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Abstract. This paper deals with the efficient optimiza-
tion problem of Cumulant-based contrast criteria in the
Blind Source Separation (BSS) framework, in which sources
are retrieved by maximizing the Kurtosis contrast function.
Combined with the recently proposed reference-based con-
trast schemes, a new fast fixed-point (FastICA) algorithm is
proposed for the case of linear and instantaneous mixture.
Due to its quadratic dependence on the number of searched
parameters, the main advantage of this new method consists
in the significant decrement of computational speed, which
is particularly striking with large number of samples. The
method is essentially similar to the classical algorithm based
on the Kurtosis contrast function, but differs in the fact that
the reference-based idea is utilized. The validity of this new
method was demonstrated by simulations.
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1. Introduction
For the latest decades, Blind Source Separation (BSS)

has been applied in a wide variety of fields such as array pro-
cessing, passive sonar, seismic exploration, speech process-
ing, multi-user wireless communications, etc [1]. In the case
of a linear multi-input/multi-output (MIMO) instantaneous
system, BSS corresponds to Independent Component Anal-
ysis (ICA), which is now a well recognized concept. In this
contribution, we mainly consider the efficient optimization
issue of BSS in the FastICA framework, where statistically
independent sources are linearly and instantaneously mixed.

In the linear MIMO systems, BSS has found interest-
ing solutions through the optimization of so-called contrast
functions [2], which are generally treated as separation cri-
teria. Many separation criteria rely on higher-order statistics
(e.g., the Kurtosis contrast function [3], [4]) or can be linked

to higher-order statistics (e.g., the Constant Modulus con-
trast function [5]). These criteria are known to provide good
results. Recently, some novel contrast schemes referred to
as “reference-based” have been proposed in [6] and [7].
They are essentially the cross-statistics or cross-cumulants
between the estimated outputs and reference signals [8]-[9].
These reference-based contrast functions have an appealing
feature in common: the corresponding optimization algo-
rithms are quadratic with respect to the searched parameters.
First of all, we give a brief review of previous works on this
subject.

• A maximization algorithm based on Singular Value De-
composition (SVD) has been proposed in [6] and [10],
and it was shown to be significantly quicker than other
maximization algorithms. However, the method often
suffers from the need to have a good knowledge of
the filter orders due to its sensitivity on a rank estima-
tion [11].

• A gradient optimization method based on Kurtosis with
reference signals introduced has been proposed in [12],
which obtains an optimal step size and dose not require
any rank estimation. Therefore, the drawback of the
SVD-based method can be well overcome. But the ref-
erence signals involved in this method are fixed during
the optimization process, which may lead to bad sepa-
ration performance because of inappropriate initializa-
tion value of the corresponding reference signals.

• A similar gradient optimization algorithm based on
Kurtosis maximization has been proposed in [13], in
which the reference signals used in the separation pro-
cess update after each one-dimensional optimization.
So the separation quality of this method is better than
that in [12].

• On the basis of the algorithms in [12] and [13], a new
improvement method has been proposed in [11]. For
this method, a tradeoff can be adjusted between perfor-
mance and speed by introducing a new iterative update
parameter. Moreover, the global convergence of this
algorithm is proved in detail.
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Inspired by [11] and [13], in this paper, we propose
a new algorithm by considering the reference-based Kurto-
sis maximization in the FastICA optimization framework.
The papers most directly linked to our approach are [11] on
the one hand and [13] on the other hand. The former has
provided a proof of stationary consistency of the reference-
based contrast function, which is directly cited in our pa-
per. The latter has proposed a gradient optimization algo-
rithm with the reference signals updated, which contributes
to the proposal of our method primarily. Besides the gradient
optimization algorithms in [11]-[13], our proposed method
provides another approach to an efficient optimization of
reference-based contrast functions. To our knowledge, it has
not been investigated yet despite its simplicity.

This paper is organized as follows. Section 2 describes
the model and assumptions we consider in this paper. In
Section 3, the separation criteria we use are presented. Our
proposed algorithm can be found in Section 4. Simulation
results are illustrated in Section 5 and Section 6 concludes
this paper.

2. System Model and Assumptions
2.1 Instantaneous Mixture

We consider an observed M-dimensional (M ≥ 2)
discrete-time signal, the nth sample of which is denoted by
the column vector x(n) (where n≥ 1 holds implicitly in this
whole paper). The observed signals result from a noise-free
linear MIMO system, for which the input and output rela-
tionship is described as follows:

x(n) = As(n) (1)

where A is a linear mixture matrix of M×N, the elements
of which are unknown constant. The N-dimensional (N ≥ 2)
source vector s(n) is unknown and unobserved.

