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Abstract. The main drawback of closed-form solution of
linearly constrained minimum variance (CF-LCMV) beam-
former is the dilemma of acquiring long observation time
for stable covariance matrix estimates and short observa-
tion time to track dynamic behavior of targets, leading to
poor performance including low signal-noise-ratio (SNR),
low jammer-to-noise ratios (JNRs) and small number of
snapshots. Additionally, CF-LCMV suffers from heavy com-
putational burden which mainly comes from two matrix in-
verse operations for computing the optimal weight vector.
In this paper, we derive a low-complexity Robust Adaptive
LCMV beamformer based on an Iterative Suboptimal solu-
tion (RAIS-LCMV) using conjugate gradient (CG) optimiza-
tion method. The steepest descent weight updated strat-
egy is adopted to obtain a simple iteration process. The
merit of our proposed method is threefold. Firstly, RAIS-
LCMV beamformer can reduce the complexity of CF-LCMV
remarkably. Secondly, RAIS-LCMV beamformer can ad-
just output adaptively based on measurement and its conver-
gence speed is comparable. Finally, RAIS-LCMV algorithm
has robust performance against low SNR, JNRs, and small
number of snapshots. Simulation results demonstrate the su-
periority of our proposed algorithms.
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1. Introduction
Linearly constrained minimum variance (LCMV)

beamformer is a conventional and powerful tool for signal
enhancement in multiple sources cases. The conventional
LCMV beamformer is a kind of closed form LCMV (CF-
LCMV) beamformer which is obtained by directly using
Lagrange multipliers and is discussed extensively in many
works, such as [1, 2, 4]. As a generalized minimum vari-
ance distortion-less response (MVDR) beamformer, the con-
ventional LCMV beamformer minimizes the array output
power while maintaining a constant response in the direction
of the signal of interest (SOI). However, CF-LCMV beam-

former requires inversions of the input data covariance ma-
trix Rxx and CHC (C is a constraint matrix), causing the main
computation burden of CF-LCMV algorithm. Additionally,
the robustness of CF-LCMV is poor when small number of
snapshots, low SNR and JNRs, are present [16].

Numerous adaptive versions of LCMV were reported
in the last decades to overcome the above listed drawbacks
of CF-LCMV, including LMCV with stochastic gradient
(LCMV-SG) algorithm [13], LCMV with recursive least
squares (LCMV-RLS) algorithm [6], and so on. Among
these algorithms, the LCMV-SG algorithm is a low complex-
ity method but converges slowly with correlated data inputs
[9]. The LCMV-RLS algorithm has a fast convergence speed
but suffers from high complexity numerical instability. To
reduce the computational complexity and improve the sta-
bility of CF-LCMV algorithm, a low-complexity constrained
affine-projection (CAP) algorithm is proposed to update the
weight vector of linearly constrained adaptive filters [12] re-
cently. The performance of CAP beamformer is robust but
the complexities of CAP and its derivations are still high.

Comparatively speaking, conjugate gradient (CG) tech-
nique shows an attractive trade-off between performance and
complexity and has been adopted in many related works,
such as [10, 9, 11]. Among them, [10] is a convex opti-
mization framework. In each iteration, the algorithm in [10]
needs to solve a constrained least square problem, which
leads to a more heavy computational burden. Based on the
conventional MVDR criterion, [11] proposed a stronger con-
straint set to constrain the magnitude of array output and
the so-called set-membership )(SM) technique is adopted
to specify a bound on the magnitude of the estimation er-
ror or the array output, which can reduce the computational
complexity because of data selective updates. While [9] is
based on a constrained constant modulus (CCM) criterion
and a modified conjugate gradient (MCG) and a conven-
tional conjugate gradient (CCG) methods are used to drive
the optimal weight vector. The weight update strategies of
the two approaches are recursive least squares (RLS), which
is more complicated than steepest descent technique.The
two approaches can improve the performance to some ex-
tent with a more complicated iteration process. Addition-
ally, their performances are affected by too many parame-
ters, which degenerates their performance if these parame-
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ters are not given accurately. In this paper, by using CG
technique and steepest descent technique, we derive robust
adaptive LCMV beamformer based on iterative suboptimal
solution (RAIS-LCMV) to improve the performance of CF-
LCMV beamformer. Compared with the aforementioned ap-
proaches, our approach is only based on the conventional
LCMV framework, we needn’t other constraints to our cost
function. Hence, it only needs several simple iteration steps.
Firstly, we derive the updating procedures of RAIS-LCMV
by using CG technique. The way to determine the param-
eters to be used in RAIS-LCMV is addressed subsequently.
Furthermore, we discuss the convergence speed and compu-
tational complexity of RAIS-LCMV algorithm. Compared
with some existing LCMV beamformers, our proposed al-
gorithm has a low complexity and achieves better perfor-
mance with small number of snapshots and low SNR and
JNRs cases.

