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Abstract. Traditional direction-of-arrival (DOA) estimation
techniques perform Nyquist-rate sampling of the received
signals and as a result they require high storage. To re-
duce sampling ratio, we introduce level-crossing (LC) sam-
pling which captures samples whenever the signal crosses
predetermined reference levels, and the LC-based analog-
to-digital converter (LC ADC) has been shown to efficiently
sample certain classes of signals. In this paper, we focus on
the DOA estimation problem by using second-order statis-
tics based on the LC samplings recording on one sensor,
along with the synchronous samplings of the another sen-
sors, a sparse angle space scenario can be found by solving
an `1 minimization problem, giving the number of sources
and their DOA’s. The experimental results show that our
proposed method, when compared with some existing norm-
based constrained optimization compressive sensing (CS) al-
gorithms, as well as subspace method, improves the DOA es-
timation performance, while using less samples when com-
pared with Nyquist-rate sampling and reducing sensor activ-
ity especially for long time silence signal.
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1. Introduction
Direction-of-arrival (DOA) estimation of propagating

plane waves is an extensively studied problem in the field
of array signal processing, sensor networks, remote sens-
ing, etc. To determine signal source DOAs using multiple
measurements vectors, minimum variance distortionless re-
sponse (MVDR), and multiple signal classification (MUSIC)
algorithms are commonly used [1]. By construction, all
these traditional DOA estimation methods require Nyquist-
rate sampling of the received signals, which may result in
high storage and bandwidth requirements in many sensing
systems.

Compressive Sensing (CS) [2] offers a framework for
simultaneous sensing and compression of finite-dimensional

vectors enabling a potentially significant reduction in the
sampling and computation cost at a limited capability sens-
ing system, which depends on linear dimensionality reduc-
tion. And the basis pursuit strategy has been used for formu-
lating the DOA estimation problem as a dictionary selection
problem where the dictionary entries are produced by dis-
cretizing the angle space and then synthesizing the sensor
signals for each discrete angle. Sparseness in angle space
implies that only a few of the dictionary entries will be re-
quired to match the measurements.

The compressive beamforming (CBF) approach based
on `1 minimization [3, 4] can only take random projections
of the received signals at the sensors and has a model for
these as delayed and weighted combinations of multiple sig-
nal sources coming for different angles, which is substan-
tially different from MVDR, MUSIC and some other con-
vex optimization approaches based on regularization [5, 6]
which require Nyquist-rate sampling. Although the CBF
method does not require the Nyquist-rate sampling at all
sensors, it still needs Nyquist-rate sampling at one sen-
sor, which is called reference sensor (RS). Besides, the
CBF method just considers the standard CS discrete frame-
work without referring the hardware realization of com-
pressed sampling for practical application. And some ex-
isting universal CS measurement instruments cannot be usu-
ally used in practice (at least cannot used for the real-time
purpose) because of its time-consuming data collection and
the difficulty of physical realization. The random convolu-
tion based sampling strategy has been investigated by [7],
[8] and [9] to solve this drawback. To avoid hardware
realization challenges, we acquire less samples from ana-
log signal directly by using Level-crossing (LC) sampling
[10, 11, 12, 13, 14, 15, 16, 17], in which an analog input
signal is compared with a set of quantization levels (can
also be called reference levels) and a sample is produced
only when the input analog signal changes enough to cross
a level, thus it results in nonuniform sampling and saves dy-
namic power in the analog-to-digital conversion (ADC) and
following DSP for those powered by a very small battery and
that involve ”bursty” signals with varying activity over time,
possibly including long periods of silence. Sampling by LC
can mimic the behavior of such input signals. As such, the
data collection rate is dictated by the signal itself, rather than
Nyquist sampling frequency. One direct benefit of such sam-
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pling is that it can reduce number of samples without sam-
pling in the non-bursty intervals. Higher instantaneous band-
width can be offered when LC sampling is performed, and
resolution is improved without overall increase in bit rate
or power consumption because the significant information
in the bursty intervals is sampled. The data transmission rate
can be reduced by using LC sampling in communication sys-
tems [10, 11].

