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Abstract. Source and excitation modeling in FDTD for-
mulation has a significant impact on the method perform-
ance and the required simulation time. Since the abrupt 
source introduction yields intensive numerical variations 
in whole computational domain, a generally accepted 
solution is to slowly introduce the source, using appropri-
ate shaping functions in time. The main goal of the optimi-
zation presented in this paper is to find balance between 
two opposite demands: minimal required computation time 
and acceptable degradation of simulation performance. 
Reducing the time necessary for source activation and 
deactivation is an important issue, especially in design of 
microwave structures, when the simulation is intensively 
repeated in the process of device parameter optimization. 
Here proposed optimized source models are realized and 
tested within an own developed FDTD simulation envi-
ronment.  
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1. Introduction 
The finite difference time domain (FDTD) method 

currently draws significant scientific attention as one of the 
most efficient methods for analysis and characterization of 
wide range of electromagnetic problems [1]. The proper 
excitation and source modeling in the FDTD computational 
domain is especially important issue in every application of 
FDTD simulation. 

Introduction of discrete internal sources is usually 
done by applying either hard source or soft source excita-
tion. The hard source excitation is consisted in assigning 
specific value of certain electric (or magnetic) field com-
ponent at a single or several grid points in every time step 
through an appropriate time function [2]. The soft source 
excitation is introduced by adding the appropriate time 
function to the field value obtained in regular update equa-
tion [1].  

Although it is not a physical reality, the plane wave 
excitation has enormously large significance in many theo-

retical and analytical considerations. For this reason it is 
very important to introduce the same excitation in simula-
tion environments and to enable the comparative analysis 
of the results. The necessity of plane-wave source arose 
originally with the first FDTD modeling in the field of 
defense and bioelectromagnetics [1]. Considering scatter-
ing problems, where the particular structure of interest is 
far away from the radiation source and the incident wave 
can be considered as a plane wave, Yee was the first to 
introduce the initial-condition approach [3]. However, 
today mainly accepted approach for plane-wave excitation 
is total-field/ scattered-field (TF/SF) formulation [4], [5]. 
The TF/SF technique showed very good performance in 
FDTD modeling of long-duration pulsed or continuous 
wave excitation and it is widely used in guided-wave 
simulations [1]. The TF/SF technique has been extensively 
studied in the literature and many modifications and im-
provements of this basic method can be found [6–9]. 

However, another way of plane wave excitation mod-
eling includes adding or assigning of an electric (or mag-
netic) field value at specific positions in one plane, unlike 
the commonly used TF/SF technique, where corrections are 
made in both electric and magnetic field components (dis-
placed in time and space for a half time step) on the bound-
ary surface. The advantage of this direct approach is its 
simplicity. Its main difficulty is, however, the existence of 
wave propagation in undesirable direction. But since very 
effective boundary conditions like the convolutional per-
fectly matched layer (CPML) [10] are available, this is no 
longer an obstacle to its application. The considerations 
regarding this approach can be found in [11]. 

The excitation modeling in FDTD formulation sig-
nificantly affects the simulation performance. A sudden 
excitation of the domain causes undesirable numerical 
variations in whole computational domain. This problem is 
usually resolved by slow introduction of the source excita-
tion, using the appropriate shaping functions in time. 
A number of time functions for slow introduction of source 
excitation are available in the literature [12]. However, 
a gradual raise of the excitation signal is time consuming 
and can be a significant difficulty in applications where the 
intensive repetition of simulations is required. For this 
reason, a certain compromise between the required time 
and satisfactory simulation performance must be achieved. 
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The optimization presented in this paper is conducted 
in order to minimize the propagation of the undesirable 
energy through the computational domain. As a result of 
the optimization process, very simple and closed-form 
optimal function is obtained. Numerically obtained optimal 
shaping function is compared with the solutions that can be 
found in the literature and some general remarks are 
derived. 

2. Source Modeling 
In hard source modeling, instead of calculating field 

value using FDTD update equations, the field value in the 
specific grid points is assigned using a time function. If the 
source is at position (i, j, k), it is then 

   source
nn

kji EE  ,, ,  zyx ,, . (1) 

In the same manner as in the case of the point source, the 
plane wave source can be also modeled as a hard source, 
applying (1) on a group of points belonging to a specific 
surface or even volume. Regardless of the case, hard 
source model is equivalent to the ideal voltage source and 
for this reason acts like an electric wall, causing reflections 
of any wave arrived to the source location [2], [13]. This 
means that such a source, more specifically in the case of 
plane wave excitation separates the computational domain 
in two independent regions without mutual interaction. 
Hard source modeling is commonly applied in excitation of 
guided-wave structures. In [14] the analytical solution for 
the FDTD hard source has been derived, so its application 
is broaden to the validation of FDTD codes or FDTD 
schemes. 

One possible solution to the reflective behavior of the 
hard sources is to combine it with the regular FDTD update 
equations [1]. Namely, the hard source can be turned on 
only while there is a signal excitation. The simulation setup 
in that case should provide that the signal excitation ends 
before any scattered or reflected wave returns to the source 
position. After this period, the usual FDTD update of the 
field components can be applied. The main difficulty of 
this approach is that it can’t be used for continuous 
excitation. 