2. Problem Formulation
Consider D point source signals (including signals and

interferences) impinging on an array comprising M sensors
with an arbitrary geometry from directions θ1,θ2, · · · ,θD.
The output y(k) of array beamformer can be expressed as

y(k) = wHx(k), (1)

where k = 1,2, · · · ,K is the time index and K is the number
of snapshot, w is a M× 1 complex vector of beamformer
weight to be estimated, and (·)H stands for Hermitian trans-
pose.

For a minimum-variance distortionless-response
(MVDR) beamformer, the objective is to minimize the array
output energy, subject to a linear constraint on the desired
direction-of-arrival (DOA), i.e.,

minimize J (w) = 1
2 wHRxxw

subject to wHa(θ1) = 1,
(2)

where Rxx = E
{

x(k)xH (k)
}

is the covariance matrix of the
received signal x with E {·} being the expectation operator.

For LCMV-type beamformers, w is the solution to the
following multiple linearly constrained optimization prob-
lem:

minimize J(w) = 1
2 wHRxxw

subject to CHw = f,
(3)

where C is the aforementioned constraint matrix and f is
a constraint vector. For example, if we need to generate unit
gains in L DOAs θi (i = 1,2, · · · ,L) while forming nulling in
other DOAs, the constraint matrix and constraint vector can
be expressed as

C = [a(θ1), · · · ,a(θL),a(θL+1), · · · ,a(θD)] (4)

and

f =

1, · · · ,1︸ ︷︷ ︸
L

,0, · · · ,0︸ ︷︷ ︸
D−L

T

, (5)

respectively. Based on (3), (4), and (5), by using Lagrange
multipliers technique, one can obtain a closed-form solution
of the optimal weight vector w as follows [13]

wopt = R−1
xx C(CHR−1

xx C)
−1f. (6)

Equation (6) is the well-known optimal weight vector of
LCMV beamformer and it is a closed-form solution to (3).
The closed-form solution of (6) can constrain the interfer-
ences and keep simultaneous response of multiple expected
signals. To obtain the optimal weight vector, we need to
compute two matrix inversions from (6), i.e., one is the in-
verse operation of covariance matrix Rxx, with size M×M,
the other is the inverse operation of matrix CHR−1

xx C, with
size D×D. For large arrays or adaptive phase array radar
(APAR) [18], the number of array sensors is very large, so
the computational complexity of covariance matrix inversion
is very high. So how to decrease the computational bur-
den of CF-LCMV is a serious problem. Additionally, the
main drawback of the aforementioned two beamformers is
the dilemma of acquiring long observation time for stable
covariance matrix estimates and short observation time to
track dynamic behavior of targets, leading to poor perfor-
mance including low SNR, low JNRs, and small number of
snapshots.

In [1], Breed and Strauss derived an equivalent gener-
alized sidelobe canceller (GSC) structure of LCMV (GSC-
LCMV). GSC-LCMV is obtained by splitting the applied
filters into two components, i.e., w = wq−ws. The com-
ponents of wq and ws lie in the column-subspace of the con-
straint matrix C and its component null-subspace, respec-
tively. The GSC-LCMV formulation of the problem can be
expressed as following

w = wq−ws, (7a)

wq = CQ−1wa, (7b)
ws = Cawa, (7c)

wa =
(
CH

a RxxCa
)−1 CH

a Rxxwq, (7d)

Q = CHC, (7e)

where the matrix Ca ∈ C D×(D−L) is composed of the ortho-
complement vectors of constraint matrix C. It should be
noted that GSC-LCMV also requires two matrix inversions
and its computational complexity will be slightly decreased
when number of signals is far less than that of array ele-
ments. Overall speaking, the computational burden of GSC-
LCMV is still heavy and its performance is still poor with
small number of snapshots, low SNRs and JNRs.

In order to ease the computational burdens of CF-
LCMV and GSC-LCMV and obtain a better performance
under small number of snapshots, low SNRs and JNRs, we
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derive a low-complexity RAIS-LCMV algorithm using con-
jugate gradient (CG) optimization technique. The proposed
RIAS-LCMV beamformer does not require matrix inversion
in each iteration and the suboptimal weight vector is com-
puted iteratively given small number of iterations. Com-
pared to CF-LCMV, GSC-LCMV beamformers, and some
other existing iterative methods, RAIS-LCMV beamformer
has lower computational complexity and shows great robust-
ness to SNR, JNRs, and number of snapshots.

