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Abstract. Pipelined two-operand modular adder (TOMA) 
is one of basic components used in digital signal process-
ing (DSP) systems that use the residue number system 
(RNS). Such modular adders are used in binary/residue 
and residue/binary converters, residue multipliers and 
scalers as well as within residue processing channels. The 
structure of pipelined TOMAs is usually obtained by in-
serting an appropriate number of pipeline register layers 
within a nonpipelined TOMA structure. Hence the area of 
pipelined TOMAs is determined by the nonpipelined TOMA 
structure and by the total number of pipeline registers. In 
this paper we propose a new pipelined TOMA, that has 
a considerably smaller area and the attainable pipelining 
frequency comparable with other known pipelined TOMA 
structures. We perform comparisons of the area and pipe-
lining frequency with TOMAs based on ripple carry adder 
(RCA), Hiasat TOMA and parallel-prefix adder (PPA) 
using the data from the very large scale of integration 
(VLSI) standard cell library. 
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1. Introduction 
Modular addition plays an important role in the im-

plementation of digital signal processing systems that use 
the residue number system [1–4] as well as its derivatives 
like the quadratic residue number system (QRNS) [5] and 
modified quadratic residue number system (MQRNS) [6] 
for processing of complex signals. The RNS is a non-
weighted integer number system that is determined by its 
base B={m1, m2, ..., mn} being the set of positive pairwise 
prime integers mi , i = 1, 2,.., n. Each integer X  ZM, 




n

i imM
1

 and can be represented as X(x1,x2,...,xn) = 

= ),...,,(
21 nmmm

XXX  with 
imix Z . This mapping is the 

bijection and for X, Y  ZM  and for 
imii yx Z, , we have 

imiii yxz  ,where  denotes addition, subtraction or 

multiplication. 

The reverse conversion from the RNS to a weighted 
system can be performed using the Chinese remainder 
theorem (CRT) [1], [2] or the mixed-radix system (MRS) 
[1], [2]. The main advantage of the RNS comes from the 
fact that addition, subtraction and multiplication are carry-
free and can be performed without carries between indi-
vidual positions of the number. The principal advantage of 
the RNS with respect to the high-speed DSP is due to the 
replacement of large multipliers that limit the pipelining 
frequency, by small multipliers modulo mi. If their binary 
size l = (log2mi), where   denotes rounding off to 
an integer, does not exceed six bits, multiplications by 
a constant can be performed by look-up with small ROMs 
or using combinatorial networks. General multiplications 
are also easier to perform because their standard realiza-
tions are small or segmentation of operands can be used for 
the combinatorial realization. It is worth mentioning that 
moduli with l < 7 may provide for the dynamic ranges over 
90 bits [7]. The additional advantage of the RNS is the 
possibility of reducing power dissipation in CMOS circuits 
which is due to the lower switching activity and reduction 
of supply voltages [9]. The RNS has found numerous 
applications in the DSP, for example, in FIR filters [8–11], 
FFT processors [12], digital downconversion [13] and 
image processing [14], [15]. 

Generally TOMAs can be divided into two main 
categories determined by the type of the modulus. TOMAs 
for moduli akin to 2n represent the first category and those 
for generic moduli the other. There are several works in the 
literature that consider the TOMA design. 

Banerji [16] presented a look-up approach, Agrawal 
and Rao [17] proposed a TOMA for moduli of the form 
(2n + 1) based on binary adders. Soderstrand [18] intro-
duced a hybrid approach based on look-up table along with 
the binary adder. Bayoumi and Jullien [19] described 
TOMAs using the table approach and binary adders ap-
proach. Dugdale [20] demonstrated an implementation of 
TOMAs that used binary adders, Piestrak [21] proposed 
a TOMA based on the carry-save adder (CSA) and two bi-
nary adders. Zimmermann [22] introduced modulo (2n  1) 
adders based on parallel prefix-architecture (PPA). Hiasat 
[23] proposed a TOMA with the reduced area based on the 
carry-look-ahead (CLA) adder. Also a novel delay-power-
area-efficient approach to the TOMA design was given by 
Patel et al. [24]. Their TOMA structure was based on the 
cascaded connection of the modified carry-save adder 
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(CSA) and reduced carry-propagate adder (CPA). The used 
CPA designs included ELM [25], Kogge-Stone [26] and 
Ladner Fischer [27] PPA. 

In this paper we propose a new TOMA based on 
a modified CLA adder. This TOMA has the smaller area 
than other considered TOMAs and allows to derive a new 
pipelined TOMA that is better than other known pipelined 
TOMAs in terms of the area and the number of stages of 
pipeline registers. We shall show the structure of the new 
pipelined TOMA and, for comparison, TOMAs based on 
the RCA, PPA in the Brent-Kung form [28] and Hiasat 
TOMA [23]. Comparisons are made using the data from 
the VLSI standard cell library. We shall compare structures 
of individual TOMAs in terms of area, delay and pipelin-
ing frequency with the use of the additive method. The 
method uses summation of areas of individual components 
expressed in gate equivalents (GE), where 1 GE is the area 
of the NAND with the fan-out = 1 for the given standard 
cell library. The propagation delay of an individual element 
is taken as the worst case delay for all possible inputs. The 
analysis relies upon the established 130 nm Samsung stan-
dard cell library STDH150 [29]. Calculations of areas and 
delays of individual components are practically technology 
independent and they can be scaled down for VLSI tech-
nologies such as 28 nm or 22 nm. Therefore we may there-
fore suppose that for comparison of individual digital 
structures, the assumed technology will give sufficient and 
dependable information. The paper has the following 
structure: in Sec. 2 we review the basic TOMA structures, 
in Sec. 3 we consider the TOMA-RCA, and in Sec. 4 
Hiasat TOMA, in Sec. 5 we present the TOMA based on 
the PPA adder and finally in Sec. 6 a new TOMA. In each 
section we analyze a nonpipelined and pipelined form. 

