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Abstract. This work presents a continuous and differen-
tiable approximation of a Tantalum oxide memristor model
which is suited for robust numerical simulations in soft-
ware. The original model was recently developed at Hewlett
Packard labs on the basis of experiments carried out on
a memristor manufactured in house. The Hewlett Packard
model of the nano-scale device is accurate and may be taken
as reference for a deep investigation of the capabilities of the
memristor based on Tantalum oxide. However, the model
contains discontinuous and piecewise differentiable func-
tions respectively in state equation and Ohm’s based law.
Numerical integration of the differential algebraic equation
set may be significantly facilitated under substitution of these
functions with appropriate continuous and differentiable ap-
proximations. A detailed investigation of classes of possible
continuous and differentiable kernels for the approximation
of the discontinuous and piecewise differentiable functions
in the original model led to the choice of near optimal can-
didates. The resulting continuous and differentiable DAE
set captures accurately the dynamics of the original model,
delivers well-behaved numerical solutions in software, and
may be integrated into a commercially-available circuit sim-
ulator.
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1. Introduction
The memristor and its applications represent one of the

most interesting fields of research. The circuit theoretic in-
troduction of the memristor traces back to 1971, when L.
Chua [1] presented a new fundamental two-terminal element
where a nonlinear relation links the time integrals of voltage
and current, namely the flux across and the charge through
the device respectively. Thanks to the crucial influence of
the history of dynamics of the memristor on its current be-
havior, this device exhibits memory capability. This is the

reason why L. Chua coined the term memory resistor, ab-
breviated as memristor, to denote it. Before the pioneering
work from Chua, circuit theory classified only three fun-
damental electrical bipoles, namely the resistor, the induc-
tor, and the capacitor. As a result, the advent of the mem-
ristor [2] represented a sensational breakthrough in electri-
cal engineering. Nonetheless, the topic of memristors [3]
mostly attracted the attention of theoretically-inclined re-
searchers for the following three decades, until, in 2008,
a group of Hewlett Packard (HP) engineers, supervised by
S. Williams [4], uncovered the emergence of fingerprints
[5] of memristive behavior [6] in nature, while studying the
switching property of a double-layer nano-scale film based
on Titanium dioxide and sandwiched between two metal-
lic contacts [7]. Since then the numbers of academic pa-
pers concerning the memristor has been increasing exponen-
tially. The practical applications of the memristor are var-
ious. The most interesting field for the industry concerns
the design of non-volatile memories. Real memristors have
nanoscale dimension, consume negligible power, and may
switch at very high speed. Furthermore a two-dimensional
memristor array1 may be laid directly on top of CMOS cir-
cuitry, supporting the continuing nano-electronics industry
trend to reduce integrated circuit (IC) area, and leveraging
upon the compatibility between the well-established CMOS
technology and memristor manufacturing process. Mem-
ristors are much more than ”mere” memory cells. They
also exhibit computing capability as demonstrated in nu-
merous studies [10]. They may pave the way to the intro-
duction of novel computer architectures where processing
unit and memory are no longer physically separated, thus
clearly standing out from the classical Von Neumann com-
puting approach, and paving the way to the era of mem-
ory intensive computing [11]. Moreover, the memristor
displays a close resemblance to a neural synapse. In fact
the history-dependent conductance of the memristor may
mimic the plasticity of the synaptic weight, which is finely
tuned upon changes in the ionic flow through the synapse.
Memristors may support various synaptic rules at the ori-
gin of neural learning, including habituation, long-term po-
tentiation (LTP) [12], Hebb’s and anti-Hebb’s rules [13],
spike-timing-dependent-plasticity [14]-[15] (based on either
pairs or triplets of spikes), and even spike-rate-dependent-