In order to obtain samples efficiently for certain types
of input, the levels within the amplitude range of the input
need to be appropriately assigned in the ADC. In this work,
we assume the input dynamic range is known, and we im-
plement a fixed scheme that uniformly assigns levels in the
ADC. Usually, we are interested in reconstructing a single
signal from LC samplings. In this paper, we consider the
case for DOA estimation using a sensor array, where we try
to reconstruct a vector of sources’ positions using second-
order statistics based on LC samplings of the RS and syn-
chronous samplings of another sensors.

The paper is organized as follows, In Section 2, we pro-
vide the LC sampling scheme and LC ADC architecture. We
then introduce the DOA estimation algorithm using second-
order statistics based on multiple measurement vectors and
a sparse vector finding in Sec. 3, where we also provide
complete algorithmic descriptions and corresponding guar-
anteed performance analysis results. In Sec. 4, a number
of simulation results of our proposed approach is compared
with that of the state-of-art CS recovery methods and con-
ventional method. Finally, we conclude with lots of simu-
lation results described on speed signals which are collected
using LC sampling of the RS and non-uniform samples of
another sensors by keeping synchronous sampling of the RS
in Section 5.

2. Nonuniform Signal Processing Tool

2.1 Level Crossing Sampling Scheme
The Level Crossing sampling scheme (LCSS) is one

of the signal-dependent sampling schemes, and it is a bet-
ter choice for sampling the time-varying signals. For LCSS,
a sample on the RS is captured only when the input analog
signal x(t) crosses one of the quantization levels which are
uniformly spaced by a quantum q, and the samples depend
on x(t) variations. The (xn, tn) is a sample pair with an am-
plitude xn and a time tn, xn is exactly equal to one of the
quantization levels, and current sampling instant tn can be
computed by adding the time elapsed dtn between the tn and
tn−1 from the previous instant tn−1,

tn = tn−1 +dtn. (1)

2.2 LC-based Analog-to-Digital Converter
Usually, the sampling instants are exactly known for

conventional sampling, and the ADC number of bits deter-
mines the ADC resolution as sample amplitudes are quan-
tization. In this paper, we consider a B-bit (2B reference
levels) LC ADC which equipped with an array of 2B analog
comparators, and the comparators compare with input with
corresponding reference levels. Without loss of generality,
we assume an amplitude-bound signal x(t) ∈ [-A/2, +A/2]
that is T second long, and the LC ADC has 2B levels with
uniform spacing q = A/2B. Let {`1, `2, ..., `2B} represent all
the reference levels used by comparators. The ADC com-
pares the input x(t) with all the reference levels and it will
record a level crossing with one of ` if the following com-
parison holds for a `i:

(x((n−1)τ)− `i)(x(nτ)− `i)< 0, i = 1,2, ...,2B. (2)

That is the LC ADC only records the quantization value
Q(si) of the true signal si in the interval [(n− 1)τ,nτ]. In
order to minimize the consuming power, we can also ran-
domly choose the P of the 2B comparators are on at any time
according to [14], that is, a new set of P reference levels is
picked and updated every v seconds (v is a constant), which
can be accomplished by a digital circuit that periodically up-
dates the set of on comparators by controlling power supply.
Note that, in this paper, we need to add an external circuit
to make the LC ADC sampling instants of the RS trigger
the sampling instants of another sensors, which ensure the
sampling instants on the RS and another sensors are syn-
chronous.

3. DOA Estimation Method
Assume that we consider a far-field consisting of

K sources and a sensor array of (M +1) sensors with an ar-
bitrary geometry. And we also assume the sensor positions
are known and are given by ηi = [xi,yi,zi]

T (i = 0,1, ...,M).
Our goal is to determine the DOAs of the signal sources
by using the received signals. We assume the RS receives
a superposition of the time-domain source signals, x0(t) =
∑

K
k=1 sk(t)+ n0(t) and the n0(t) is the noise at the RS, then

the sensor i observes the time-delayed superimposed source
signal,

xi(t) =
K

∑
k=1

sk(t +∆i(πk))+ni(t), (3)

where πk = (θk,φk) is the angle pair consisting of the un-
known azimuth and elevation of the source, and ∆i(πk) is the
relative time delay at the i-th sensor for a source with DOA
πk with respect to the RS. Here finding the DOA is equiva-
lent to finding the relative time delay, and the time delay ∆i
in (3) can be determined from geometry:
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∆i(πk) =
1
c

η
T
i

 cosθk sinφk
sinθk sinφk
cosφk

 , (4)

where c is the speed of the propagating wave in the medium.