2. Basic TOMA Structures Based on 
Binary Adders  
In this section we shall shortly describe the basic 

known TOMA structures that use exclusively binary adders 
in series and which therefore may be the most suitable for 
transformation to the pipelined form and not those that use 
two parallel adders as in [21]. Two-operand modular addi-
tion for small m,   6log m  can be implemented by using 

the ROM (    mm log2 log2  ), but such approach remarka-

bly reduces the attainable pipelining frequency. 

The TOMA computes 
mm YXr  , where rm is the 

least nonnegative remainder from the division X + Y by the 
modulus m. Assuming   mZ m  log2 , the computation 
can be also expressed as  

  
 












 otherwise                  

2  if   log

2 log

YX

ZYXZYX
r

m
m  (1a) 

In Fig. 1 to 3 three basic TOMA structures are shown 
Bayoumi-Jullien, Hiasat, and Piestrak. 

MUX
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Fig. 1. Bayoumi-Jullien TOMA [19]. 
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Fig. 2. Hiasat  TOMA [23]. 

MUX
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CSA

X Y

rm =|X+Y|m  

Fig. 3. Piestrak  TOMA [21]. 

We shall shortly analyze the operation of the 
Bayoumi- Jullien TOMA (Fig. 1) because this structure 
will be the basis for the design of selected TOMAs. The 
binary adder in the first stage of this TOMA computes 
X + Y, whereas the second adder X + Y – m. The output of 
the TOMA is selected using carry = carryA ˅ carryB. For 
X + Y < m, carry = 0 and rm = X + Y , whereas for 
X + Y ≥ m, carry = 1  and rm = X + Y – m. 

3. TOMA-RCA 
By way of introduction we shall consider the realiza-

tion of the Bayoumi-Jullien TOMA based on the RCA. In 
order to obtain a pipelined structure, layers of pipeline 
registers consisting of flip-flops (FFs) have to be inserted 
between individual adders as shown in Fig. 5. 
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Fig. 4. Bayoumi-Jullien TOMA based on the RCA. 
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Fig. 5. Pipelined TOMA based on Bayoumi-Jullien TOMA 

and the RCAs. 

In the following we shall analyze the area of the 
TOMA-RCA expressed in GE, the delay and the maximum 
attainable pipelining frequency. The area will be estimated 
using the areas of the individual components from 
STDH150, the delay for a nonpipelined structure will be 
evaluated by using the maximum delays for the individual 
components. In order to estimate the pipelining frequency 
a structure is divided into balanced layers with respect to 
the delay and the maximum pipelining frequency is  

obtained as the inverse of the sum of the delay of the 
slowest layer and the FF delay. 

A. Nonpipelined 5-bit TOMA-RCA area 

This area of 5-bit TOMA-RCA can be expressed in 
the following manner: 

 
.5

44

12612

1122

 A+ +A+A

A++AA+=AA

dMXNIDdOR

FAdHAdFAdHAdTOMA_RCA




  (1) 

The indices of the individual components come from 
STDH150. The data of individual components is given in 
Appendix A. After inserting these data into (1) we obtain 

GE68.98RCATOMAA . The area given by (1) does not de-

pend upon the form the of the two’s complement system 
(TCS) representation of –m, 

4 3 2 1 0(1,..., , , , , )m m m m m m      . 

The particular form of this representation allows to reduce 
the area for the given modulus. For example, if mi = 0, the 
HA reduces to single connection and for mi = 1 to one 
connection and to one inverter. For the FA and mi = 0, we 
have one XOR gate and a single AND gate, and for mi = 1 
one OR gate and exclusive NOR. For m = 29 and 

)1,1,0,0,0,...,1(~ m , we obtain 81 68TOMA-RCAA . GE . 

B. Nonpipelined 5-bit TOMA-RCA delay 

We shall estimate the delay of the structure of Fig. 4 
taking into consideration individual delays of signals inside 
individual HAs and FAs.  

The delay of the 5-bit TOMA-RCA can be expressed 
as 

1212)),max(,,max( '
55

'
44 dMXdORccssRCATOMA ttttttt 

. (2) 

The delay for 4s  and 5c  bits can be calculated as 

,ttt,tt _CISFAd_CICOFAd_BCOHAd_ACOHAds 2222 3)max(
4

  

CICOFAdBCOHAACOHAdc tttt _2__2 4),max(
5

 . 

