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Abstract. The use of emerging memristor materials for 
advanced electrical devices such as multi-valued logic is 
expected to outperform today's binary logic digital tech-
nologies. We show here an example for such non-binary 
device with the design of a multi-bit memory. While con-
ventional memory cells can store only 1 bit, memristor-
based multi-bit cells can store more information within 
single device thus increasing the information storage den-
sity. Such devices can potentially utilize the non-linear 
resistance of memristor materials for efficient information 
storage. We analyze the performance of such memory 
devices based on their expected variations in order to 
determine the viability of memristor-based multi-bit mem-
ory. A design of read/write scheme and a simple model for 
this cell lay grounds for full integration of memristor multi-
bit memory cell.  
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1. Introduction 
The quest for yet higher performance, energetic effi-

ciency and market growth for information storage pushes 
the boundaries of existing complementary metal oxide 
semiconductor (CMOS) technology to its physical limits 
[1], [2]. The predicted end of roadmap for CMOS set 
grounds for other candidate technologies that are expected 
to emerge. The fundamental studies of material physics 
overlap with this emerging field of beyond-CMOS tech-
nologies, where novel paradigms are set for providing new 
concepts and materials for the foundation of nano-elec-
tronics technology beyond the era of silicon. Among such 
emerging technologies are materials that feature a non-
linear resistance trace that can also be "programmed" to 
store their resistive state. These materials are known as 
memristors, and their existence was predicted by Leon 
Chua in 1971 [3], and they were further analyzed theoreti-
cally by Sung Mo Kang [4]. Memristor devices were fabri- 

cated by HP labs for the first time [5]. Since 2008, this type 
of devices has sparked vast interest in the scientific com-
munity. Memristive devices hold a strong promise for 
producing low voltage ReRAM memories [7], [8], [9] since 
they require low power and can be easily integrated within 
standard fabrication process. However, some challenges 
remain for the advancement of viable memristor-based 
technologies, including the architecture of memristor 
arrays [7], [10].  

One important and promising application of these 
technologies is the realization of multi-bit random access 
memory [11–17]. Inspired by the success of multi-bit flash 
memory, that proved to be highly efficient in high memory 
density, there have been several recent attempts to fabricate 
such multi-bit cells with memristors [18–24]. The main 
questions remaining for understanding the potential of 
memristors are their physical limitations and reliability in 
storing information, and how many bits per cell can be 
stored?  

Herein, we develop a methodology to analyze the up-
per bound of information density of memristor multi-bit 
cells (MBC). Based on the TiO2 prototypical system we 
consider variations in electron mobility, process related 
physical dimensions, concentration and diffusion coeffi-
cient of oxygen vacancy. These variations are taken into 
account for estimating the overall uncertainty in the 
expected resistivity response of a memristor memory cell 
and therefore can be mapped into a general form of noise 
level restricting the number of resistance values to be used 
for representing information stored in the device. Achiev-
ing an understanding of the potential and limitations of 
such multi-valued memories is imminent for the advance-
ment of memristor technologies. 

The physical mechanism on which memristive mate-
rials such as TiO2 and other metal oxides change their 
resistivity is yet fully understood. The most common model 
for this phenomenon is related to the diffusion of oxygen 
vacancies in response to electron current flow, enabling the 
resistivity non-linearities of the material. Throughout this 
work we use the Pickett's model [25] that is considered as 
the reference model for memristors [26]. 
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2. Memristor as Multi-bit Memory 

2.1 Basic Concept 

A realization of the redox memristor as an analog 
memory cell, can be achieved by mapping the continuously 
varying resistance of the memristor material into more than 
two resistance states, thus defining the multi-bit nature of 
the memory. For example, a 2 bit memory will introduce 4 
states, i.e. the first state is the Low Resistance State (LRS) 
(see Fig. 1(d)) and 2 more intermediate states are defined 
between the LRS and High Resistance State (HRS). How-
ever, there are remaining challenges for quantizing the 
resistance of the memristor into discrete states at standard 
conditions. Deviations from the programmed resistance 
value are expected mostly due to temperature effects [27]. 
An ensemble of memristor devices is expected to produce 
even higher level of variations due to uncertainty in device 
critical dimensions and due to other small variations be-
tween (presumably identical) devices. The resistance space 
is then divided into discrete values for representing the 
stored data (i.e. information bits), each value has its own 
noise margins. The noise margin indicates the uncertainty 
in resistance signal i.e., the values of which cannot be 
associated with stored information. 

