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Abstract. This paper deals with the wideband direction-
of-arrival (DOA) estimation by exploiting the multiple mea-
surement vectors (MMV) based sparse Bayesian learning
(SBL) framework. First, the array covariance matrices at
different frequency bins are focused to the reference fre-
quency by the conventional focusing technique and then
transformed into the vector form. Then a matrix called the
Khatri-Rao dictionary is constructed by using the Khatri-
Rao product and the multiple focused array covariance vec-
tors are set as the new observations. DOA estimation is
to find the sparsest representations of the new observa-
tions over the Khatri-Rao dictionary via SBL. The perfor-
mance of the proposed method is compared with other well-
known focusing based wideband algorithms and the Cramer-
Rao lower bound (CRLB). The results show that it achieves
higher resolution and accuracy and can reach the CRLB un-
der relative demanding conditions. Moreover, the method
imposes no restriction on the pattern of signal power spec-
tral density and due to the increased number of rows of the
dictionary, it can resolve more sources than sensors.
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1. Introduction
Direction of arrival (DOA) estimation is an impor-

tant part of the array signal processing and widely applied
in the civil and military fields, e.g., communication, radar
and sonar. Since the narrowband estimation method such
as MUSIC and ESPRIT cannot be directly used under the
wideband scenarios which commonly exist in practice, re-
searchers have proposed a number of specific methods.

Incoherent subspace method (ISM) [1] is the first pro-
posed method which averages the DOA estimations under
different frequency bins in-band. Thus the power variation
in-band will deteriorate its performance. Moreover, it cannot
deal with the coherent sources. To make up this weakness,

the coherent subspace method (CSM) was proposed [2–4].
It averages the array covariance matrices obtained by the fo-
cusing technique and then the narrowband DOA estimation
method follows. The frequency smoothing involved in that
procedure enables it to resolve the coherent sources. Addi-
tionally, it improves the angle resolution and the estimation
accuracy. However, the CSM needs DOA pre-estimation
usually acquired by the traditional beamforming and the in-
accuracy in pre-estimation will adversely affect the perfor-
mance of CSM. Based on CSM, Feng came up with the
focusing Khatri-Rao and rotational signal-subspace (FKR-
RSS) method [5] which transforms the array covariance ma-
trices of different frequency bins into a higher dimensional
matrix through Khatri-Rao product. Then DOA estimation
is done by the subspace type algorithm. The author claimed
that, compared with CSM, the method improved the robust-
ness to the inaccuracy in pre-estimation and the angle reso-
lution. But in that method there is a key assumption that the
matrix [HT ,1j ] should be full column rank. (1j is the col-
umn vector with all entries being one and see below for the
meaning ofH). That means, at least, the sources should nei-
ther have flat power spectral densities nor have similar power
spectral density with each other. This strict assumption will
limit its application range. We will show that even if this
assumption is satisfied, its performance is not satisfying in
our simulation conditions. Another method based on Khatri-
Rao product can be found in [6]. However, the transformed
noises at some virtual sensors are coherent and the power
compensation to remove power variation in-band can only
be applied to signals with similar power spectral densities.

Recently, the sparse representation related to the com-
pressed sensing (CS) and machine learning has found its ap-
plication in DOA estimation. The narrowband DOA esti-
mation algorithms `1-SVD [7] based on `1-norm and RVM-
DOA [8] based on SBL are the two well-known algorithms.
The abbreviations SVD and RVM denotes the singular value
decomposition and relevance vector machine, respectively.
Their performances both are much better that of the tradi-
tional subspace type method. However, `1-SVD is not as
good as RVM-DOA since it is biased for closely-spaced sig-
nals. Wideband algorithm based on SBL has also be pre-
sented in [9]. It directly processes the array outputs in time
domain without executing Fourier transform. However, due
to the modeling method, it can only exploit the single mea-
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surement vector (SMV) based SBL whose reconstruction
performance is worse than the MMV based SBL [10]. More-
over, it requires specific types of signal modulation or pre-
estimated signal power spectral density to estimate the cor-
relation functions for building the dictionary [11] and the
estimation error will leads to performance degradation [12].