1The crossbar architecture [8] is a planar arrangement of memristor switches obtained by running two sets of parallel conducting nanowires one over
the other and filling the junction spaces between the crossing metallic lines with some material with history-dependent electrical conductance. Tantalum
and Hafnium oxide-based materials are currently considered as the most promising materials in the fabrication of memristors for non-volatile memory
applications [9].
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plasticity. The availability of CMOS circuits for the emula-
tion of neurons, and the possibility to stack over them multi-
ple layers of memristor arrays, may lead to the development
of a bio-inspired computing engine with massively-parallel
signal processing power, capable to reproduce the complex
dynamics of the neural networks of the human brain. Fi-
nally, there exist memristors capable to amplify infinitesi-
mal fluctuations of energy, e.g. the Niobium dioxide-based
nanostructure manufactured at HP labs [16]. The local ac-
tivity of these memristors and the complex dynamics which
may emerge in circuits employing them (for example the os-
cillatory behavior of a simple locally active memristor cir-
cuit built at NaMLab is investigated in [17]) may lead to the
development of new circuits [18] which could outperform
state-of-the-art electronic systems or complement their func-
tionalities. This wide plethora of interesting applications ur-
gently requires the developments of accurate mathematical
models in order to uncover the full potential of memristors
in the electronics of the future. An accurate mathematical
model for a TaO memristor nano-device, fabricated at HP
labs, was recently introduced [19] (Section 3 revisits its for-
mulation, after a preliminary review of the latest memristor
classification, given in Section 2). In view of the excellent
performance of the HP nano device as non-volatile memory
cell [20] the study of the relative model is timely. In this pa-
per investigations are focused on the derivation of a mathe-
matical representation of the original model suited for robust
numerical simulations in software. In particular, past inves-
tigations have revealed the emergence of convergence issues
in numerical integration of memristor differential algebraic
equations (DAE) containing discontinuous and/or piecewise
differentiable functions [21]. Therefore, the computation
of a computer-based solution to the original TaO memristor
model may be facilitated through the introduction of suitable
continuous and differentiable approximations to the discon-
tinuous and piecewise differentiable functions appearing in
state equation and Ohm’s based law respectively. A thor-
ough investigation of a set of candidate kernels led to the se-
lection of the most appropriate approximating functions (see
Section 4 for details), and resulted into an accurate math-
ematical description suited for robust numerical integration
in software, as demonstrated in Section 5. The model may
be integrated in circuit simulators available on the market,
e.g. LTspice [22]. A circuit implementation of the continu-
ous and differentiable DAE set, coded in LTspice version IV,
and presented in Section 6 in the form of a netlist, may be
of interest to the circuit designer eager to explore the design
opportunities the HP TaO resistance switching memory [23]
may open up in the field of nano electronics.

2. Brief Review on Memristor Classes
A nth-order extended memristor is defined as [24]

dx
dt

= f(x,u), (1)

y = H(x,u)u, (2)

where u ∈ R and y ∈ R are input and output respectively (if
one is the voltage vm across the memristor, the other is the
current im through it), x ∈ Rn denotes the state vector, and
f(·, ·) : Rn×R→Rn stands for the vector field governing the
state evolution with time. Importantly, H(·, ·) : Rn×R→ R
is a scalar state- and input-dependent function satisfying the
constraint H(x,0) = 0 irrespective of x, and representing the
memristance M(x,u) or memductance W (x,u) under current
or voltage input respectively. The memristor model anal-
ysed in Section 3 falls into the class of voltage-controlled ex-
tended memristors. Other exemplars of the extended mem-
ristors, based upon a suitable combination between a static
nonlinear two-port and a dynamic one-port were presented
in [25]. A subclass of the class of memristors described by
equations (1)-(2), known as generic memristors [24], is ex-
pressed by the following DAE set:

dx
dt

= f(x,u), (3)

y = H(x)u. (4)

Here, under current (voltage) input the memristance
(memductance) is a function of the state only. An example of
generic memristors are the Sodium and Potassium ion chan-
nel memristors [26]. With reference to first-order systems,
a very important subclass of generic memristors consists of
ideal memristors, where the state and Ohm’s based equations
assume the following form:

dx
dt

= u, (5)

y = H(x)u. (6)