The objective of BSS is to recover source signals
blindly only by using the observations. Similarly, we con-
sider a linear separator, the output of which is described as:

y(n) = Wx(n) (2)
where W is the separation matrix of N×M. y(n) is the ap-
proximate estimation of s(n). We mention above that our
proposed method presents a quadratic dependence of the
searched parameters, where the “searched parameters” are
the row vectors of W.

2.2 Assumptions on the Sources
To be able to carry out the estimation blindly and suc-

cessfully, we make some assumptions on the sources [7],
which are shown as follows:

A1: For all i, the source sequence si(n) is stationary, zero-
mean and with unit variance.

A2: The source vectors si(n), i ∈ {1, · · · ,N} are statistically
mutually independent.

3. Separation Criteria

3.1 Notations
In order to describe the reference-based Kurtosis con-

trast function we utilize in this paper, we first introduce some
notations. The Cumulant of a set of random variables is de-
noted by Cum{•}. Note that we only consider the Cumulant
of real-valued signals in this paper, even though the signals
can be complex- or real-valued. The complex-valued signals
case will be considered in our work later.

For any jointly stationary signals y(n) and z(n), we set

C{y} ∆
=Cum{y(n),y(n),y(n),y(n)}=E{y(n)4}−3E{y(n)2}2

(3)
Cz{y}

∆
=Cum(y(n),y(n),z(n),z(n))

= E{y(n)2z(n)2}−E{y(n)2}E{z(n)2}−2E2{y(n)z(n)}
(4)

where E{•} denotes the expectation value.

3.2 Reference Signals
Before introducing the reference-based contrast func-

tions, we first introduce the corresponding “reference sig-
nals” we have mentioned above. Similarly to (2), we con-
sider a separation matrix of N×M denoted by V. The corre-
sponding output can be denoted by

z(n) = Vx(n) (5)

where the components of z(n) are the reference signals.
Note that the reference signals have direct influence on the
reference-based contrast function and their values do impact
the optimization results, especially the initialization value.

As described in [11], the reference signals are artifi-
cially introduced in the algorithm for the purpose of facil-
itating the maximization of the contrast function. In [12],
the reference signals are initialized arbitrarily and kept the
same during whole optimization process. In [13], the refer-
ence signals are indirectly involved in the iterative optimiza-
tion process. In other words, the reference signals update
following the objective signals. More precisely, V updates
following W in each loop iteration step. Then the separation
quality of the algorithm in [13] is better than that in [12].
In [14] and [15], we have done some corresponding work to
investigate the impact of reference signals, which is similar
to [12]. Inspired by [13], we consider the case that the ref-
erence signals update circularly in this paper. Therefore, the
performance of our algorithm in this paper is much better
than those in [14] and [15].

3.3 Contrast Functions
Let us introduce the following criteria:

J(w) =

∣∣∣∣∣∣∣
C{y(n)}

E
{
(y(n))2

}2

∣∣∣∣∣∣∣
2

, (6)
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I(w,v) =

∣∣∣∣∣∣ Cz{y(n)}

E
{
(y(n))2

}
E
{
(z(n))2

}
∣∣∣∣∣∣
2

(7)

where J is the well-known Kurtosis contrast function, which
has been proved to be a contrast function in [3] and [4].
I is the reference-based contrast function used in this paper,
which has been proposed in [6] and the consistency of which
to a stationary point has been proved in [11]. We mainly
focus our attention on the efficient optimization of I in the
FastICA framework, which leads to the proposal of our new
algorithm.

Furthermore, besides the gradient algorithms in [11]-
[13], our method provides another new approach to the effi-
cient optimization of reference-based contrast functions. Re-
cently, we have also done some work by introducing the ref-
erence signals to the Negentropy contrast criterion, based on
which a family of more efficient and robust algorithms have
been proposed such as the algorithm in [16].

4. Optimization Method

4.1 New Algorithm
We now introduce our new FastICA algorithm based

on the reference-based Kurtosis contrast function. First, we
give some definitions used in our method. As described
in [11], ∇ denotes a gradient operator. ∇1 and ∇2 denote
partial gradient operators with respect to the first and sec-
ond parameters, respectively. More precisely, ∇J(w) is the
vector composed of all partial derivatives of J(w), whereas
∇1I(w,v) and ∇2I(w,v) are the vectors of partial derivatives
of I(w,v) with respect to w and v. We denote W and V by(
w1, . . . ,wN

)T and
(
v1, . . . ,vN

)T , where T means the trans-
pose.