In this paper, we propose a new wideband DOA esti-
mation method. By using the focusing technique, the array
covariance matrices at different frequency bins are focused
to the same frequency. Then the vectorization operation in-
stead of the averaging operation in CSM is performed on
the focused array covariance matrices to obtain the multi-
ple focused array covariance vectors. By taking advantage
of the spatial sparsity property of sources, the focused ar-
ray covariance vectors can be sparsely represented over the
Khatri-Rao dictionary via MMV based SBL to obtain the
DOAs. This method can improve the resolution and accu-
racy compared with other well-known focusing based algo-
rithms under the same preliminary DOAs estimated by the
conventional beamforming method and reach the CRLB un-
der the relative demanding scenario. This indicates the new
method decreases its sensitivity to the initial DOAs. Further
more, the method removes the restriction that the number of
sensors has to be larger than the number of sources and im-
poses no restriction on the pattern of signal power spectral
density. The latter means the method can be applied to sig-
nals with flat or non-flat, similar or non-similar signal power
spectral densities.

Notations used in the paper are introduced as follows.
(·)T , (·)∗ and (·)H are denoted as the transpose, conjugate
and conjugate transpose operator, respectively. (·)j· , (·)·j
and (·)j,j denote the jth row, jth column and jth diagonal
element of a matrix, respectively. ‖ · ‖2 denotes the `2 norm.
tr(·), (∗) and ⊗ are the trace, Khatri-Rao product and Kro-
necker product operator respectively. vec(·) is the operator
that creates a column vector by stacking the column vectors
of a matrix below one another. E(·) denotes the expecta-
tion and diag(·) is to form a diagonal matrix with entries of
a vector.

2. Model Formulation
Assume K far-field wideband signals from directions

θk, k = 1, . . . ,K impinge on a uniform linear array (ULA)
of M elements whose inter-spacing being d. The output of
mth element at time t can be written as

xm(t) =

K∑

k=1

sk(t− τm(θk)) + nm(t) (1)

where τm(θk) is the propagation delay for the kth signal be-
tween the reference point and the mth element. sk(t) is the
kth singal. nm(t) is assumed to be the additive white Gaus-
sian noise. As the sources being wideband, the array outputs
in time domain are divided into I segments with each for the
discrete Fourier transformation (DFT) to obtain the J nar-
rowband measurements. I is called the frequency snapshot

number. The DFT outputs of the ith segment can be repre-
sented as

Xi(fj) = A(fj ,θ)Si(fj) +N i(fj), j = 1, . . . , J (2)

where Si(fj) and N i(fj) are the frequency com-
ponent of the signal and noise vectors, respec-
tively. A(fj ,θ) = [a(fj , θ1), . . . ,a(fj , θK)]
is the array manifold matrix and a(fj , θk) =
[1, e−i2πfjd cos(θk)/c, . . . , e−i2πfj(M−1)d cos(θk)/c]T . c de-
notes the signal propagation speed. For simplicity, Aj(θ)
and aj(θk) are used to replace A(fj ,θ) and a(fj , θk) re-
spectively in the rest of the paper. As N i(fj) can be as-
sumed to be white Gaussian and uncorrelated with signals,
the array covariance matrix at fj can be expressed as

Rj = Aj(θ)P jA
H
j (θ) + σj

2I (3)

whereP j is the signal covariance matrix and σj2 is the noise
power at frequency fj .

In order to remove the dependence of array manifold
matrix on frequency, the focusing technique which arose in
CSM is adopted. Here the rotation signal-subspace (RSS)
[3] focusing matrix T j is utilized to transform (3) into

T jRjT
H
j = A0(θ)P jA

H
0 (θ) + σj

2I (4)

where
T j = V jU

H
j (5)

and A0(θ) is the manifold matrix at the center frequency,
U j and V j are the left and right singular matrix of
Aj(θp)A

H
0 (θp), respectively. θp is the preliminary DOAs.

In practice,R(fj) is consistently estimated by

R̂j =

I∑

i=1

Xi(fj)Xi
H(fj)/I. (6)

As I cannot be infinitely large, ∆Rj = R̂j −Rj which is
called the covariance estimation error will exist. Denote

σ̂2
j =

1

M −K
M∑

m=K+1

ρm (7)

as the estimation of σj2 and ρm is themth largest eigenvalue
of R̂j . Then (4) can be turned into

T jR̂jT
H
j − σ̂2

j I =A0(θ)P jA
H
0 (θ)

+ T j∆RjT
H
j .