In order to compute '
5c , we shall first calculate 

ict  

and '
ic

t , 1,  2,  3,  4i  . We have 

 BCOHAdACOHAdc ttt _2_2 ,max
1
 , (3a) 

CICOFAdcc ttt
ii _21



, 5 ,4 ,3 ,2i . (3b) 

Consequently 

  BCOHAdBSHAdASHAdc
tttt _1_2_2 ,max'

1
 , (4a) 

 CICOFAdcBCOFAdCISFAdcc
tttttt

iii
_1_2_2 '

11
' ,max  , 

5 ,4 ,3 ,2i ,   (4b) 

and  
CISFAdcs

ttt _1'
4

'
4

 .  (4c) 
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Example 1. Computation of 5-bit TOMA-RCA delay 
for components from the STDH150. 

We shall first compute 
4st  and 

5ct  as  

 
,ns509.0

ns150.0ns089.03ns074.0,ns092.0max
4



st  

.ns448.0 ns089.04)ns074.0,ns092.0max(
5

ct  

Before we can compute '
5c , we have to determine ic , 

4 ,3 ,2 ,1i . We have  

1
max(0.092 ns,0.074 ns) 0.092 nsct   , 

2
0.181 nsct  , 

3
0.270 nsct  , 

4
0.359 nsct  . 

Subsequently we obtain 

    ,ns147.0ns055.0ns074.0,ns092.0max'
1


c

t  

 
 

'
2

max 0.092 ns 0.102 ns 0.152 ns,0.147 ns 0.083ns

max 0.346ns,0.230ns 0.346ns,

c
t    

 
 

 
 

'
3

max 0.181ns 0.102 ns 0.143ns,0.346ns 0.083ns

max 0.426ns,0.429 ns 0.429 ns,

c
t    

 
 

 
 

'
4

max 0.270ns 0.102 ns 0.143ns,0.429 ns 0.083ns

max 0.515ns,0.512 ns 0.429 ns,

c
t    

 
 

 
 

'
5

max 0.359 ns 0.102 ns 0.143ns,0.515ns 0.083ns

max 0.604 ns,0.598ns 0.604 ns,

c
t    

 
 

 .ns601.0ns095.0ns515.0'
4


s

t  

Finally, we may determine the TOMA-RCA delay as 

max(0.509 ns,0.601 ns,0.604 ns 0.065 ns)

0.078 ns 0.747 ns.

TOMA RCA
Dt

  
 

 

C. The area of pipelined 5-bit TOMA-RCA 

In Fig. 5 a pipelined form of the RCA-TOMA is pre-
sented. Six flip-flops stages are used with 66 flip-flops. 
The area is the sum of the nonpipelined 5-bit TOMA-RCA 
area and the area of pipeline registers. In this case these 
registers require ns = 66 FFs. Thus the area can be 
expressed as 

  A + n = AA FFsTOMA_RCApTOMA_RCA _ .  (5) 

As AFF we shall use the area of the flip-flop FD1Q, AFD1Q 
from STDH150. For the structure from Fig. 5 we receive 
ATOMA-RCAp = 472.9 GE. 

D. Pipelined 5-bit RCA-TOMA pipelining rate  

In order to design a pipelined structure of a TOMA, 
we have to decompose its nonpipelined structure into 

a certain number of layers and place pipeline registers be-
tween them. The decomposition is, to certain extent, arbi-
trary. The lower limit of the number of layers is two and 
the upper limit is determined by a delay of the component 
that we treat as indivisible. The minimum pipelining rate is 
approximately the sum of the delay of the layer with the 
maximum delay and the delay of the pipeline register. In 
this case we have assumed that after each FA or HA 
a register layer is placed and the OR gate and the MUXs 
are in the same layer. Hence we may evaluate the 
maximum delay of the layer as 

 QFDdMXdORFAd
RCATOMA

LD ttttt 112121
_ ),max(   (6) 

where QFDt 1  is the maximum delay of the flip-flop. 

Using the data from the STDH150, we may evaluate 
a theoretical maximum pipelining frequency as 

GHz.22.4ns237.0/1)ns094.0                  

)ns078.0ns065.0,ns143.0/(max(1_
max_



RCATOMA
PFf  

4. Hiasat TOMA 
In the following we shall examine the results of trans-

forming the Hiasat TOMA which requires the smallest 
hardware amount among known TOMAs. This TOMA 
consists of the serial connection of five units: the sum-and-
carry (SAC), the carry propagate and generate (CPG), CLA 
for cOUT, multiplexer (MUX), CLA and Summation 
(CLAS). The SAC is composed of HAs and HALs (the 
modified HAs in [23]). The SAC performs 

 iiii zyxs  , (7) 

 iiiiiii zyzxyxc 1 , (8) 

for the individual bits of X + Y, and X + Y – m, with the 
assumption that TCS representation of –m without the sign 

bit is ),...,( 01 zzn  with n = 5. Regarding that zi = 0 or 

zi = 1, the HAL is obtained that implements 

 iii yxA  , (9a) 

 iii yxA ˆ , (9b) 

 iii yxB 1 , (9c) 

 iii yxB 1
ˆ . (9d) 

As ),...,( 01 zzn  may have w bits for which zi = 0 and  

n – w bits for which zi = 1. Hence the SAC has w HAs and 
n – w HAL cells. The CFG computes the carry generate 
and carry propagate vectors as in the standard CLA 

iii BAP  , 
iii BAG   and iii BAp ˆˆ  , iii BAg ˆˆ  . 