The source angle pair πk lies in the product of space
[0,2π)θ× [0,π)φ, which must be discretized to form an an-
gle dictionary (sparsity basis). Here, we enumerate a finite
set of angles for both azimuth and elevation to generate a set
of angle pairs B = {π1,π2, ...,πNt}, where Nt determines the
angular resolution. Let b denote the sparsity pattern which
selects members of the discretized angle-pair set B. A non-
zero positive value at index j of b indicates the presence of
a target at the angle pair π j. In particular, assume the angle
space is discretized in Nt points in all, the sparsity transform
matrices {ΨΨΨi}M

i=1 will be of dimension Ns ×Nt(Ns � Nt),
where Ns is the sample number. The ΨΨΨi for sensor i can be
constructed using proper time shifts of x0(t) for each π j in
B, and the time shift for sensor i with respect to the RS using
(4).

Assume the RS records the signal source using LC
sampling as x0 = [x0(tlc1),x0(tlc2), ...,x0(tlcTN )], then the
sampling data on the sensor i can be described as

hi = [xi(tlc1),xi(tlc2), ...,xi(tlcTN )]
T , (5)

where tlci(i = 1, ...,TN) are the LC sample instants, xi(tlc j)
denotes a sample at sample instant tlc j for sensor i, and TN
is the number of LC samples. Besides, the j-th column of
ΨΨΨi corresponding to the time shift of the sampled signal x0
corresponding to the j-th index of the sparsity pattern vector
b, which indicates the proper time shift corresponding to the
angle pair π j :

[ΨΨΨi] j = [x0(tlc1 +∆i(π j)),x0(tlc2 +∆i(π j)), ...,

x0(tlcTN
+∆i(π j))].

(6)

The matrix ΨΨΨi is the sparsity basis corresponding to all dis-
cretized angle pairs B at the i-th sensor. Considering the ef-
fect of additive sensor noises, the sparsity pattern vector can
be recovered using the Dantzing selector [18] convex opti-
mization problem:

b̂ = argmin‖b‖1 s. t.
∥∥ΨΨΨ

T (H−ΨΨΨb)
∥∥

∞
< ε, (7)

where H = [hT
1 , ...,h

T
M]T , and ΨΨΨ = [ΨΨΨT

1 , ...,ΨΨΨ
T
M]T . ε is a re-

laxation variable which makes the true b feasible with high
probability, since the formulated problem in (7) is a convex
optimization problem [19], so we solve it numerically using
existing solver [20], and we can obtain a global optimum for
the problem (7).

The terms ΨΨΨ
T H and ΨΨΨ

T
ΨΨΨ in the (7) constraint are ac-

tually auto- and cross-correlations, respectively. Take two
signal sources s1(t) and s2(t) for example, the recorded LC
sampling signal at the RS is

x(tlc) = s1(tlc)+ s2(tlc). (8)

Assume the signal amplitudes are equal, and the shifted RS
LC sample signal at the i-th sensor is

x(tlc +∆i(πn)) = s1(tlc +∆i(πn))+ s2(tlc +∆i(πn)) (9)

when the assumed DOA is πn, and this time shift of the RS
LC sample signal is used to populate the n-th column of the
ΨΨΨ matrix. While the true received sample signal on the i-th
sensor is

xi(tlc) = s1(tlc +∆i(π1))+ s2(tlc +∆i(π2)), (10)

where there are different time shifts for the two signals. For
ΨΨΨ

T H we get a column vector whose n-th element is
M

∑
i=1

[R11(∆i(πn),∆i(π1))+R12(∆i(πn),∆i(π2))+

R12(∆i(πn),∆i(π1))+R22(∆i(πn),∆i(π2))],

(11)

where R11 is the autocorrelation of signal s1(tlc), R22 is the
autocorrelation of signal s2(tlc), R12 is the cross-correlation
between signal s1(tlc) and s2(tlc). For the matrix ΨΨΨ