(8)

Assume the signals are uncorrelated with each other, and
then P j is a diagonal matrix and we can form the focused
covariance vector as

ŷj = vec
(
T jR̂jT

H
j − σ̂2

j I
)

= vec
(
A0(θ)P jA

H
0 (θ) + T j∆RjT

H
j

)

= Bηj + εj , j = 1, . . . , J

(9)

where B = A∗0(θ) ∗ A0(θ) = [b(θ1), . . . , b(θK)] ∈
CM2×K , ηj = [η1j , . . . , ηKj ]

T denotes the vector composed
of the signals power at frequency fj and εj is viewed as the
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error component. According to the rule of Khatri-Rao prod-
uct, b(θk) = a∗0(θk)⊗ a0(θk).

Since vec(∆Rj) approximately follows the complex
normal distribution which is vec(∆Rj) ∼ CN (0,RT

j ⊗
Rj/I) [13, 14] and εj = vec(T j∆RjT

H
j ) = (T ∗j ⊗

T j)vec(∆Rj) [15], we have

εj ∼ CN (0,Qj), j = 1, . . . , J (10)

where

Qj = (T ∗j ⊗ T j)E
(
vec(∆Rj)vec(∆Rj)

H
)
(T ∗j ⊗ T j)H

= (T jRjT
H
j )T ⊗ (T jRjT

H
j )/I.

(11)
Setting Ŷ = [ŷ1, . . . , ŷJ ] ∈ CM2×J , (9) can be ex-

tended to a MMV model as

Ŷ = BH +E (12)

where H = [η1, . . . ,ηJ ] ∈ CK×J and E = [ε1, . . . , εJ ] is
the error component that follows the Guassian distribution.

3. Sparse Bayesian Learning for
Wideband DOA Estimation
In order to adopt the sparse reconstruction algorithm,

let Θ = {θ̃l}Ll=1 (L � M) be the uniform sampling grids
in the azimuth range [0◦, 180◦] with the grid interval ∆θ̃ .
Then (12) can be reformulated as

Ŷ = B(Θ)H̃ +E (13)

where B(Θ) = [b(θ1), . . . , b(θL)] ∈ CM2×L is called the
Khatri-Rao dictionary since it obtained via the Khatri-Rao
product and H̃ is the matrix with all rows being zero except
those corresponding to the true DOAs, which indicates each
column of H̃ has the same sparsity profile.

As elements of H̃ denote signal power, it should be
a non-negative matrix. Assigning it a truncated normal
distribution is reasonable [16], however, it will largely in-
crease the computation cost [17]. So we follow the stan-
dard SBL procedure [10, 18] and assign it with a nor-
mal distributed prior as p(H̃|γ) =

∏J
j=1 CN (H̃ ·j |0,Γ)

where Γ = diag(γ), γ = [γ1, . . . , γL]T is the un-
known hyperparameter. From (11) we find the error
components generally have different covariances at differ-
ent frequency bins. However, if we model p(Ŷ |H̃) =∏J
j=1 CN (Ŷ ·j |B(Θ)H̃ ·j ,Qj), the eventual DOA estima-

tion will be the average of estimations under different
single measurement vector (SMV) model, which will de-
teriorate the performance. So we alter to p(Ŷ |H̃) =∏J
j=1 CN (Ŷ ·j |B(Θ)H̃ ·j , Q̂) where Q̂ =

∑J
j=1 Q̂j/J

and Q̂j = (T jR̂(fj)T
H
j )T ⊗ (T jR̂(fj)T

H
j )/I . This alter-

ation makes sense with sources having flat power spectrum1,
which does not mean our method can only be applied in this

situation since [19] concluded that the optimal performance
of SBL cannot be obtained with the true covariance of er-
ror component. Thus, in Section 4, one can notice that our
method can also gain high performance with sources having
non-flat power spectrum.