In soft source modeling, source excitation is added to 
the value obtained in applied FDTD update equations. If 
the source is at position (i, j, k), it is then 

     source
nn

FDTDupdatekji
n

kji EEE   ,,,, ,  zyx ,, . (2) 

The main advantage of the soft source is the fact that 
it is transparent to the incoming waves and it allows the 
different incident fields to interact [1], [15]. For soft source 
modeling of the plane wave it can be either TF/SF method 
or method of direct adding/assigning of electric (magnetic) 
field value [11] applied. When point soft source modeling 
is concerned, the additional source component is usually 
introduced through the current density  

21
,,



t

kjiJ , which is 

defined at the same spatial position as the resulting electric 
field component but the time step is the same as the one of 
the magnetic field. If the source is at position (i, j, k), it is 
then  
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  zyx ,, ,  yxzu ,, ,  xzyw ,, ,  

  1,,0  xNi  ,  1,,0  yNj  ,  1,,0  zNk  ,   

  1,,0  tNn    

where Δt is the time step, Δx, Δy and Δz are spatial steps 
along x, y and z axis, respectively. Total numbers of 
elementary cells along x, y and z axis are denoted by Nx, Ny 
and Nz, respectively. Total number of elementary time steps 
is denoted by Nt. The electric magnetic permittivity in 
vacuum is denoted by ε0.  

Since the FDTD cell is usually much shorter than 
one-tenth of the main wavelengths of interest, physically 
the soft source current acts as a Hertzian dipole antenna 
[14]. The point soft source physically corresponds to real 
current (or voltage) source.  

One of the main difficulties regarding the soft source 
modeling is constant deposit of charges and generation of 
the charge-associated fields [16], [1]. This can be circum-
vented by using matched voltage or current sources. By 
applying the source resistance RS, voltage source at posi-
tion (i, j, k) can be introduced in update equation of the 
corresponding field component as 
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where   is the electric conductivity.  

It is shown in [14] that the fields radiated by hard and 
soft source models are identical and the relation that 
connects excitation 

source
nE  from (1) and  

21
,,



t

kjiJ  from (2) 

can be expressed as 
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nt
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    
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3. Excitation Modeling 
A proper excitation of the FDTD computational do-

main is important in every FDTD application. The abrupt 



12 B. DIMITRIJEVIC, B. NIKOLIC, S. ALEKSIC, N. RAICEVIC, OPTIMIZATION OF EXCITATION IN FDTD METHOD … 

 

source introduction yields intensive numerical variations at 
high frequencies which propagate through the whole com-
putational domain. A generally accepted solution is to 
slowly introduce the source. In order to fulfill this, it is 
necessary for the excitation function to satisfy following 
conditions: at zero time step the excitation function value 
must be zero (if fields are initiated at zero) and the excita-
tion function must be smooth. The most commonly used 
time functions for slow introducing of pulsed source exci-
tation available in the literature are given in Tab. 1.  
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Tab. 1. Time functions used for pulsed excitation [12]. 

The raised cosine [17] is considered to be the most 
suitable for excitation of FDTD domain and it is the pre-
ferred choice, especially compared to linear and exponen-
tial ramps [15]. However, the presented excitation func-
tions (Tab. 1) are not designed to meet the specific 
requirements of FDTD formulation. In order to get a better 
insight in FDTD nature, we shell start from the case of  
z-polarized plane wave, propagating along y axis. 
Ampere’s and Faraday’s law in that case have the form  
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If one differentiates (1) over space variable y and (2) 
over time t, it yields  
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Substituting (8) in (9), it is obtained 
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Equation (10) indicates that the second time deriva-
tive of the excitation function should be the one to investi-
gate, since it causes the propagation through the computa-
tional domain. 

4. Numerical Optimization of FDTD 
Domain Excitation Function 
In order to minimize the propagation of the undesir-

able energy through the FDTD computational domain that 
consequently appears during its excitation, the minimiza-
tion of the second time derivative of the excitation function 
should be performed. 

Without loss of generality, the excitation function will 
be analyzed in its normalized form. Considering (10) and 
[17], in order to have the desirable properties, the excita-
tion function f(x) should satisfy the following criteria 

1. f(0) = 0 and f(1) = 1; 

2. f(x) is an odd function with respect to the point (1/2, 
1/2) in Cartesian coordinate system; 

3. the first derivative of f(x) is continuous function and 
f’(0) = 0 (in order to avoid large values in the second 
derivative). 

Two possible solutions are considered. 