T
ΨΨΨ, the

element in the n-th row and r-th column is
M

∑
i=1

[R11(∆i(πn),∆i(πr))+R12(∆i(πn),∆i(πr))+

R12(∆i(πn),∆i(πr))+R22(∆i(πn),∆i(πr))].

(12)

According to the two same assumptions as [3, 4]: small cross
correlation for signals incoherent assumption, and small au-
tocorrelations for signals decorrelate at small lags assump-
tion. In order to make ΨΨΨ

T H−ΨΨΨ
T

ΨΨΨb small, we should make
sure that the large elements in the vector ΨΨΨ

T H are canceled
by the large terms in ΨΨΨ

T
ΨΨΨb. According to the assumptions,

the two largest elements in ΨΨΨ
T H occur when πn = π1 and

πn = π2, because these are two peaks in the autocorrelations
R11(∆i(π1),∆i(π1)) and R22(∆i(π2),∆i(π2)). When we can-
cel the element R11(∆i(π1),∆i(π1)) using the row of ΨΨΨ

T
ΨΨΨ

corresponding to πn = π1, then the vector b must select the
column where πr = π1. Likewise, to cancel the element
R22(∆i(π2),∆i(π2)), we use the πn = π2 row and the πr = π2
column. And all the other elements will be relatively small
according to the above assumptions.

About the constraint parameter ε, it will allow the
matching of the two signals at their true DOAs. Then the
`1 minimization of the selector vector b will tend to pick the
signals whose autocorrelation is large or the larger of the two
for different signal amplitudes. Besides, the method can also
be extended to the case with K unknown sources at DOAs
(θ1,φ1),(θ2,φ2), ....,(θK ,φK) impinging on the array.

4. Simulation Results
The performance of our proposed approach is evaluated

in this section using a linear array of 11 sensors uniformly
placed on the x-axis, and the first sensor is selected as RS
which is placed to be at the origin. For all the addressed
scenarios, a DOA space is discretized into a 1◦ angular grid.
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To demonstrate our proposed method, we will compare the
DOA estimation performance with `1-SVD [21], CBF algo-
rithm [3] and MUSIC method in respective of DOA estima-
tion performance and sample number. Note that, in the CBF
method, assume each sensor takes 20 compressive measure-
ments along with a RS with high-rate sampling frequency
(much higher than Nyquist-rate sampling) for constructing
the dictionary ΨΨΨ, and another algorithms use Nyquist sam-
pling of each sensor in our simulation. Besides, to show
the advantages of our proposed method, the following eval-
uation measures are employed to evaluate the signal recon-
struction quality of the RS receiving data at LC sampling
algorithm: the correlation coefficient (CC), the compressive
ratio (CR), and the DOA estimation performance: probabil-
ity of resolved. CC is used to evaluate the similarity between
the original signal and its reconstruction by using the data
samples:

CC = (
n

∑
i=1

(xi− x̄)(yi− ȳ))

/
(n−1)sxsy, (13)

where xi are re-sampled values of the original signal X =
[x1,x2, ...,xn], and yi are re-sampled values of the reconstruc-
tion signal Y = [y1,y2, ...,yn], x̄ and ȳ are sample means of
X and Y, sx and sy are the sample standard deviations of X
and Y, respectively. The CR between the Nyquist sampling
signal and LC sampling signal can be described as

CR =
Sorig

Slcs
, (14)

where Sorig and Slcs represent Nyquist sampling number and
LC sampling number respectively. And the probability of
resolved is defined as follows, it is said to be resolved, if
for any signal with DOA θk, its estimate θ̂k is such that
|θk− θ̂k| ≤ 1◦.