According to the Bayesian rule the posterior
distribution of H̃ can be written as p(H̃|Ŷ ) =∏J
j=1 CN (H̃ ·j |M·j ,Σ) with the mean

M = ΓBH(Θ)Σ−1

Ŷ
Ŷ (14)

and the covariance
Σ = Γ− ΓBH(Θ)Σ−1

Ŷ
B(Θ)Γ (15)

where ΣŶ = Q̂ + B(Θ)ΓBH(Θ). To find the unknown
hyperparameter, we need to adopt the type-II maximum
likelihood method which indicates to maximize p(Ŷ |γ) =∫

p(Ŷ |H̃)p(H̃|γ)dH̃ . Finally, it is equivalent to minimize

L(γ) = ln
∣∣ΣŶ

∣∣+ tr(Σ−1

Ŷ
R̂Ŷ ) (16)

where R̂Ŷ = Ŷ Ŷ
H
/J . The Expectation-Maximization

(EM) algorithm can be used to solve the problem by treat-
ing H̃ as the hidden variable. However, to speed up con-
vergence, the fixed-point iteration is introduced as follow-
ing [10, 18],

γl
(q+1) =

‖Mj·‖22
J(1−Σl,l/γl(q))

+ ς, l = 1, . . . , L (17)

where γl(q) is the value at qth iteration and ς is a small pos-
itive constant to prevent division by zero. The iteration pro-
cess is terminated if

∥∥γ(q+1) − γ(q)
∥∥

2
/
∥∥γ(q)

∥∥
2
< τ where

τ is the termination threshold.

Denote γ̂ as the estimation of γ after iteration con-
verged. If the true DOAs are fortunately at the spatial sam-
pling grids, the peak locations of γ̂ can be directly output
as DOA estimations, or the grid mismatch will happen. One
solution is to increase the number of grids adaptively dur-
ing the iteration [7]. But here we perform a post-processing
whose computational cost is lower [8]. Denote θk as the set
which consists of two adjacent grids relating to the kth peak
location of γ̂, Θ−k as the grid set obtained by removing θk
from Θ, Γ̂−k ∈ C(L−2)×(L−2) as the matrix which removes
the diagonal elements corresponding to θk from Γ̂ where
Γ̂ = diag(γ̂), Σ−k = Q̂ + B(Θ−k)Γ̂−kB

H(Θ−k). Ac-
cording to (16), the method is to adjust βk and θ to minimize

L(βk, θ) = ln
∣∣Σ−k + βkb(θ)b

H(θ)
∣∣

+ tr
([

Σ−k + βkb(θ)b
H(θ)

]−1
R̂Ŷ

) (18)

where βk is a fitting parameter. Taking the derivative with
respect to βk and θ, equating to zero, we finally achieve the
post-processing rule as

θrk = arg max
θ∈Ωk

∣∣∣Re
[
bH(θ)Σ−1

−k

(
b(θ)bH(θ)Σ−1

−kR̂Ŷ

− R̂Ŷ Σ−1
−kb(θ)b

H(θ)
)
Σ−1
−k
∂b(θ)

∂θ

]∣∣∣
−1

,

k = 1, . . . ,K

(19)

1The alteration can make sense with the two-sided correlation transformation (TCT) focusing matrix [4] without the limitation of signal pattern. But we
empirically find applying TCT focusing matrix in our method cannot get good performance.
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where Ωk is the interval between the grids corresponding to
θk. The post-processing is to scan within Ωk with a small
step size for every source.

In the following, the steps of the proposed wideband
DOA estimation algorithm can be summarized as

1. Divide the array outputs into I segments with each for
DFT and then obtain R̂(fj), j = 1, . . . , J by (6).

2. Perform conventional beamforming (CBF) on R̂(f0) to
pre-estimate the DOA and output the pre-estimation as
θp = [θCBF −θBW /4,θCBF ,θCBF +θBW /4] (θBW
is the beamwidth of the array) [3] and acquire the fo-
cusing matrix T j , j = 1, . . . , J by (5).

3. Form the multiple focused array covariance vectors
Ŷ = [ŷ1, . . . , ŷJ ] by (7) and (9) .

4. Follow the SBL method to iterate between (14)
(15) and (17) with the initialization of γ(0) =∑J
j=1 |BH(Θ)Ŷ ·j |/J to yield γ̂ .

5. For each peak of γ̂ , execute the post-processing by
(19) to output the ultimate DOA estimations.

It should be noticed that the Khatri-Rao Dictionary B
has M2 rows, which indicates the proposed method has the
potential to detect more sources than sensors. Theoretically,
with a minimum redundancy linear array (MRLA) it can re-
solve (M2 −M)/2 sources simultaneously at most. Sub-
tracting M is to delete the diagonal elements from the co-
variance matrix since they are the same in noiseless situation
and division by two is to remove the symmetric information
since the covariance matrix is Hermitian.