Combined with (4) and (7), we can get

I(w,v) =
∣∣∣∣ Cz{y(n)}

E{(y(n))2}E{(z(n))2}

∣∣∣∣2
=

∣∣∣∣E[(wx(n))2(vx(n))2]−E[(wx(n))2]E[(vx(n))2]−2{E[(wx(n))(vx(n))]}2

E{(wx(n))2}E{(vx(n))2}

∣∣∣∣2.
(8)

Because x(n) is prewhitened and W and V are nor-
malized in our method, we can get E

{
(wx(n))2

}
=

E
{
(vx(n))2

}
= 1 and wwT = vvT = 1. Then (8) can be

reduced to

I(w,v) =
∣∣∣E[(wx(n))2(vx(n))2]−3w2

∣∣∣2. (9)

Hence, the partial derivative of I(w,v) with respect to
w can be expressed as

∇1I(w,v) = ∂I(w,v)
∂w = 4

∣∣∣E[(wx(n))2(vx(n))2]−3w2
∣∣∣

(E[x(n)(wx(n))(vx(n))2]−3w).
(10)

Our new proposed algorithm is shown as follows:

 
 Eliminate the mean value of x  and prewhiten it.  
 Initialize W and normalize it. 
 ( )0M For 1, 2, , N  repeat i = ( )0M  

Set ,   0
i

i=w w 0 0
i i=v w

   ( )0M ′ For  repeat max0,1, , 1k k= − ( )0M ′  

 Set kI  1 ( , )i i
k k= ∇d w v

 1
i
k k+ =w d  

 Normalize i
k +w  1

 T
j j iw w w w w   1

1 1 1

ii i
k k j

−
+ + =
= −∑

v w
 Renormalize i

k +w  1

 Set i i
k k+ +=  1 1

 Renormalize i
k +w  1

 
max

i
k −w w  1i =

 =y Wx   
 
 Here, W0 is the initializations of W, which is chosen ran-

domly. From the whole process, we can see the source sig-
nals are recovered one by one through each one-dimensional
optimization in a deflationary manner. To prevent different
one-dimensional optimization converging to the same max-
ima, a Gram-Schmidt-like decorrelation scheme is adopted
as shown above.

4.2 Convergent Results
Because of the symmetry of I(w,v), we can get the fol-

lowing relationship.

I(w,v) = I(v,w),
∇1I(w,v) = ∇2I(v,w),
∇J(w) = 2∇1I(w,w) = 2∇2I(w,w).

(11)

From (11), we can see that, during one-dimensional
optimization process, the reference-based contrast function
is I(w,v) with v fixed instead of J(w). So the optimization
algorithm is quadratic dependence on the searched param-
eters. To justify the convergence of the algorithm, besides
the assumptions on source signals mentioned above, another
assumption [11] is needed.

A3: The sources sequences si(n), i ∈ {1, · · · ,N} are tem-
porally independent and identically distributed (i.i.d.).
Moreover, they have fourth-order Cumulants which are
all of the same sign.

Now, we can give the following proposition [11] shown
below:

Proposition 1: Assume that the sequences wi
k, i = 1, . . . ,N

are obtained according to the above algorithm with kmax
infinite and all wi

k, i = 1, . . . ,N are contained in a compat
set. Then, under assumptions A1-A3, any convergent sub-
sequence of wi

k, i = 1, . . . ,N converges to points (wi)∗, i =
1, . . . ,N respectively such that ∇J((wi)∗) = 0, i = 1, . . . ,N.
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Average MSE  Median MSE  Average Execution Time (s)  