This unit has at most 2k – 2 HAs. In the CLAS pi  and gi  

are used to compute cOUT , that controls the selection of 
X + Y or X + Y – m. Regarding that c0 = 0, g0 = 0, cOUT  can 
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be computed for the five-bit Hiasat adder as 

  43214324345 PPpgppgpggBcOUT  . (10) 

The following stage, MUX selects using  cOUT  the 

carry‘s and generate’s ii pp '  or ii Pp '  and ii gg '  or 

ii Gg ' , i = 0, 1,..., 4. 

The final stage, the five-bit CLA adder computes the 
carries 

 '
01 gc  ,  (11) 

 '
1

'
0

'
12 pggc  ,  (12) 

 '
2

'
1

'
0

'
2

'
1

'
23 ppgpggc  ,  (13) 

    '
3

'
2

'
1

'
0

'
3

'
2

'
1

'
3

'
2

'
34 pppgppgpggc   .(14) 

In the next step the sum bits are calculated as 

 ''
iii pcs  , i = 0, 1, 2, 3, 4. (15) 

First we shall determine the area for components of 
the Hiasat five-bit TOMA and then the area for m = 29. 

A. 5-bit Hiasat TOMA area 

The area of the five-bit Hiasat TOMA can be 
computed as follows 

 
.555

55

CLAS_MUX_CLA_Cout_

CFG_SAC_tTOMA_Hiasa

 + A + A+ A

  + A = AA
 (16) 

The areas of the individual blocks from (16) can be 
expressed as: 

 
HALHAdHAdSAC_  + A + A A  = A 215 2  , (17) 

with  
 1121212 IVddXORdANDdORHAL AAAAA  . (18) 

In general, the area of the CFG_5 can be expressed as 

 125 5 HAdHAdCFG_ AAA  , (19) 

 
,615

1413125

NIDdOR

dANDdANDdANDCLA_out_

 + AA

  +A + A = AA 
 (20) 

 1422125 3 dMX dMXdMXMUX_  A +  + A = AA  . (21) 

The CLAS block consists of the five-bit Propagate-
Generate Unit (PGU_5), Carry-Generate Unit (CGU_5) 
and Summation Unit (SU_5). Its hardware amount can be 
estimated as  

 5_5_5_ SUCGUCLAS AAA  , (22) 

with the fan-outs 1, 3, 3, 4, 2. We get 

 
1313

2212125

dORdAND

dANDdORdAND CGU_

 + AA

 +  + A + A= AA
, (23) 

and GE0155 125 .AA dXORSU_  . (24) 

Example 2. Area of the five-bit Hiasat TOMA for 
m = 29. 

The TCS representation of (– m) is equal to 100011, 
hence w = 3, and k – w = 2 (the sign bit is excluded). Thus 
we obtain 

GE,35022

GE347GE675GE6742

22 215

 . = 

 . +  . +  .

AAAA HALHAdHAdSAC_




 

GE,0233

GE674GE67555 225

.         

..AAA HAdHAdCFG_




 

GE,13GE673GE333

GE332GE2GE6715

  = . +  .

 + . +   +  .ACLA_Cout_ 
 

GE3225GE3363GE333GE35  .= . +  . +  AMUX_  , 

5 1 67GE 1 67GE 2GE 2GE

2GE 1 67GE 2GE 2 33GE 3GE

18 34GE,

CGU_A .  + .  +  +  +

 + .  +  + .   + 

.





 

GE15GE355 SU_A , 

...ACLAS_ GE3433GE15GE34185   

In effect we obtain the area of the five-bit Hiasat 
TOMA as 

GE.03127GE3433GE3225

GE13GE0233GE35225

.  = . + . 

  + . + .A t_TOMA_Hiasa 
. 

B. 5-bit Hiasat TOMA delay 

The Hiasat five-bit TOMA delay, tH can be expressed 
as  

,.. + .

 + . + . + . + .

 + . + . + . + .

tttt t

tttttt

XORddORdORdANDdMX

NIDdORdANDHAdHAL
TOMAHiasat

D

ns8710ns0900ns0760

ns0900ns0820ns0920ns0540

ns0940ns0820ns0920ns1190
114121442

615142






 

with  
ns1190ns0290ns0900112  . =  .+  .ttt IVddXORHAL  . 

C. Pipelined 5-bit Hiasat TOMA area 

The area of the Hiasat pipelined 5-bit TOMA can be 
expressed as  

 FFhtTOMA_HiasapHiasatTOMA AnAA __   (25) 

where nh is a number of flip-flops used in pipeline 
registers. For example, for the structure from Fig. 6 we 
obtain  

 
GE.91489

GE67564GE03127

.                  

..A t_pTOMA_Hiasa
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D. Pipelining frequency of pipelined 5-bit Hiasat TOMA   

In Fig. 6, a pipelined form of the Hiasat TOMA is 
presented. Five pipeline register stages are used with 58 
flip-flops.  