Regarding the computational complexity of the pro-
posed method, the computational cost mainly lies in the
SBL iteration process in step (4). Assuming L > M

√
J

and L > M2, the computational complexity of SBL is
O(L2M2) per iteration. However, since we adopt the fixed-
point iteration and do not need to update the noise vari-
ance, the iteration converges much faster than the stand SBL
method in [10].

4. Simulation Results
In this section, some experiments are performed to

evaluate the performance of our algorithm. An ULA of five
elements is exposed to two uncorrelated wideband sources.
The intersensor spacing is half wavelength at the center fre-
quency of 100 MHz and the relative bandwidth of signals
are 20%. The array outputs are decomposed into 9 narrow-
band components in each segment (with 16 point fast Fourier
transform (FFT)), i.e., J = 9. The positive constant in (17)
and the iteration termination threshold are set as ς = 10−10

and τ = 10−4 , respectively. The maximum iteration times
is limited as 2000. The grid interval is 1◦ (i.e., L = 181)

and the scanning step size is 0.1◦. In order to take into ac-
count the impact of pre-estimation on the performance, the
pre-estimated DOAs are obtained by CBF in every single
trial [20]. The simulation results are obtained by averag-
ing 300 Monte Carlo trials. The RSS, TCT and FKR-RSS
method are chosen as the comparative algorithms. The wide-
band CRLB whose detailed derivation can be seen in [21] is
also included. In order to make FKR-RSS work normally,
the sources with non-flat power spectrum are selected to in-
sure [HT ,1J ] being full column rank.

Firstly, we simulate the performance versus signal-
to-noise ratio (SNR). The DOAs of sources are set as
[85.2◦, 94.7◦] with the frequency snapshot number being 50.
The results are depicted in Fig. 1. The vertical axis repre-
sents the root-mean-square error (RMSE) between the esti-
mated value and true value. Compared to the other meth-
ods, our method achieves the highest DOA estimation accu-
racy and reaches the CRLB at SNR = – 4 dB. Meanwhile,
the FKR-RSS only surpasses the traditional methods under
low SNR. The results here have confirmed our previous per-
spective that the new proposed method can also work with
sources having non-flat power spectrum. Additionally, al-
though there are errors in the preliminary DOAs, our method
arrives the CRLB. It indicates that in the new method the
sensitivity to the initial DOAs is decreased.

Secondly, we address the estimation performance un-
der different frequency snapshot number. The simulation
conditions are the same as above except for SNR = 0 dB.
The results are revealed in Fig. 2, where we can notice that
when the frequency snapshot number is as low as 20, our
method reaches the CRLB. The FKR-RSS gets the similar
performance as in Fig. 1. It exceeds the traditional meth-
ods with small frequency snapshot number and falls behind
when snapshot number becomes larger.

Thirdly, we vary the angle separation to evaluate an-
gle resolution performance. SNR = 0 dB and the DOAs of
sources are set as [85.2◦, 85.2◦+ ∆θ] where ∆θ is the angle
separation. Figure 3 demonstrates the results. Compared to
the other methods, the proposed method possesses the high-
est angle resolution. The proposed method achieves the es-
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selected to insure [HT ,1J ] being full column rank.

Firstly, we simulate the performance versus SNR. The
DOAs of sources are set as [85.2◦, 94.7◦] with the frequency
snapshot number being 50. The results are depicted in Fig. 1.
Compared to the other methods, our method achieves the

-10 -8 -6 -4 -2 0 2 4 6 8 10

100

101

 

 

R
M

SE
 (D

eg
)

SNR (dB)

 TCT
 RSS
 FKR-RSS
 proposed
 CRLB

Fig. 1. RMSE of wideband DOA estimation versus SNR.

10 20 30 40 50 60 70 80 90 100

100

101

R
M

SE
 (D

eg
)

Frequency snapshot number

 TCT
 RSS
 FKR-RSS
 proposed
 CRLB

Fig. 2. RMSE of wideband DOA estimation versus frequency
snapshot number.