4.1 Angular Resolution Analysis
First, we will analysis the angular resolution of our

proposed method, and the achievable resolution of our ap-
proach is evaluated and compared with other tested methods
in this subsection, two synthetic speech sources are taken
and placed in the far-field of the array, and we set 60 refer-
ence levels for the RS ADC, that is we only make 60 com-
parators work for a 6-bit LC ADC. The two speed signal
sources used in our simulation are shown in Fig. 1. The RS
signal is the sum of the two source signals, and Fig. 2 gives
the part of signal we used for DOA estimation and recon-
structed signal using Akima interpolation [22] for the LC
samplings.

Considering an SNR of 10 dB, subplots in Fig. 3 show
two scenarios with angular separation of ∆θ = [6◦,18◦] be-
tween two uncorrelated sources, respectively. From Fig. 3,
we can see that our approach, MUSIC method outperforms
CBF approach and `1-SVD method in scenarios with closely
spaced sources (∆θ = 6◦), and for a large separation angles
(∆θ = 18◦) situation, all the methods can estimate the sig-
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Fig. 1. Two input speech signal sources and reference signal.
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Fig. 3. Angular resolution of estimated spatial spectrum in two
uncorrelated sources scenario with SNR=10 dB, and an-
gular separation between source DOAs: ∆θ = [6◦,18◦].

nal DOAs correctly, and thus the simulation curves are over-
lapped. But, for our sample signal, we just use 896 sam-
ples, that is, compared with Nyquist samples (1167 sam-
ples using fs = 7350 Hz), the CR is 1.3025 (if we consider
the whole signal, the CR is 4.7445). Meanwhile the CC
is 0.9893, and the CC using Nyquist sampling is 0.9901,
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which demonstrate that the LC sampling method can obtain
comparable signal reconstruction performance as that of the
Nyquist sampling. Besides, our method will show more ad-
vantages in respect of using less samples and reducing the
sensor activity especially for long time silence signal. Note
that, we add the simulation result of our DOA estimation
method using Nyquist samplings, which demonstrates our
method using LC samplings can reduce sensor activity to
save the sensor energy.

Furthermore, we can see in the Fig. 4 that the num-
ber of LC samples varies with input, which can be explained
when we look at the sample signal in the third subpgraph of
Fig. 1. More samples only when the utterance occurs. The
LC’s adaptive nature prevents it from registering many more
samples during quiescent interval where there is no informa-
tion, and enhances its efficiency.

4.2 DOA Estimation Performance
In this subsection, the influence of SNR on the spatial

spectrum estimation performance of all tested methods was
analyzed in this scenario via probability of resolved criterion
in over 500 trials. Fig. 5 shows the probability of resolved of
the spatial spectrum estimation at various levels of SNR for
three uncorrelated signals θ = [−20◦,41◦,47◦], and the main
challenge in this scenario stems from the small separation
between two sources θ = [41◦,47◦]. From Fig. 5, we can see
that the MUSIC and our proposed method outperform much
better than that of `1-SVD and CBF approaches, and the per-
formance of our method coincides with that of MUSIC at all
SNR levels, while the `1-SVD was unsuccessful in estimat-
ing all DOAs correctly for all values of the SNR, and thus
`1-SVD is not visible in Fig. 5.

5. Conclusion
In this work, we demonstrate the feasibility of our pro-

posed DOA estimation method by using sparse recovery al-
gorithm with second-order statistics. In our solution, we first
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Fig. 5. Probability of resolved vs. SNR for three uncorrelated
signal sources.

obtain the LC samplings on the RS and non-uniform sam-
ples of another sensors by keeping synchronous sampling of
the RS; then we exploit second-order statistics and the spar-
sity of the sources in the angle domain, and the obtained
sparse pattern by solving an `1 minimization problem deter-
mines the number of targets and their corresponding DOAs.
We accomplish this by demonstrating that our wireless array
scheme is robust against noise in the LC sampling samples,
which also can be used to recover the data of the RS. And
the fact that all array sensors uses even-based measurements
will reduce the amount of data that must be communicated
of sensors, which has potential in wireless sensor networks
where arrays would be formed from distributed sensors.