In this case we have adopted a decomposition into six 
layers that leads to a balanced structure. In order to evalu-
ate the maximum pipelining frequency we shall calculate 
delays of the adopted individual layers. The maximum 
pipelining frequency will depend on the delay of the layer 
with the maximum delay and the delay of the assumed 
pipeline register. These layers have the following delays: 

layer 1 HL
Dt
,1 : ns1190. = tHAL

, 

layer 2 HL
Dt

,2 : ns08801 . = tHAd
, 

layer 3 HL
Dt
,3 : ns17601514 . =  + tt dORdAND

, 

layer 4 H
Dt
,4 : ns1320612 . + tt NIDdMX  , 

layer 5 HL
Dt
,5 : ns17201214 . + tt dXORdAND  , 

layer 6 HL
Dt

,6 : ns16601412 .tt dORdXOR  . 

Using HL
Dt
,3  as the maximum layer delay, we may 

evaluate the maximum pipelining frequency as  

max 1 (0 176 ns 0 094 ns) 1 0 27ns 3 7GHz.TOMA_Hiasat
PF_f / . . / . .     

5. PPA-based TOMA 
As the next structure we shall consider the TOMA 

based on a PPA. As the PPA the Brent-Kung (BK) [28] 
adder has been selected. The Brent-Kung TOMA can be 
relatively easy transformed to the pipelined form, moreover 
the use of the Brent-Kung PPA allows one to simplify the 
adder used in the second stage when one of addends is 
a constant. The prefix operator  is defined as 

    "'''' ,  ),(, pgpgpg  ,  (26) 

where  "'" pggg  ,  (27a) 

 "' ppp  . (27b) 

The block that implements (27a-b) will be denoted as BKi. 
Subsequently we shall analyze the area and delay of the 
TOMA based on two BK adders. 

The area of the TOMA BK BKTOMAA _  can be 

expressed as  
 mBKBKTOMA_BK AAA    (28) 

where ABK, ABK-m represent the area of the BK adder and the 
modified BK-m adder that subtracts m, respectively. 

A. The area of BK adder  

ABK can be calculated as 

LLLLLLLLLLLLLLL

HA HA HA HA HA HA

LLLLLLLLLLLLLL
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Fig. 6. Pipelined TOMA based on Hiasat TOMA. 
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12432
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  (29) 

The area of the first two terms is 

 GE99254 12  .AA HAdHAd  .  (30)  

After transforming the logic functions used for the realiza-
tion of individual adders in (29), we receive the following 
areas 

GE,622221210
 =AAAAA dANDdNANDdNANDIVdBK   (31a) 

GE,674

12121211

.        

AAAAA dANDdNANDdNANDIVdBK




  (31b) 

GE3121212
 AAAA dNANDdNANDIVdBK  ,  (31c) 

GE,6

22221214

         

AAAAA dANDdNANDdNANDIVdBK




 (31d) 

GE3
24

 AA BKBK  .   (31e) 

Using (29), (30) and (31a-e) we obtain 

 GE0262  .ABK  . (31f) 
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B. The delay of BK adder 

The BK adder delay can be expressed as 

 0 1

2 3 4

2

2 1

max( )

max( )

BK HA BK BK

BK BK BK XOR d

t t t ,t

t ,t t t

  

 
, (32) 

where 

122
0 dNANDBK tt  , 22121 dNANDdNANDBK ttt  , 

12 BKBK tt  , 

13 BKBK tt  , 
04 BKBK tt  . 

Using the data from the STDH150, we have 

0BKt = 0.074 ns and 
1BKt = 0.068 ns. 

Finally we obtain 

0 092 ns 0 074 ns 0 068 ns 0 074 ns 0 09 ns

0 398 ns
BKt .  + .  + .  + .  + .

. .




 

C. The area  of BK-m adder 

The form of the first layer of the BK-m adder depends 
on the TCS representation of – m, m~ . We shall analyze the 
prefix operator computation for a pair of bits ( im~ , 1

~
im ). 

(27a-b) can be expressed as 

 )~(~~
1111~   iiiiiim msmsmsg , (33a) 

 )~()~( 111~ iiiim msmsp   . (33b) 

For individual combinations of )~,~( 1ii mm we get 

)00()~~( 1 ,m,m ii   0~ mg  and 1~  iim ssp , 

)10()~~( 1 ,m,m ii   1~  iim ssg  and 1~  iim ssp ,  

)01()~~( 1 ,m,m ii   im sg ~  and 1~  iim ssp , 

)11()~~( 1 ,m,m ii   11~   iiim sssg  and 10~ sspm  . 

The HA’s become reduced, for we have gi = 0, and 
the XOR gate that computes pi, is reduced to the direct 
connection, i.e. pi =si. For ,1~ im  gi =si, the XOR gate that 

computes pi .becomes an inverter, i.e. ii sp  . The form of 

mg ~  and mp ~  influences the form of BK0 and BK1. 

Next we shall analyze the BK-m adder for m = 29 in 
order to have a comparison with the adder presented by 
Hiasat [23]. The TCS representation of m = 29 has the 
form 100011, then for HA0, g0 - connection, p0 - inversion, 
for HA1 g1 - connection, p1 - inversion, for HA2 g2 = 0,  
p2- connection, for HA3 g3 = 0, p3 - connection, for HA4  
g4 = 0, p4 - connection. 