One should note that while the span of a memristor’s 
resistance typically covers the values 102 Ω ≤ R ≤ 105 Ω, it 
is challenging to use the full range of resistance values. 
Since the typical operating voltage and currents for pro-
gramming memristors are 1–3 V and 100 A [5], the resis-
tivity values are limited to smaller than 104 Ω. Another 
aspect of the resistance range is related to the read/write 
(R/W) speed of devices with varying resistivity (mediated 
by their RC) and retention time [28]. Yet, an advantage of 
the discrete levels method is that a memristor can be 
treated as digital entity and consequently all noises can 
easily be corrected, even under process variations that 
cause for device mismatch, or if exist, memristor pro-
gramming mismatch. 

2.2 Interfacing the Memory Cell 

As the main requirement from such memory cells is 
the ability to read and write stored information, herein we 
discuss a simple mechanism for interfacing the memristor 
multi-bit memory (see Fig. 2), taking into account the 
physical mechanism of such memristor devices. The pre-
sented R/W mechanism shows feasibility of the discretiza-
tion concept of a memristors, taking into account the noise 
margins and thereby bit density per cell and constitutes 
a foundation for such technology, as shown in the next 
section. 

Reading process: Interfacing memristors requires the 
use of analog to digital conversion (ADC). A possible 
implementation of such conversion is illustrated schema-
tically in Fig. 2. Here, a current source drives a memristor 

 
                          (a)                                              (b)  

 
                            (c)                                                            (d) 

Fig. 1. Resistance field of the memristor. Blue color repre-
sents the depletion layer (oxygen vacancies shown as 
positive atoms).  

 
Fig. 2. Possible implementation of an interface for reading 

memristor device using ADC. 

and a reference current is input into a known reference 
resistance. The two voltages can be converted into fre-
quency and then the pulse trains can be counted and di-
vided resulting in a digital number, as was reported in 
detail in ref [29–31]. 

Writing process: In general, there are two ways to 
program a memristor for multi valued resistivity: 

1. Reading the memristor value prior to its programming. 

2. Reset the memristor before writing to its initial state. 

The first option is slower since it requires reading the 
value of the memristor. In addition, it requires having more 
than one writing current (at least 8 different currents), since 
moving the resistance is typically non-symmetric in respect 
to the two directions. In this paper our analysis assumes the 
second approach with one current for programming. We 
thus consider this option as the worst-case scenario for 
noise margin. 



RADIOENGINEERING, VOL. 24, NO. 2, JUNE 2015 427 

 

3. Memristor Noise Margin (MNM) 
In principle, one could define an infinite number of 

resistance states in an ideal device. However, as the num-
ber of resistance states increases, the relative noise and 
errors in the read/write process increase accordingly. Here 
we ask: what is the maximum number of such discrete 
states that would still allow a correct operation of the 
memory device. It is therefore essential to define the noise 
margins. 

The development of the memristor predictive physical 
model is not yet available for memristor devices except to 
the regression model of reference [5]. We analyze the ex-
pected noise margin that can be fitted to empirical data, 
using this model. Furthermore, the analysis we performed 
using the nonlinear resistance model is general, and can be 
easily applied to other models. The nonlinear resistance 
model we use:  
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 (1) 
where fon, foff, ion, ioff, aon, aoff, b and wc are empirical 
parameters deduced from the regression [5]. 

We analyze the transformation of the depletion region 
area to resistance with the linear and non-linear model [6]. 
Both known models are shown. The non-linear model, 
shown in (2) and the linear model in (3) are given below. 
The linear resistance model was slightly modified in order 
to take account for the device depletion region at all resis-
tance values. Equation (3) represents the modified linear 
model.  
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where Ron and Roff are the resistance minimum and maxi-
mum values, won and woff is the depletion layer widths, and 
w is the updated position of the depletion layer.  

Using the nonlinear model, we derive the margins for 
a general variable pi:  
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where p1 = aon (or aoff), p2 = ion (or ioff), p3 = fon (or foff). 
dw(t)/dt is given in (1) and can be evaluated numerically. 
The maximum resistance variation is therefore: 
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A direct expression for w is inaccessible; however, 
an implicit dependence of the highest possible variation of 
the resistivity on the set of parameters {p} is obtained via 
estimation of their time period [5]. We, therefore, derive 
dR/dp as a function of time and remove the time depend-
ence by taking the highest possible variation for all vari-
ables {p} as:  
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In (6) we calculate the allowed resistance variations 
dR considering the worst case scenario. Equation (6) ac-
counts for the resistance variations within one discretized 
resistance level and thus does not account for the accumu-
lated error (since the error produced by a specific parame-
ter is directional). Therefore, the more general expression 
for the overall noise margins is provided with (7) below:  
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where max(pi) will be the maximum total reversed error (or 
in our case the parameter b). Equation (7) states that the 
allowed resistance variations, dRallowed, depend on the re-
sistance variations of neighboring resistance levels, dRn, 
dRn – 1. 