3 4 5 6 7 8 9 10 11 12 13

100

101

R
M

SE
 (D

eg
)

Angle separation (Deg)

 TCT
 RSS
 FKR-RSS
 proposed
 CRLB

Fig. 3. RMSE of wideband DOA estimation versus angle
separation.

highest DOA estimation accuracy and reaches the CRLB at
SNR = −4dB. Meanwhile, the FKR-RSS only surpass the
traditional methods under low SNR. The results here have
confirmed our previous perspective that the new proposed
method can also work with sources having non-flat power
spectrum. Additionally, although there are errors in the pre-
liminary DOAs, our method arrives the CRLB. It indicates
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lated wideband sources which occupy the same 20% band-
width. The array outputs are decomposed into 9 narrowband
components in each segment (with 16 point FFT), i.e. J = 9.
The positive constant in (17) and the iteration termination
threshold are set as ς = 10−10 and τ = 10−4 , respectively.
The maximum iteration times is limited as 2000. The grid in-
terval is 1◦ (i.e. L = 181) and the scan step size sis 0.1◦. In
order to take into account the impact of pre-estimation on the
performance, the pre-estimated DOAs are obtained by CBF
in every single trial [16] . The simulation results are obtained
by averaging 300 times Monte Carlo trials. The RSS, TCT
and FKR-RSS method are chosen as the comparative algo-
rithms. The wideband CRLB whose detailed derivation can
be seen in [17] is also included. In order to make FKR-RSS
work normally, the sources with non-flat power spectrum are
selected to insure [HT ,1J ] being full column rank.

Firstly, we simulate the performance versus SNR. The
DOAs of sources are set as [85.2◦, 94.7◦] with the frequency
snapshot number being 50. The results are depicted in Fig. 1.
Compared to the other methods, our method achieves the
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highest DOA estimation accuracy and reaches the CRLB at
SNR = −4dB. Meanwhile, the FKR-RSS only surpass the
traditional methods under low SNR. The results here have
confirmed our previous perspective that the new proposed
method can also work with sources having non-flat power
spectrum. Additionally, although there are errors in the pre-
liminary DOAs, our method arrives the CRLB. It indicates
that in the new method the sensitivity to the initial DOAs is
decreased.

Fig. 2. RMSE of wideband DOA estimation versus frequency
snapshot number.

4 Y. j. PAN, N. TAI, N. C. YUAN, WIDEBAND DOA ESTIMATION VIA SBL OVER A KHATRI-RAO DICTIONARY

is the beamwidth of the array) [3] and acquire the focus-
ing matrix T j , j = 1, . . . , J by (5).

3) Form the multiple focused array covariance vectors
Ŷ = [ŷ1, . . . , ŷJ ] by(7) and (9) .

4) Follow the SBL method to iterate between (14)
(15) and (17) with the initialization of γ(0) =∑J

j=1 |BH(Θ)Ŷ ·j |/J to yield γ̂ .

5) For each peak of γ̂ , execute the postprocessing by (19)
to output the ultimate DOA estimations.

It should be noticed that the Khatri-Rao Dictionary B
has M2 rows, which indicates the proposed method has the
potential to detect more sources than sensors. Theoretically,
with a minimum redundancy linear array (MRLA) it can re-
solve (M2 − M)/2 sources simultaneously at most. Sub-
tracting M is to delete the diagonal elements from the co-
variance matrix since they are the same in noiseless situation
and division by two is to remove the symmetric information
since the covariance matrix is hermitian.

Regarding the computational complexity of the pro-
posed method, the computational cost mainly lies in the
SBL iteration process in step (4). Assuming L > M
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and L > M2, the computational complexity of SBL is
O(L2M2) per iteration. However, since we adopt the fixed-
point iteration and do not need to update the noise vari-
ance, the iteration converges much faster than the stand SBL
method in [14].

4. Simulation Results
In this section, some experiments are performed to

evaluate the performance of our algorithm. An ULA of five
elements with its inter-spacing being half wavelength corre-
sponding to the center frequency is exposed to two uncorre-
lated wideband sources which occupy the same 20% band-
width. The array outputs are decomposed into 9 narrowband
components in each segment (with 16 point FFT), i.e. J = 9.
The positive constant in (17) and the iteration termination
threshold are set as ς = 10−10 and τ = 10−4 , respectively.
The maximum iteration times is limited as 2000. The grid in-
terval is 1◦ (i.e. L = 181) and the scan step size sis 0.1◦. In
order to take into account the impact of pre-estimation on the
performance, the pre-estimated DOAs are obtained by CBF
in every single trial [16] . The simulation results are obtained
by averaging 300 times Monte Carlo trials. The RSS, TCT
and FKR-RSS method are chosen as the comparative algo-
rithms. The wideband CRLB whose detailed derivation can
be seen in [17] is also included. In order to make FKR-RSS
work normally, the sources with non-flat power spectrum are
selected to insure [HT ,1J ] being full column rank.