Moreover, regarding that 1~
0 m  and ,1~

1 m  we may 

transform BK0, to obtain BK0-m as 

 11,~
0   iiiBKm sssg  (34a) 

 

and  11,~
0   iiiiBKm ssssp , (34b) 

and the 
mBKA

0
can be calculated as 

 
GE346

22121210

. 

AAAAA dNORdORdANDIVdBK m




  (35) 

and the delay 

 0 1 1 1

0 05 ns 0 105 ns 0 111 ns 0 266 ns
mBK IVd ANDd ORdt t t t

       . . . . .

   

   
 (36) 

For BK1 ,0~
2 m  ,0~

3 m  hence 0~ mg  and 

1~  iim ssp . 

Assuming the direct realization we receive 

 121 dANDBK AA
m



, (37) 

 121 dANDBK tt
m



.  (38) 

For other blocks we have 

 
22 BKBK AA

m



, 

33 BKBK AA
m



, 

44 BKBK AA
m



. (39) 

We finally receive for the BK-m adder 

 
GE34324

2

1243

21021

.AAA           

AAAAA

dXORBKBK

BKmBKmBKdIVmBK


 ,  (40) 

and for TOMA for m = 29 based on BK adders 

 
GE. 67.91GE68.31GE 99.59 


 

AAA mBKBKBKTOMA .  (41) 

The BK-m delay can be calculated as 

 
.ttt

,t tttt

dMXdXORmBK

-mBK-mBK-mBKIVmBK

12124

3201 )max(


  (42) 

Hence  

 
0 03 ns 0 15 ns 0 07 ns

0 07 ns 0 09 ns 0 08 ns

0 49 ns

BK mt .  + .  + .  + 

.  + .  + .  

= . .

 
.  

Finally we obtain 

 ns8880ns4900ns3980_ ...ttt BK-mBKBKTOMA  . 

D. The area of the pipelined TOMA BK  

This area can be evaluated as  

 
FFBKmBKBKpBKTOMA AnAAA __

 (43) 

where nBK is the number of flip-flops in pipeline registers. 
For the structure from Fig. 7 with nBK = 51 and 
AFF = AFD1Q = 5.67 GE , we get GE84380_ .A pTOMA_BK  .  
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Fig. 7.  Pipelined TOMA based on Brent-Kung adder. 

 
E. Pipelining frequency of pipelined TOMA BK:  

layer 1 
BKL

Dt
,1 : 

2 1 0.092 ns 0 068 ns 0.160 nsHAd BKt  t = .   , 

layer 2  
BKL

Dt
,2 : 

 ns. 0.232  ns 0.090  ns 0.074 ns 0.068
1243


  =ttt dXORBKBK  

layer 3  
BKL

Dt
,3 : 

1 1 0.088 ns 0.074 ns 0 162 nsHAd BKt  + t  = .  , 

layer 4  
BK

Dt
,4 : 

3 4 0.152 nsBK BKt  + t  , 

layer5   
5,

2 1 6 2 1 0.222 ns.L BK
D XOR d NID MX dt t t t     

Using the BKL
Dt

,2 as the maximum layer delay, we 

receive the maximum pipelining frequency 

2
max 11 ( ) 1 (0 232 ns 0 094 ns)

1 0 326 ns 3 06 GHz.

TOMA_BK L ,BK
PF_ D FD Qf / t t / . .  

/ . .
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6. New Five-bit TOMA 
In this section we shall show a new TOMA structure 

and its pipelined form that requires smaller area than other 
TOMA structures. The TOMA is configured as a serial 
connection X + Y adder and X + Y – m adder that are de-
signed in such a manner that leads to a substantial simplifi-
cation and thus to a smaller delay or a smaller number of 
pipeline levels. Both adders are modifications of the stan-
dard CLA adder. In the first stage of the proposed structure 
the propagate's and generate's and transfer functions [30] 
ti = ai + bi are used. The first three carries c1, c2 and c3 are 
computed simultaneously, and c3 is used to generate c4  
and c5. 

Generally, the computation of the carry ci can be 
expressed, assuming c0 = 0, as 

 01 gc  ,  (44a) 

 1112 tcgc  ,  (44b) 

 2223 tcgc  ,  (44c) 

 3334 tcgc  ,  (44d) 

 4445 tcgc  .  (44e) 

In the above formulas instead of pi, the transfer 
function  ti = ai + bi  is used, which is justified as follows 

 iiii pcgc 1 ,  (45) 

iiiiiiiiiiiii tcgpgcggcpcgc  )(1
,(46) 

with  ti = ai + bi, gi = aibi and pi = ai  bi. 

We may express c2 and c3 as the functions of gi and ti 
as 
 1112 tcgc  ,  (47) 

 2102123 ttgtggc  .  (48) 

Consequently, we receive 

 3314 tcgc  , (49) 

and  
 4334345 ttctggc  .  (50) 

In the adder realization the above equations are trans-
formed to the NAND form. The sum bits are generated 
using si = pi-1  ci., 1, 2, 3, 4 with s0 = p0. The second stage 
of the TOMA implements the subtraction of –m making 
use of the TCS representation of –m, 

)~,~,~,~,~,1(~
01234 mmmmmm  . 