Acknowledgements
This work was supported in part by the National Nat-

ural Science Foundation of China under grant 60772146,
61471103, the Applied Basic Research Program of Sichuan
Province under grant 14JC0616 as well as the Program for
New Century Excellent Talents in University under grant
NCET-12-0095.

References

[1] JOHNSON, D. H., DUDGEON, D. E. Array Signal Process-
ing:Concepts and Techniques. Prentice Hall, 1993.

[2] DONOHO, D. L. Compressed sensing. IEEE Transactions on In-
formation Theory, 2006, vol. 52, no. 4, p. 1289–1306. DOI:
10.1109/TIT.2006.871582

[3] GURBUZ, A., MCCLELLAN, J. H., CEVHER, V. A compres-
sive beamforming method. In Proceedings of 2008 IEEE Inter-
national Conference on Acoustics, Speech, and Signal Process-
ing (ICASSP). Las Vegas (NV, USA), 2008, p. 2617–2620. DOI:
10.1109/ICASSP.2008.4518185

[4] GURBUZ, A. C., CEVHER, V., MCCLELLAN, J. H. Bearing esti-
mation via spatial sparsity using compressive sensing. IEEE Trans-



RADIOENGINEERING, VOL. 24, NO. 1, APRIL 2015 213

actions on Aerospace and Electronic Systems, 2012, vol. 48, no. 2,
p. 1358–1369. DOI: 10.1109/TAES.2012.6178067

[5] FUCHS, J. J. On the application of the global matched filter to
DOA estimation with uniform circular arrays. IEEE Transactions
on Signal Processing, 2001, vol. 49, no. 4, p. 702–709. DOI:
10.1109/78.912914

[6] FUCHS, J. J. Linear programming in spectral estimation. Appli-
cation to array processing. In Proceedings of 1996 IEEE Inter-
national Conference on Acoustics, Speech, and Signal Processing
(ICASSP). Atlanta (GA, USA), 1996, vol. 6, p. 3161–3164. DOI:
10.1109/ICASSP.1996.550547

[7] TROPP, J. A., WAKIN, M. B., DUARTE, M. F., BARON, D.,
BARANIUK, R. G. Random filters for compressive sampling and re-
construction. In Proceedings of 2006 IEEE International Conference
on Acoustics, Speech, and Signal Processing (ICASSP). Toulouse
(France), 2006. DOI: 10.1109/ICASSP.2006.1660793

[8] ROMBERG, J. Compressive sensing by random convolution. SIAM
Journal on Imaging Sciences, 2008, vol. 4, no. 4, p. 1098–1128. DOI:
10.1137/08072975X

[9] LI, L. L., LI, F. Compressive sensing based robust signal sam-
pling. Applied Physics Research, 2012, vol. 4, no. 1, p. 30–41. DOI:
10.5539/apr.v4n1p30

[10] GUAN, K. M., SINGER, A. C. A level-crossing sampling
scheme for non-bandlimited signals. In Proceedings of 2006
IEEE International Conference on Acoustics, Speech, and Sig-
nal Processing (ICASSP). Toulouse (France), 2006, vol. 3. DOI:
10.1109/ICASSP.2006.1660670

[11] GUAN, K. M., SINGER, A. C. Opportunistic sampling of
bursty signals by level-crossing – an information theoretical ap-
proach. In 41st Annual Conference on Information Sciences
and Systems (CISS). Baltimore (USA), 2007, p. 701–707. DOI:
10.1109/CISS.2007.4298396

[12] TSIVIDIS, Y. Digital signal processing in continuous time: a pos-
sibility for avoiding aliasing and reducing quantization error. In
Proceedings of 2004 IEEE International Conference on Acoustics,
Speech, and Signal Processing (ICASSP). Montreal (Canada), 2004,
vol. 2, p. 589–592. DOI: 10.1109/ICASSP.2004.1326326

[13] GUAN, K. M. Opportunistic Sampling by Level-Crossing, Ph.D.
thesis. Urbana (USA): University of Illinois at Urbana-Champaign,
2008.

