorithm and MLFMA solutions) are shown on the
array. Using these values along with the radiation pattern of
a single antenna in the array-factor approach leads to a sig-
nificantly different pattern compared to that obtained with
MLFMA. In fact, even the main lobes deviate from θ = 30◦

and 150◦, clearly indicating that using the array-factor ap-
proach in such an optimization would be misleading.

5. Conclusions
We present efficient and accurate optimizations of an-
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Fig. 8. Optimized radiation patterns of the 5×5 array in Fig. 1. The normalized electric field intensity in the far-zone is plotted on the z-x plane

as a function of the bistatic angle.

tenna arrays using genetic algorithms and full-wave solu-
tions via MLFMA.

Given an array, the superposition principle is used to
reduce the number of numerical solutions to the number of
array elements, while all mutual couplings between the ele-
ments are taken into account.

MLFMA is employed to accelerate full-wave solutions,
where antennas are modeled accurately without any peri-
odicity, infinity, or similarity assumptions. Complex ra-
diated fields computed via MLFMA are used by genetic
algorithms to find the most suitable antenna excitations
for any desired radiation pattern of the overall array.
As a test case, we present the optimizations of a 5× 5 ar-
ray of patch antennas to maximize its directive gain at var-

ious directions. We show that performances of genetic al-
gorithms can be improved by modifying basic operations,
such as mutations, crossovers, and elitism, leading to very
effective optimizations of antenna excitations.

We also show that, even for simple array configura-
tions, optimizations with full-wave solutions can provide
significantly more reliable results, compared to the array-
factor approach. The proposed optimization mechanism can
be applied to much larger and complex array configurations,
whose solutions can be performed by MLFMA.
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