Regarding that the second operand of the X + Y – m 
adder is m~ , we can write 

 001
~msc  ,  (51a) 

 100010112
~~~~ mmsmssmsc  ,  (51b) 

 

21002010

21211020

0210121223

~~~~~     

~~~~

~~~

mmmsmmss

mmssmmss

msssmssmsc





 (51c) 

 3333334
~~ mcscmsc  , (51d) 

       
433433433

343433343445
~~~~~     

~~~

mmcmscmms

mscsscmssmsc




 (51e) 

We may simplify the above equations by substituting 
m~  values of the individual five-bit moduli. The results of 
this simplification are given in Tab. 1. 
 

m 1c  2c  5c  4c  5c  

17 0s  01 ss   012 sss   33 cs   )( 334 css   

19 0 
1s  12 ss   33 cs   )( 334 css   

21 0s  01 ss  )( 012 sss   33 cs   )( 334 css   

23 0s  01 ss   012 sss   33 cs   )( 334 css   

25 0s  01 ss  012 sss   
33 cs    343 ssc  

27 0s  01 ss   012 sss   33 cs    343 ssc  

29 0s  01 ss  )( 012 sss   33 cs    343 ssc  

31 0s  01 ss   012 sss   33 cs    343 ssc  

Tab. 1. Logical functions for realizations of the carries of 
X + Y – m adder. 

In Fig. 8, the TOMA based on the new principle for 
m = 29 is depicted. 

A. 5-bit new TOMA area 

We shall analyze the area and delay of the new 
TOMA for m = 29.The area of the new TOMA can be 
computed as 

 mYXYXNewTOMA AAA  _ . (52) 

The hardware amount of the X + Y adder can be 
expressed as 

    SUcccctstageHAYX AAAAAAAA
i

  5432
  (53) 

where stageHAA   is the area of the input summation stage 

(HAs and ORs),
icA are the areas of circuits generating the 

individual carries ci. 

Subsequently we have 

 GE3527432 1221  .= AAAA dORHAdHAdHA_stage  , 

 GE32 1212
 AAA dNANDIVdc  , 

GE6792 23132213
 .= AAAAA dNANDdNANDdNANDIVdc    

 GE32 1214
 AAA dNANDIVdc  ,  

 
5 1 2 1 3 12 4 67 GEc IVd NAND d NAND dA A A A = .  ,     

 GE155 12   AA dXORSU  .  
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In effect, we receive 

 GE6955  .A YX  . 

For the X + Y – m adder we have 

  mSUmcmcmcmcmYX AAAAAA  
5432

,  

where 
0

1


mc
A (direct connection), 

GE67122
2

 . AA dORmc



, 

GE222
3

 AA dANDmc



, 

GE67112
4

.AA dANDmc



, 

GE213
5

 AA dANDmc



, 

GE34205 12612  .AAAA dMXNIDdORmSU  . 

We receive GE6827  .A mYX  . 

The total hardware amount is GE06110.ATOMA_New  . 

B. 5-bit New TOMA delay 

The delay of the new TOMA can be written as 

 mYXYXNewTOMA ttt  _ ,  (54) 

where 

SUcccccStageHAYX tttttttt  ),max(),max(
54321_

 and 

ict , i = 1, 2,…,5, denote the individual carry generator 

delays 

),max( _2_21 BCOHAdACOHAdc ttt  , 

12112 ),max(
2 dNANDIVddNANDc tttt  , 

1311312 ),,max(
3 dNANDIVddNANDdNANDc ttttt  , 

12112 ),max(
4 dNANDIVddNANDc tttt  , 

1311312 ),,max(
5 dNANDIVddNANDdNANDc ttttt  , 

121223132 2 dXORdNANDdNANDdNANDHAdYX tttttt  ,  

ns3520

ns090ns03702ns0440ns0520ns0920

.

. + . + . + . + .t YX


  

and for X + Y – m adder we have  

),max( 12612'
5

dXORNIDdORcmYX ttttt 
, where  

131212'
5

dANDdANDdORc
tttt  ,  

),max(
5454 _ cccc ttt  , 

,1212132312 dMXdXORdANDdNANDdNANDmYX tttttt   

- 0 037 ns 0 044 ns 0 066 ns

0 09 ns 0 078 ns 0 315 ns
X Y mt .  + .  + .  + 

.  + . = . ,
 


 

_ 0 352 ns 0 315 ns 0 667 ns.TOMA Newt .  + .  = .  

D. The area of the pipelined new TOMA  

This area is expressed as  

 FFNmYXYXpNewTOMA AnAAA   -__   

where nN is the number of flip-flops in pipeline registers. 
For the structure from Fig. 8 with nN = 30 and 
AFF=AFD1Q=5.67GE , we get . GE82280.ATOMA_New    

E. Pipelining frequency of the pipelined new TOMA  

For the individual layers in the pipelined structure of 
the new TOMA, shown in Fig. 8, we have the following 
delays: 

layer 1: 
 1,

1 3 12 0.192 nsL N
D HAd NAND dt t t    , 

layer 2:  
2,

3 1 2 12 0.194 nsL N
D NAND d XOR dt t t    , 

layer 3:  
3,

2 1 2 1 3 1 0.185 nsL N
D OR d AND d AND dt t t t    , 

layer 4:  
4,

2 1 6 2 1 0.222 nsL N
D XOR d NID MX dt t t t    . 