Here the state is either the charge qm =
∫ t
−∞

im(t ′)dt ′

through or the flux ϕm =
∫ t
−∞

vm(t ′)dt ′ across the memristor,
therefore the state evolution function is simply expressed by
current or voltage input respectively. An ideal memristor
may alternatively be described through the nonlinear consti-
tutive relationship between charge and flux, namely

ϕm = ϕm(qm) (7)

under current input, and

qm = qm(ϕm) (8)

under voltage input. From the class of generic memristors
a further subclass of memristors, known as ideal generic
memristors, may be identified. Without loss of generality,
referral to first-order systems is made here. The DAE set of
these circuit elements may be cast as

dx
dt

= f (x)u, (9)

y = H(x)u. (10)

The name of these circuit elements originates from
their equivalence to ideal memristors under suitable condi-
tions. In fact, referring to the current-controlled case (the
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voltage input scenario descends by duality), the equations of
an ideal generic memristor (i.e. (9)-(10) with H(x) = M(x))
may be reduced to the constitutive equation of an ideal mem-
ristor (i.e. (7)) provided there exists a one-to-one differen-
tiable function x = x̂(qm) such that

f (x) =
dx̂(qm)

dqm
|qm=x̂−1(x), (11)

M(x) =
dϕ(qm)

dqm
|qm=x̂−1(x). (12)

It follows that an infinite number of ideal generic mem-
ristor siblings [24] descends from each ideal memristor. As
a result, the class of ideal generic memristors includes all the
ideal memristors as a subset.

3. Model
The mathematical model of the voltage-controlled

TaOx-based memristor nano-device fabricated at HP Labs
and reported in [19] is expressed by the following DAE set

dx
dt

= f (x,vm)

= Asinh
(

vm

σo f f

)
exp

(
−

x2
o f f

x2

)
exp
(

1
1+βmimvm

)
step(−vm)+Bsinh

(
vm

σon

)
exp
(
− x2

x2
on

)
exp
(

imvm

σp

)
step(vm), (13)

im = W (x,vm)vm, (14)

which falls into the class of equations (1)-(2), where the sys-
tem order is n= 1, the input and output are respectively given
by u = vm and y = im, while H(x,u) = W (x,vm) is the state
and input-dependent memductance function, expressed by

W (x,vm) = Gmx+aexp
(

b
√
|vm|
)
(1− x) (15)

The memristor state x represents the volume fraction
of the conductive channel. As a result, it has a limited
domain of existence, namely the closed set [0,1]. The
lower and upper bound of this set respectively refer to the
fully-insulating and fully-conductive state of the nanostruc-
ture. In (13) step(·) stands for the step function, defined as
step(vm) =

1+sign(vm)
2 , where sign(·) denotes the sign func-

tion. The values of the model parameters [19] are given in
Tab. 1. We shall use these values in all the investigations
described in this manuscript.

A/s−1 σo f f /V xo f f β/A−1V−1

10−10 1.3 ·10−2 4 ·10−1 500

B/s−1 σon xon
1 ·10−4 4.5 ·10−1 6 ·10−2

σp /A−1V−1 Gm /S a/S b/V−
1
2

4 ·10−5 2.5 ·10−2 7.2 ·10−6 4.7

Tab. 1. Values of the parameters in the model equations of the
HP TaOx-based memristor.

4. Model Approximation
This section presents the key result of this research con-

tribution. Recent investigations have highlighted the nega-
tive impact the presence of discontinuous and/or piecewise
differentiable functions may have on the convergence prop-
erties of a numerical solver to DAE sets pertaining to mem-
ristor models [21]. As a result, the replacement of discontin-
uous and piecewise differentiable functions with appropriate
continuous and differentiable approximations may facilitate
the numerical integration of the models. With reference to
the modelling equations of the HP TaO memristor, it is evi-
dent that two are the functions under our zooming lens, par-
ticularly the discontinuous step function in the state equation
(13), and the piecewise differentiable modulus function in
the memductance function (see (15)) appearing in the Ohm’s
based law (14).
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Fig. 1. Plots of modulus function |vm| and its differentiable ap-
proximations gρ(vm) for three values of ρ.