4.1 Polynomial Optimization 

For the purpose of optimization, the excitation func-
tion will be presented as a linear combination of basic 
functions which satisfy conditions 1, 2 and 3. Considered 
basic functions are in polynomial form and given as  
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If functions fn(x) fulfill conditions 1, 2 and 3, then 
their linear combination  

        xfCxfCxf 3322
 (12) 

also fulfills the same condition 3. However, there is 
an additional requirement for f(x), in order to satisfy the 
conditions 1 and 2  
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Applying numerical iterative minimization of the 
mean square value of the second derivative 2f(x)/x2 
(  xf
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), it is obtained 
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Thus, the optimal excitation function has the form 
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4.2 Trigonometric Optimization  

If the basic functions in series expansion of the 
excitation function are  
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the excitation function is then 
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where a2m+1 are series coefficients, which should fulfill the 
criterion 
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Applying numerical iterative minimization of the 
mean square value of the second derivative 2f(M)(x)/x2 in 
this case, a function with expansion coefficients presented 
in Tab. 2 for different M values is obtained. The mean 
square values of the second derivative of function f(M)(x) 
are also given.  

5. Optimization Results 
In Fig. 1 excitation function obtained in the optimiza-

tion process using polynomial basic functions (denoted as 
Opt), as well as the ones using trigonometric basic func-
tions for different values of M are presented. The curve that 
corresponds to the value M = 0 is actually the excitation 
function that is widely used in the literature and known as 
raised cosine.  

In Fig. 2 one can observe the second derivatives of 
the functions from Fig. 1. It can be seen from Fig. 2 that 
the second derivative of the excitation function M = 0 
(raised cosine) significantly deviates from the second de-
rivative of the optimal function obtained using polynomial 
expansion. It can be also observed that with the increase of 
M the second derivative of the function with trigonometric 
expansion converges to the one of the optimal function 
with polynomial expansion. This confirms that the same 
optimal result is obtained regardless of the applied type of 
basic functions in  optimization  process. Since the solution  

 
Fig. 1. The proposed optimized excitation functions. 

 
Fig. 2. Second derivative of the proposed optimized excitation 

functions. 

obtained in polynomial form is simple and in a closed 
form, we propose function (15) as the excitation function 
for FDTD domain.  

Optimality of the obtained function shape is verified 
in an own developed FDTD simulation environment [18]. 

6. Optimal Excitation Signals 
Using the obtained optimal excitation function 

(Fig. 3), two pulsed signals are proposed for efficient ex-
citation of FDTD domain. The total pulsed signal retains 
the optimal properties only if it is formed using the pro-
posed optimal function as segments that are appropriately 
symmetrically extended or scaled in time and amplitude. 
Thus, the proposed pulsed function has the form 
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M  xf 2  1a  3a  5a  7a  9a    

0 12.1761 0.5 - - - - - 
1 12.0276 0.493902 0.00609756 - - - - 
2 12.0086 0.493123 0.00608793 7.88996 x 10-4 - - - 
3 12.0037 0.492920 0.00608543 7.88672 x 10-4 2.05298 x 10-4 - - 
4 12.0019 0.492846 0.00608452 7.88554 x 10-4 2.05267 x 10-4 7.51175 x 10-5 - 
  12.0000 0.492767 0.00608354 7.88427 x 10-4 2.05234 x 10-4 7.51054 x 10-5   

Tab. 2. Expansion coefficients in f(M)(x). 

 
Fig. 3. Proposed optimal excitation function and its first and 

second derivative. 

 
Fig. 4. Proposed optimal pulsed excitation function with DC 

component and its first and second derivative. 

Function (19) along with its first and second 
derivative is presented in Fig. 4. 

In case the pulsed signal with no DC component is 
required, it should be also obtained as symmetrically ex-
tended or adequately scaled optimal function (15). The 
pulsed signal with no DC component shouldn’t be formed 
as the first derivative of the optimal pulsed function 
(Fig. 4), because in that case the resulting function would 
change its nature and wouldn’t have optimal properties any 
more. Thus, we propose the pulsed function with no DC 
component in the form 

 
Fig. 5. Proposed optimal pulsed excitation function without 

DC component and its first and second derivative. 
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  (20) 

It is interesting to mention that in (20) in the function 

segment 211  x  the required transition is from 1 to 

-1, thus the optimal function (15) should be scaled by 2  
over time and by 2 over amplitude in order to keep its 
optimal characteristics. Function (20), along with its first 
and second derivative, is presented in Fig. 5. 

7. Conclusion 
The first part of this paper contains the overview of 

the relevant principles in source modeling in FDTD, with 
special focus on differences between hard and soft sources 
and on different source geometry (plane wave sources and 
point sources). The second part of the paper is dedicated to 
the source optimization, more specifically to the optimiza-
tion of the excitation time function, which has a significant 
influence on the behavior of the generator, regardless of its 
type. Generally accepted and the most frequently used  
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excitation functions are listed. However, neither of them is 
designed primarily for FDTD application, taking into 
account specificities of FDTD method.  

The optimization problem in this work is defined in 
order to minimize the propagation of the undesirable 
energy through the computational domain. This is accom-
plished by minimizing the mean square value of the second 
time derivative of the excitation function. As a result of the 
optimization process, very simple and closed-form optimal 
function is obtained.  

In addition, two functions for pulsed excitation of 
FDTD domain, with and without DC component, are 
proposed.  

Optimality of the obtained function shape is verified 
in the own developed FDTD simulation environment.  
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