4. Simulation Results - MNM Analysis 
In order to perform the MNM analysis, we assumed 

variations of the HP memristor model, with parameter 
values, shown in Tab. 1 [5] additionally to the reported 
barrier width change (1 nm – 2 nm). 

 

Variable aoff [nm] foff [m/s] ioff [A] b [A] wC [pm] 
Values 1.20 ± 0.02 3.5 ± 1 115 ± 4 500 ± 70 107 ± 4 

Tab. 1. Parameters values that were used for the case of for 
i > 0. 

Equation (1) was solved using a high-order finite dif-
ference expansion of w on a uniform grid of time-step Δt. 
This method is well suited for numerically solving differ-
ential equations on regular grids. [32–33] The smoothness 
of the numerical results was achieved by convergence of 
the order of the expansion. In this scheme, the value of the 
function derivative at some grid point is calculated based 
on the value of this function on neighboring grid points. 
Specifically for this work we used an initial condition to 
the solution, from which we derived the solution on the 
time grid at third-order expansion. At grid points close to 
the grid boundary we used a lower order. w was solved for 
an applied current pulse of a half sinusoidal waveform at 
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frequency of 2 MHz (see Fig. 4). By keeping the time 
period of the current pulse constant and varying its ampli-
tude, we search for a current amplitude which will change 
the resistance to the lowest distinguishable value in the 
range of kΩ (see Fig. 3(a) and (b)). This scheme is de-
signed to provide highest possible resistance steps with 
minimum  noise margins. Since the resistance curves are 
asymmetric, the transition from LRS to HRS is more grad-
ual than the transition from HRS to LRS. We found that 
such desirable gradual transition can be achieved by am-
plitude of 2.3 mA, providing the steps shown in Fig. 3 
below. This can also be seen in Fig. 4 where we used 
a range of current amplitudes and calculated their corre-
sponding steady state resistance values.  

In order to simulate the margins, we used a base re-
sistance of 100 Ω and a Roff/Ron ratio of 500 and evaluated 
the parameters variation, dR. The noise margins corre-
sponding to the parameters of (1) are evaluated based on 
the resistance steps of Fig. 3. (The resistance values of the 
steps are 100 Ω, 986 Ω, 1521 Ω, 1952 Ω corresponding to 
w = 1 nm, 1.368 nm, 1.438 nm, 1.478 nm, respectively). 

While this analysis is in principle mathematically cor-
rect, it can be improved by casting physical arguments to 
some of the parameters in use. One can note that the varia-
tions listed in Tab. 2 and 3 are large and in principle they 
should indicate that multi-bit memory applications are 
infeasible. However, we argue here that the activation 
energy for oxygen vacancy diffusion should remain inde-
pendent and we therefore assume that errors associated 
with the parameter ioff can be ignored as it assumed to be 
constant. Furthermore, the parameter wc can be regarded as 
normalizing constant in spite of its large contribution to the 
overall resistance variation. Moreover, it shows a constant 
variation in relation to the initial conditions of the deple-
tion area. 
 

variable w = 1 nm w = 1.368 nm w = 1.438 nm w = 1.478 nm
aoff -66.1 -67.9 -58.7 -54.7 
foff -603 -330 -259 -220 
ioff 1.76e4 1.76e4 1.76e4 1.76e4 
B 46.3 85.6 105 117 
wC -1.81e4 1.8e4 -3.61e3 -1.79e4 

dRAllowed           800.4 430 314  
dR1 668.7 397.9 318.2 274.7 

Tab. 2. The resistance variations as a function of [5] parame-
ters deviations assuming the linear model of (3). 

 

variable w = 1 nm w = 1.368 nm w = 1.438 nm w = 1.478 nm
aoff -26.1 -22.1 -17.7 -7.74 
foff -388 -272 -235 -204 
ioff 1350 1110 990 886 
b 37 81.9 99.8 115 

wC -668 -582 -537 -495 
dRAllowed           849   453.2 331  

dR1 -414.1 -294.1 252.7 211.74 

Tab. 3. Resistance variations as a function of parameter values 
assuming the nonlinear resistance model of (2). 

                                                           
1 This value was obtained without the error contribution from the parameter ioff and 
wc. 
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Fig. 3. Memristor (a) resistance, (b) depletion layer width as 
a function of time for 4 half sin pulses. 

 
(a) 

 
(b) 

Fig. 4. i(t) with changing amplitude: (a) linear resistance 
model, (b) nonlinear model. 
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5. Conclusions and Discussion 
This work provides a method for evaluating the noise 

margins of memristor-based memory devices. Using this 
method we performed a numerical analysis of multi-bit 
memristor. This analysis evaluates the noise margins asso-
ciated with physical variations of devices. We find that the 
linear model predicts larger resistance variations compared 
to the nonlinear model. However, even with the larger 
variations of the linear model we find the multi-bit memory 
feasible. 
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