The modulus function, acting on the memristor voltage
vm and denoted as |vm| in (15), may be replaced by differen-
tiable approximations falling into the following class:

gρ(vm) =

(
1

1+ exp(−ρ vm)
− 1

1+ exp(ρ vm)

)
, (16)

where ρ is a parameter defining the concavity of the pro-
posed kernels at vm = 0 V. Figure 1 shows illustrative plots of
modulus function and its differentiable approximations for
values of ρ set to 101, 102, and 103.
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Fig. 2. Plot of im = W (x,vm)vm versus vm over the very small
range vm ∈ [−0.3,0]V for four constant state values close
to the lower bound (x0 ∈ {0,10−4,10−3,10−2}). Solid
curve: the memductance function is calculated with |vm|.
Dashed curve: W (x,vm) uses gρ(vm). Plots (a), (b), (c)
are associated to values of ρ set to 101, 102, and 103 re-
spectively.

In order to pick up a suitable value for ρ we focus on
the Ohm’s based law (14) only. In fact we want to check
what is the effect of this parameter in modelling a scenario
where the input across the device is applied for a very short
period of time and takes rather small values, so that any state
change over time may be neglected. As a result, under these
conditions the state keeps approximately equal to its initial
value x(0) = x0, and the dynamic equation (13) is unneces-
sary to study the current response to the voltage excitation.

The value of ρ has a major influence only when the
state is close to the lower bound, where the exponential term
in (15) dominates, and for values of the memristor voltage
in the neighborhood of 0 V, where the function gρ(vm) most
deviates from the modulus function for any ρ (see Fig. 1).
Each plot in Fig. 2 shows a comparison between the current-
voltage curves descending from the original Ohm’s based
law (14) (adopting the modulus function in the memductance
expression) and the proposed differentiable variant (which is
calculated with the approximating function in (16) in place
for the modulus function). The first (latter) curves are drawn
through solid (dashed) lines. The parameter of the differen-
tiable kernel gρ(·) is set to 101 in plot (a), 102 in plot (b), and
103 in plot (c). Four state values close to the lower bound are
considered in each plot (see the caption in Fig. 2 for details).
For better visualization purposes only a negative memristor
voltage range is shown. The approximated numerical results
best agree with the ones pertaining to the original model for
ρ= 103 (see plot (c)). The characteristic of Fig. 3 is obtained
using (14) with |vm| in plot (a) and with gρ(vm) with ρ = 103

in plot (b), and sweeping the memristor initial state x0 in the
closed set Ψ = {0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1}.
The agreement between the two pictures is a sign that our
choice is near optimal. Thus in the remaining part of the
paper we keep this value for ρ.

Further, the step function with argument vm, denoted in
(13) as step(vm), may be approximated by continuous ker-
nels falling within the following class:

fk(vm) =
1

1+ exp(−k vm)
, (17)

where k controls the slope of the proposed kernel around
vm = 0 V. Fig. 4 shows exemplary graphs of fk(vm) for val-
ues of k ∈ {30,40,50} together with the shape of the step
function.
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vm vm

Fig. 3. Memristor current-voltage curves under excitation sce-
narios unable to trigger any state change from the initial
condition. Here the initial state is swept from 0 to 1 in
uniform steps of 0.1. For better visualisation purposes,
only a negative memristor voltage range is shown. Plots
(a) and (b) are respectively obtained using the original
memductance expression with the modulus function and
its differentiable approximation where |vm| is replaced by
gρ(vm), as given in equation (16), with ρ = 103. The two
plots agree for all the state values.
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Fig. 4. Discontinuous function step(vm), controlling the mem-
ristor transition between on and off state, and its contin-
uous approximation for three k values.

The choice of a proper value for k was then based upon
the reproduction of one of the experimental observations at
HP Labs, particularly one of the memristor current-voltage
curves in Fig. 6 from [19], which refers to the circuit of
Fig. 5(a), where voltage source v generates an asymmetric
triangular waveform of period T = 1 s, and maximum and
minimum voltages respectively equal to 0.8 V and −1.2 V
(see Fig. 5(b)).
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Fig. 5. (a) Test circuit with series resistor. (b) Time waveform
of the asymmetric triangular voltage waveform of period
T = 1 s driving the circuit in plot (a).
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The excitation drives the series connection between the
memristor and a resistor of value R = 70.1 Ω. The initial
memristor state x0 is set to 0.065.