Firstly, we simulate the performance versus SNR. The
DOAs of sources are set as [85.2◦, 94.7◦] with the frequency
snapshot number being 50. The results are depicted in Fig. 1.
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timation error of no more than 3◦ under angle separation of
larger than 4◦ while other methods reach this performance
under angle separation of at least larger than 8◦. In addition,
when angle separation is larger than 6◦, our method arrives
the CRLB.

At last, we demonstrate the ability to resolve more
sources than sensors. A four elements MRLA whose el-
ements locate at [0, λ, 2.5λ, 3λ] is exposed to six sources
from the direction of [51◦, 60◦, 83◦, 93◦, 115◦, 125◦]. λ is
the wavelength corresponding to the center frequency. The
simulation condition is the same as the previous except for
SNR = 10 dB. The noise variance is assumed to be known
and the preliminary DOAs are given by step (2) in Section 3.
The spatial spectrum is shown in Fig. 4. It can be seen that
all sources are correctly resolved.

5. Conclusion
Wideband DOA estimation is more complex than the

narrowband counterpart. In this paper, we estimate the
DOAs by exploiting the MMV based SBL framework and
sparsely representing the focused array covariance vectors
over the Khatri-Rao dictionary. The simulation results
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Fig. 4. Resolving six sources with four sensors.

Secondly, we address the estimation performance un-
der different frequency snapshot number. The simulation
conditions are the same as above except for SNR = 0dB.
The results are revealed in Fig. 2 from which we can notice
that when the frequency snapshot number is as low as 20,
our method reachs the CRLB. The FKR-RSS gets the similar
performance as in Fig. 1. It exceeds the traditional methods
with small frequency snapshot number and fall behind when
snapshot number becomes larger.

Thirdly, we vary the angle separation to evaluate an-
gle resolution performance. SNR = 0dB and the DOAs of
sources are set as [85.2◦, 85.2◦ + ∆θ] where ∆θ is the angle
separation. Fig. 3 demonstrates the results. Compared to the
other methods, the proposed method possesses the highest
angle resolution. The proposed method achieves the estima-
tion error of no more than 3◦ under angle separation of larger
than 4◦ while other methods reach this performance under
angle separation of at least larger than 8◦. And when angle
separation is larger than 6◦, our method arrives the CRLB.

At last, we demonstrate the ability to resolve more
sources than sensors. A four elements MRLA whose el-
ements locate at [0, λ, 2.5λ, 3λ] is exposed to six sources
from the direction of [51◦, 60◦, 83◦, 93◦, 115◦, 125◦]. λ is
the wavelength corresponding to the center frequency. The
simulation condition is the same as the previous except for
SNR = 10dB. The noise variance is assumed to be known
and the preliminary DOAs are given by step (2) in section 3.
The spatial spectrum is shown in Fig. 4. It can be seen that
all sources are correctly resolved.

5. Conclusion
Wideband DOA estimation is more complex than the

narrowband counterpart. In this paper we estimate the DOAs
by exploiting the SBL framework and sparsely representing
the focused array covariance vectors over the Khatri-Rao
dictionary. The simulation results have demonstrated sev-
eral advantages of the new method, e.g. higher resolution
and accuracy, reaching the CRLB under relative demanding
scenario and resolving more sources than sensors. However,

due to the way of model formulation the correlated scenario,
especially coherent, will lead to a deteriorated performance.
So how to extend the proposed method to the above situation
is the future work .
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demonstrate several advantages of the new method, e.g.,
higher resolution and accuracy, reaching the CRLB under
relative demanding scenario, imposing no restriction on the
pattern of signal power spectral density and resolving more
sources than sensors. However, due to the way of model for-
mulation the correlated scenario, especially coherent, will
lead to a deteriorated performance. Possible future work
might concern the extension the proposed method to the
above situation.
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