The design of the pipelined structure aimed at the 
minimization of the number of pipeline stages while 
preserving possibly high pipelining frequency. The 
structure allows one to employ only three pipeline register 
stages with 30 flip-flops with the maximum pipelining 
frequency equal to 

GHz.163ns31601)ns094ns2220(1max  ../../f new_TOMA
PF_   

In Tab. 2 the summary of the obtained TOMA 
parameters is given. 
 

 
TOMA-

RCA 
TOMA-

BK 
TOMA-
Hiasat 

New 
TOMA I

Area [GE] 
(nonpipelined) 

81.68 99.01 127.03 110.72 

Delay[ns] 0.747 0.888 0.886 0.667 

Area x delay 61.01 87.64 112.55 73.41 

Number of pipeline 
layers 

6 4 5 3 

Number of FFs 66 58 64 30 

Area [GE] 
(pipelined) 

472.90 380.84 489.91 280.82 

Pipelining frequency 
max [GHz] 

4.22 3.06 3.7 3.16 

Tab. 2. TOMA parameters for m = 29. 

It is seen that the area-delay product has the best 
values for the TOMA-RCA and the new TOMA, moreover 
the new TOMA requires the smallest area for the pipelined 
structure but at the cost of the reduced maximum pipelin-
ing frequency. In general the new pipelined TOMA calls 
for about 35% less area than the TOMA-BK, the best of 
three other considered structures.  
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Fig. 8. New five-bit TOMA for m = 29. 

7. Conclusions 
The structures of pipelined two-operand modular 

adders for five-bit moduli based on ripple carry-adder, 
Brent-Kung adder and Hiasat adder have been presented 
and analyzed with respect to the area, number of layers and 
attainable pipelining frequency. Also a new structure of the 
two-operand modular adder based on the modified carry-
look ahead adder has been proposed. It has been shown 
that the new pipelined adder has the smallest number of 
pipeline layers as well as the area smaller by about 35% 
than the best of other considered structures. 
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Appendix A 
 

Area [GE] Delay [ns] 
AAND2d1 = 1.67 tAND2d1=0.054 
AAND2d2 = 2.00 tAND2d2=0.055 
AAND3d1 =2.00 tAND3d1 = 0.066 
AAND3d2 =2.67 tAND3d2 = 0.068 
AAND4d1 =2.33 tAND4d1=0.082 
AAND4d2 =2.67 tAND4d2=0.085 

AFAd1=8.00 tFAd1=0.143 
AFAd2=9.00 tFAd2=0.150 
AHAd1=4.67 tHAd1=0.088 
AHAd2=5.67 tHAd2=0.092 

ANAND2d1=1.00 tNAND2d1=0.037 
ANAND2d2=2.00 tNAND2d2=0.031 
ANAND3d1=1.67 tNAND3d1=0.052 
ANAND3d2=3.00 tNAND3d2=0.044 
ANAND4d1=2.00 tNAND4d1=0.067 
ANAND4d2=3.67 tNAND4d2=0.059 
ANOR2d1 =1.33 tNOR2d1= 0.050 
ANOR2d2 =2.00 tNOR2d2= 0.040 
AOR2d1 =1.67 tOR2d1=0.065 
AOR2d2 = 2.00 tOR2d2=0.069 
AOR3d1 =2.00 tOR3d1=0.090 
AOR3d2 =2.67 tOR3d2=0.090 
AOR4d1 =3.00 tOR4d1= 0.076 
AOR4d2 =3.33 tOR4d2= 0.082 
AOR5d1 =3.33 tOR5d1=0.094 
AOR5d2 =3.67 tOR5d2= 0.105 
AXOR2d1=3.00 tXOR2d1=0.090 

AIVd1 =1 tIVd1=0.029 
ANID6 =3.67 tNID6 =0.054 
AMX2d1 =3.00 tMX2d1=0.078 
AMX2d2 =3.33 tMX2d2=0.076 
AMX2d4 = 4.33 tMX2d4 = 0.092 
AMX4d1 =6.33 tMX4d1=0.105 
AFD1Q = 5.67 tFD1Q_SU = 0.094 

Tab. 3. Hardware amount and time delays for STDH150 basic 
elements. 

 

Half-adder (HA) delays [ns] Full-adder (FA) delays [ns] 
tHAd1_ACO=0.054 tFAd1_CICO=0.083  
tHAd1_BCO=0.055 tFAd1_ACO=0.122  
tHAd1_AS= 0.088  tFAd1_BCO=0.143  
tHAd1_BS= 0.073  tFAd1_AS=0.121  
tHAd2_ACO=0.057  tFAd1_BS=0.139  
tHAd2_BCO=0.058  tFAd2_CICO=0.089  
tHAd2_AS= 0.092  tFAd2_ACO=0.130  
tHAd2_BS= 0.074  tFAd2_BCO=0.150  

 tFAd2_AS=0.129  
 tFAd2_BS=0.150  

Tab. 4. Individual delays between input and output nodes for 
FAs and HAs  (STDH150). 
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