Fig. 6(a) shows the numerical simulation result ob-
tained by replacing step(vm) in state equation (13) with
function fk(vm), as given in (17), for k ∈ {30,40,50} (here
gρ(vm) with ρ = 103 was used in place for |vm| in the mem-
ductance function (15) appearing in Ohm’s based law (14)).
The curve referring to k = 50 better matches the character-
istic observed using the original model equations (13)-(14)
with the discontinuous and piecewise differentiable func-
tions (see Fig. 6(b)).
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Fig. 6. Steady state pinched hysteresis loops in the memristor
current-voltage plane under the asymmetric triangular
excitation of the circuit of Fig. 5(a), as illustrated in
Fig. 5(b). (a) Numerical result using continuous tran-
sition function fk(vm) in place for the step function in
(13) for values of k in {30,40,50}. The modulus func-
tion |vm| is approximated with function gρ(vm), as given
in (16), with ρ = 103. (b) Numerical result using step
and modulus functions, and its agreement with the curve
for k = 50 in plot (a).

Thus the value for k in(17) is set to 50 in the study to follow.
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Fig. 7. Frequency dependence of the memristor steady state
current-voltage curve under periodic excitation of the cir-
cuit of Fig. 5(a) where R = 70.1 Ω and v is an asymmet-
ric triangular voltage waveform with maximum and min-
imum voltages respectively equal to 0.8 V and −1.2 V.
Numerical results from the original model (a) and from
its continuous and differentiable approximation (k = 50,
ρ = 103).
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Fig. 8. Time evolution of symmetrical waveforms at the input to
the circuit of Fig. 5(a). (a) Square wave. (b) Sine wave.

5. Approximation Accuracy
Let us confirm the appropriateness of the approxi-

mations chosen for the discontinuous and piecewise dif-
ferentiable functions. Sweeping the period T of the
above mentioned asymmetric triangular input waveform in
{1,10−2,10−4,10−6,10−8} s, and keeping all the other pa-
rameters of the voltage source v as well as x0 as in the sim-
ulation of Fig. 6, the memristor steady state current-voltage
curves observed in the circuit of Fig. 5(a) are reported in
Fig. 7. Plots (a) and (b), respectively refer to the origi-
nal model equations (13)-(14), and to their approximations
where fk(vm) with k = 50 and gρ(vm) with ρ = 103 respec-
tively replace step(vm) and |vm|. Let us consider yet another
simulation scenario. Here the same circuit of Fig. 5(a) with
R = 70.1 Ω is taken into exam, but the voltage waveform
exciting the system is a symmetric square wave of ampli-
tude 0.55 V (see Fig. 8(a) for the case where the input pe-
riod is equal to 1 s). The initial condition is kept equal to
x0 = 0.065. Distinct values are given to the period T of this
input signal in order to investigate the frequency dependence
of the memristor response.
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(a): original model (b): k = 50, ρ = 103
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Fig. 9. Frequency dependence of the memristor steady state
current-voltage curve under square wave excitation of the
circuit of Fig. 5(a) where R = 70.1 Ω and v is a sym-
metric square voltage waveform with amplitude 0.55 V.
Numerical results from the original model (a) and from
its continuous and differentiable approximation (k = 50,
ρ = 103).