Number of Samples  Number of Samples  Number of Samples  Separation 

Method 1000  5000  10000 30000 1000 5000 10000 30000 1000  5000  10000 30000

1st 0.0338 0.0123 0.0088 0.0052 0.0314 0.0125 0.0089 0.0051

2nd 0.0365 0.0124 0.0088 0.0051 0.0346 0.0125 0.0089 0.0051G-1 

3rd 0.0367 0.0124 0.0088 0.0051 0.0356 0.0125 0.0089 0.0051

3.793 10.743 18.934 53.401

1st 0.0364 0.0124 0.0088 0.0051 0.0338 0.0125 0.0089 0.0051

2nd 0.0348 0.0124 0.0088 0.0051 0.0318 0.0125 0.0089 0.0051G-2 

3rd 0.0354 0.0123 0.0088 0.0051 0.0327 0.0124 0.0089 0.0051

3.408 7.927 13.921 42.073

1st 0.0375 0.0123 0.0088 0.0051 0.0383 0.0124 0.0089 0.0051

2nd 0.0352 0.0123 0.0087 0.0051 0.0355 0.0124 0.0089 0.0051F-1 

3rd 0.0361 0.0122 0.0086 0.0051 0.0370 0.0124 0.0084 0.0051

0.687 3.095 6.069 16.389

1st 0.0370 0.0124 0.0088 0.0052 0.0361 0.0125 0.0089 0.0052

2nd 0.0357 0.0124 0.0088 0.0051 0.0344 0.0125 0.0089 0.0051F-2 

3rd 0.0352 0.0124 0.0088 0.0051 0.0338 0.0125 0.0089 0.0051

0.150 0.366 0.641 2.564

Tab. 1. MSE and execution time for different separation methods. (1000 Monte-Carlo runs) 

 
Tab. 1. MSE and execution time for different separation methods (100 Monte-Carlo runs).

Based on the assumptions A1-A3, the consistent con-
vergence of Proposition 1 can be proved by referring to
Proposition 1 in [11] and Zangwill’s convergence theorem
in [17].

5. Simulation Results

5.1 Experimental Data
In this section, we choose three speech signals as

sources. Without loss of generality, we assume that the num-
ber of observations and sources are equal, i.e., N = M = 3.
The iterative parameter kmax = 1000. The initialization value
of mixture matrix W0 is randomly chosen. And we imple-
ment each algorithm 1000 times independently and obtain
the average value. Corresponding notations are described as
follows:

G-1 denotes the classical gradient optimization algo-
rithm based on the Kurtosis contrast function. However,
the optimization step size is maximized to be optimal as
presented in [11]-[13]. G-2 denotes the gradient optimiza-
tion algorithm based on the reference-based Kurtosis con-
trast function proposed in [13], but differs in the fact that we
apply it in the case of linear and instantaneous mixture in this
paper. F-1 denotes the classical FastICA algorithm based on
the Kurtosis. F-2 denotes our new FastICA algorithm in this
paper.

Average MSE denotes the mean square estimation er-
rors between sources and observations averaged over 1000
Monte-Carlo runs. Median MSE denotes the median mean
square estimation errors between sources and observations
averaged over 1000 Monte-Carlo runs. Average execution
time denotes the execution time of recovering all sources av-
eraged over 1000 Monte-Carlo runs.

1st, 2nd and 3rd denote the first, second and third re-
covered source signals, respectively. The experimental data
in detail is shown in Tab. 1 on the top of this page.

5.2 Comments and Analysis
To compare the performance of above four algorithms

clearly, the average execution time for samples from 1000 to
30000 is illustrated in Fig. 1.
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Fig. 1. Average execution time for samples from 1000 to 30000
(1000 Monte-Carlo runs).

Firstly, in the gradient optimization framework where
G-1 and G-2 are considered, we can see that G-2 shows bet-
ter performance than G-1 from Tab. 1 and Fig. 1. This has
been confirmed and validated in [11] and [13], so detailed
comparison and analysis are omitted here.

Secondly, in the FastICA optimization framework
where F-1 and F-2 are considered, it can be clearly seen that
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F-2 yields similar MSE value to F-1 from the corresponding
rows in Tab. 1. This means our new algorithm F-2 performs
well and can converge to the same stationary point. More-
over, the average MSE and median MSE value are very close
to each other, which means that our method F-2 is very sta-
ble. However, we can obviously see that the computational
time of F-2 is much less than that of F-1 with varying num-
ber of samples, which means our method is much quicker in
terms of convergence speed. Furthermore, with an increas-
ing number of samples, the advantage of our new method
over F-1 is significantly apparent.

Finally, when the gradient and FastICA optimization
schemes are considered together, the similar MSE value of
G-1, G-2, F-1 and F-2 in Tab. 1 confirms the convergence
performance for all of them. However, it can be observed
clearly from Fig. 1 that our algorithm F-2 needs the least
execution time among them. In other words, our proposed
method F-2 is much quicker than F-1, and also much quicker
than G-1 and G-2. It means that our method provides better
performance than the corresponding classical algorithm on
the one hand and than some other gradient optimization ones
under same circumstances on the other hand.

6. Conclusion
A novel FastICA optimization algorithm based on the

recently proposed reference-based Kurtosis contrast function
is proposed in this paper. It is much more efficient than cor-
responding classical one in terms of computational speed.
The performance of this new method is validated through
simulations. Our future work includes the extension of our
method to complex-valued signals and the application of our
method to more complicated channel such as convolution
mixture.
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