[14] GUAN, K. M., KOZAT, S. S., SINGER, A. C. Adaptive reference
levels in a level-crossing analog-to-digital converter. EURASIP Jour-
nal on Advances in Signal Processing, 2008, vol. 2008, no. 183, Ar-
ticle ID 513706, 11 pages. DOI: 10.1155/2008/513706

[15] SENAY, S., OH, J. S., CHAPARRO, L. F. Regularized signal re-
construction for level-crossing sampling using Slepian functions.
Signal Processing, 2012, vol. 92, no. 4, p. 1157–1165. DOI:
10.1016/j.sigpro.2011.11.017

[16] GRUNDE, U. Non-stationary signal reconstruction from level-
crossing samples using Akima Spline. Electronics and Elec-
trical Engineering, 2012, vol. 117, no. 1, p. 9–12. DOI:
10.5755/j01.eee.117.1.1044

[17] AKOPYAN, F., MANOHAR, R., APSEL, A. B. A level-crossing
flash asynchronous analog-to-digital converter. In Proceedings
of 2006 IEEE International Symposium on Asynchronous Cir-
cuits and Systems. Grenoble (France), 2006, p. 12–22. DOI:
10.1109/ASYNC.2006.5

[18] CANDES, E., TAO, T. The Dantzig Selector: Statistical estimation
when p is much larger than n. Annals of Statistics, 2007, vol. 35,
no. 6, p. 2313–2351. DOI: 10.1214/009053606000001523

[19] BOYD, S., VANDENBERGHE, L. Convex Optimzation. Cambridge
(UK): Cambrige University Press, 2003.

[20] TOH, K. C., TODD, M. J., TUTUNCU, R. H. SDPT3-a Matlab soft-
ware package for semidefinite programming. Optimization Methods
and Software, 1999, p. 545–581.

[21] MALIOUTOV, D., CETIN, M., WILLSKY, A. A sparse signal re-
construction perspective for source localization with sensor arrays.
IEEE Transactions on Signal Processing, 2005, vol. 53, no. 8,
p. 3010–3022. DOI: 10.1109/TSP.2005.850882

[22] AKIMA, H. A new method of interpolation and smooth curve
fitting based on local procedures. Journal of the Association for
Computing Machinery, 1970, vol. 17, no. 4, p. 589–602. DOI:
10.1145/321607.321609

About the Authors. . .

Hui CHEN was born in Henan, China. She received the B.S.
degree in electronics information engineering from South-
west University for Nationalities (SWUN) in 2007, and
the Ph.D degree from University of Electronic Science and
Technology of China (UESTC) in 2013. Her research in-
terests include array signal processing, compressive sensing
and wireless communication.

Qun WAN was born in Nanjing, China. He received the B.S.
degree from Nanjing University in 1993, the M.S. degree
from UESTC in 1996, and the Ph.D. degree from UESTC
in 2001. During 2001-2002, he was a post-doctor at Ts-
inghua University, where he participated in cellular localiza-
tion program. In 2003, he was a Technical Staff at UTstar-
com. Since 2004, he has been a Professor in the Department
of Electronic Engineering at the University of Electronic Sci-
ence and Technology of China (UESTC). His research inter-
ests include array signal processing and compressed sensing,
mobile and indoor localization. He is a Senior Member of
CIE.

Rong FAN was born in Sichuan, China. He received the
B.E. degree from Chengdu University of Technology in
2007. From September 2007 to July 2010, he was with the
University of Electronic Science and Technology of China
(UESTC), where he received the M.E degree in 2010. He
received the Ph.D degree from University of Electronic Sci-
ence and Technology of China (UESTC) in 2014. His spe-
cific research areas of current interest include sparse and
array signal processing, adaptive beamforming, and param-
eter estimation with applications to radar and communica-
tions.

Fei WEN received the B.S. degree in electronic engineer-
ing from University of Electronic Science and Technology
of China (UESTC) in 2006. He received the Ph.D degree
in communications and information engineering at UESTC
in 2013. He is part of the Teaching Staff at the Air Force
Engineering University. His main research interests are sta-
tistical signal processing, communications, and estimation
theory.