In plots (a) and (b) of Fig. 9 original model and its con-
tinuous and differentiable approximation are respectively
adopted to reproduce the reduction in the lobe area of the
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memristor steady state pinched hysteresis current-voltage
loop observed under increasing frequency for the square
wave excitation under exam. The numerical results shown
in plots (a) and (b) in each of Figs. 7 and 9 agree with
each other, providing a further proof for the accuracy
of the proposed continuous and differentiable approxima-
tion to the original discontinuous and piecewise differen-
tiable model equations. Another excitation signal of in-
terest is the sine wave. Driving the circuit of Fig. 5(a)
with a signal of this kind, with amplitude equal to 0.55 V
(Fig. 8(b) shows its time evolution in the case of an in-
put period equal to 10 s), setting the initial condition to
x0 = 0.1, keeping R = 70.1 Ω, and sweeping the input period
in {100,10,1,10−1,10−2,10−3,10−4} s, numerical simula-
tions of discontinuous and piecewise differentiable model
(Fig. 10(a)) and its continuous and differentiable approxi-
mation (Fig. 10(b)) deliver qualitatively and quantitatively
matched results.
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Fig. 10. Memristor steady state pinched hysteresis loops in the
current-voltage plane under sine wave excitation of the
circuit of Fig. 5(a). The resistance R is set to 70.1 Ω,
the initial memristor state x0 to 0.1, while the amplitude
of the input voltage v is chosen as 0.55 V. The different
curves pertain to distinct input periods (see the legend).
Plots (a) and (b) respectively refer to original model and
to the proposed continuous and differentiable approxi-
mation. In the latter k = 50, and ρ = 103.
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Fig. 11. Pulse train voltage, driving the circuit of Fig. 5(a), over
time.

In the investigations on the nonvolatile memory capa-
bility of the nanostructure, pulse train-based excitations are
typical. Before concluding this section, it is therefore oppor-
tune to evaluate the efficacy of the proposed continuous and
differentiable approximation to the original HP DAE set in

a scenario where voltage source v delivers a pulse train in the
circuit of Fig. 5(a) with R = 70.1 Ω. Let the input voltage
waveform, evolving with time as depicted in Fig. 11, con-
sist of a succession of 4 pulses. The first two have positive
polarity, while the amplitude of the second two is negative.
In the pair of positive (negative)-polarity pulses, the first one
increases (decreases) the state of the device (here the initial
state x0 is kept equal to 0.1), while the second one allows an
indirect measurement of the memductance value through the
reading of the small memristor current it gives rise to. The
amplitude of the read pulses V0r is set to 0.1 V, while that
of the write pulses V0w is swept from 0.8 V to 1.1 V with
constant increment 0.1 V. The width of read and positive-
polarity write pulses is set to 5 ns, while the negative-polarity
write pulses are applied for a period of time equal to 20 ns.
The rise and fall time is taken as 1 ns for all pulses. Fig. 12
reports the time waveform of the memristor state resulting
from the pulse train excitation of Fig. 11. A strong depen-
dence of the dynamic behavior of the state upon polarity,
amplitude, and duration of a pulse may be observed. The
current flowing through the nano device evolves in time as
illustrated in Fig. 13. Plots (a) and (b) in both Figs. 12 and
13 refer to the numerical integration of original and approx-
imated models respectively. Their accord further validates
the accuracy of the proposed continuous and differentiable
approximation to the discontinuos and piecewise differen-
tiable DAE set expressed by (13)-(14).

6. LTspice Implementation
The continuous and differentiable model is suited for

integration into commercially-available software packages
with integrated circuit design emphasis, e.g., LTspice IV
[22]. In this section we present a simple circuit implemen-
tation of the approximated TaOx memristor model. Fig-
ures 14(a)-(b) respectively show memristor circuit symbol
and electronic realization of the proposed continuous and
differentiable DAE set. The memristor is implemented as
a sub-circuit with two access terminals (plus and minus).
Within the sub-circuit, the Ohm’s based law is implemented
through the use of a voltage-dependent current source Gres,
which couples the two access terminals and defines the cur-
rent flowing between them. The latter represents the mem-
ristor current im given in (14). The two control voltages for
this current source are the potential difference between the
access terminals plus and minus of the sub-circuit, model-
ing the memristor voltage vm, and the voltage drop across
a linear capacitor Cint (i.e. voltage at node Y ), which models
the memristor state x. The state equation (13) is modelled
by the charging rate of this capacitor driven by yet another
voltage-dependent current source GY placed in parallel to it.
This current source, controlled by the same voltage inputs
as Gres, defines the current flowing through the capacitor,
which is specified by the memristor state evolution function,
reported on the right hand side of (13). A large auxiliary re-
sistance Raux is also inserted in parallel to the capacitor to
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prevent convergence issues in the circuit simulator. The ini-
tial memristor state x0 is modelled by the initial condition on
the capacitor voltage.
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Fig. 12. Memristor state response to the pulse excitation of
Fig. 11. Plots (a) and (b) respectively refer to original
HP TaO model [19] and to its approximation as pro-
posed in this paper.

The netlist of the circuit implementation of Fig. 14(b),
coded according to the guidelines specified in the LTspice IV
guide [27], is reported below. Here the continuous and dif-
ferentiable approximations to the discontinuous and piece-
wise differentiable functions of the original model, proposed
in Section 4, are defined through the use of suitable func-
tions.
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Fig. 13. Current flowing through the memristor in response to
the pulse train excitation of Fig. 11. The results ob-
tained through numerical integration of original and ap-
proximated models are respectively shown in plots (a)
and (b).
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Fig. 14. (a) Memristor circuit symbol. (b) Circuit implementa-
tion of the TaO memristor model for robust numerical
simulation.

*LTspice IV-coded netlist of the circuit realization
*of the continuous and differentiable variant
*of the original TaO memristor model
**************************************************
* plus , minus: memristor terminals
* V(Y): voltage at node Y, modeling the state
.SUBCKT TaO_memristor plus minus
* memristor model parameters
.PARAMS B=1e-13 sigma_on=0.45 y_on=0.06 sigma_p=4e-5

A=1e-19 sigma_off=0.013 y_off=0.4 beta=500
Gm=0.025 aa=7.2e -6 bb=4.7 rho=1e-3 k={1/50} Cini=1

* voltage -dependent current source
* modelling the memristor current
Gres plus minus value={V(plus ,minus)*(Gm*V(Y)+

(1-V(Y))*aa*exp(bb*sqrt(abss(V(plus ,minus),rho))))}
* voltage -dependent current source
* modelling the right hand side of the ODE
Gy 0 Y value={A*sinh(V(plus ,minus)/sigma_off)*

exp(-pow(y_off/V(Y),2))*exp(1/(1+beta*I(Gres)*
V(plus ,minus)))*stps(-V(plus ,minus),k)+
B*sinh(V(plus ,minus)/sigma_on)*
exp(-pow(V(Y)/y_on ,2))*exp(I(Gres)*
V(plus ,minus)/sigma_p)*stps(V(plus ,minus),k)}

* capacitor , whose voltage models the state
Cint Y 0 {ln} IC={Cini}
* large resistance preventing convergence issues
Raux Y 0 100T

* step approximation
.func stps(x,p)={1/(1+exp(-x/p))}
* modulus approximation
.func abss(x,p)={x*(stps(x,p)-stps(-x,p))}
.ends TaO_memristor

The netlist is ready to use, may be easily adapted to
similar circuit simulators, and may be of interest to the cir-
cuit designer eager to explore the opportunities the promis-
ing TaO memristor may open up in the field of nanoelectron-
ics.

7. Conclusions
This paper proposes an accurate continuous and dif-

ferentiable approximation of a TaO memristor model [19]
suited for robust numerical simulations in software. Discon-
tinuous and piecewise differentiable functions respectively
appear in state equation and Ohm’s based law of the original
Hewlett Packard model of the nano-device. A detailed inves-
tigation of classes of possible continuous and differentiable
kernels for an accurate approximation of the discontinuous
and piecewise differentiable functions of the original model
led to the selection of the most appropriate candidates, re-
sulting in a differential algebraic equation set which facili-
tates numerical integration in software. The proposed con-
tinuous and differentiable mathematical description is ide-
ally suited for integration into commercially-available cir-
cuit simulators. The code of a circuit implementation of the
approximated model was also presented. It may be directly
used in LTspice version IV to investigate the full potential
of the Hewlett Packard nanostructure in electronics. This
work complements other important contributions on tech-
niques for robust numerical simulation of memristor models
[28]-[29].
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