3. Robust Adaptive LCMV
Beamformer Based on
an Iterative Suboptimal
Solution (RAIS-LCMV)
Consider the objective optimization function of (3)

which is based on the typical least mean square (LMS) cri-
terion. One can obtain a solution of weight vector by using
conjugate gradient (CG) optimization algorithm [7, 8, 14].
In order to derive an iterative suboptimal solution of weight
vector w, the proposed RIAS-LCMV beamformer is de-
signed using the following optimization problem in real val-
ued form:

J (w) =
1
2

wHRxxw+Real
{

λ
H (CHw− f

)}
, (8)

where Real{·} is an operator of taking real part and λ∈C D×1

is a Lagrange multipliers vector. Calculating the conjugate
gradient of J(w) with respect to w, we have

5wJ (w) = Rxxw+
∂
(
Real

{
λH
(
CHw− f

)})
∂w∗

, (9)

in which

∂
(
Real

{
λH
(
CHw− f

)})
∂w∗

=
∂
(
Real

{
λHCHw

})
∂w∗

. (10)

It is noted that λHCHw is a complex scalar, thus we have

Real
{

λ
HCHw

}
=

1
2
(
λ

HCHw+wHCλ
)
. (11)

Based on (11), (10) can be expanded to

∂
(
Real

{
λH
(
CHw− f

)})
∂w∗

=
1
2

∂

(
(Cλ)Hw

)
∂w∗

+
1
2

∂
(
wHCλ

)
∂w∗

. (12)

Since λHCH = (Cλ)H and Cλ∈ C M×1, using the rule of gra-
dient derivation, the first item of right side of (12) is zero, and
the second item of right side of (12) is Cλ, so we have

∂
(
Real

{
λH
(
CHw− f

)})
∂w∗

= Cλ. (13)

Based on the results above, we can calculate the derivation
of ∇wJ (w) as

∇wJ (w) = Rxxw−Cλ. (14)

The following updating formulation is used to compute the
weight vector w(n+1)

w(n+1) = w(n)+µ [−∇wJ (w)] , (15)

where µ is a non-negative step size parameter, which decides
the convergence of our method. Substituting (14) into (15)
and using λ(n) instead of λ as the n index, we have

w(n+1) = w(n)−µ [Rxxw(n)−Cλ(n)] , (16)

where λ(n) varies with index n. We constrain that the weight
vector w(n+1) must satisfy the following constraint condi-
tion in each iteration

CHw(n+1) = f. (17)

Premultiplying both sides of (15) by CH yields

CHw(n+1) = CHw(n)−µCH [Rxxw(n)−Cλ(n)] . (18)

Combining (17) and (18), we can obtain the following equiv-
alent form

f = CHw(n)−µCH [Rxxw(n)−Cλ(n)] . (19)

Consequently, the expression of λ(n) is given as follows

λ(n) =
1
µ

(
CHC

)−1 f− 1
µ

(
CHC

)−1 CHw(n)

+
(
CHC

)−1 CHRxxw(n) . (20)

Substituting (20) into (16), we can obtain the iterative equa-
tion of weight vector w(n+1) as follows

w(n+1) = w(n)−µRxxw(n)+C
(
CHC

)−1 f

−C
(
CHC

)−1 CHw(n)

+µC
(
CHC

)−1 CHRxxw(n) . (21)

Simplifying (21) further yields

w(n+1) =
[
I−C

(
CHC

)−1 CH
]
[I−µRxx]w(n)

+C
(
CHC

)−1 f. (22)

Denoting

P =
[
I−C

(
CHC

)−1 CH
]
, (23)

and

G = C
(
CHC

)−1 f, (24)

we can rewrite the iterative process of weight vector
w(n+1) as the following compact form

w(n+1) = P(I−µRxx)w(n)+G. (25)



RADIOENGINEERING, VOL. 24, NO. 2, JUNE 2015 575

Equation (25) is the updating formulation of estimated sub-
optimal weight vector. Because the covariance matrix is not
an iterative form, the beamformer constructed by (25) is not
an adaptive one. For simplicity, we denote the updating
procedure of (25) as a simple iterative suboptimal solution
of LCMV (SIS-LCMV) beamformer. Note that the covari-
ance matrix of Rxx is unavailable in real time, so SIS-LCMV
beamformer is still torn between the need of long observa-
tion time for stable covariance matrix estimates and the need
of short observation time to track dynamic behavior of tar-
gets.

Generally speaking, an available approximation of Rxx
is

R̂xx =
1
K

K

∑
k=1

x(k)xH (k), (26)

in which K is the total number of snapshots. Hence, the
weight updating formula of SIS-LCMV should be substi-
tuted by

w(n+1) = P
(
I−µR̂xx

)
w(n)+G. (27)

The drawback of SIS-LCMV is that it needs long ob-
servation time for stable covariance matrix estimate. In order
to solve the problem of long observation time and to improve
the dynamic behavior of beamformer, the approximation of
covariance matrix (26) can be substituted by the instanta-
neous estimate of covariance matrix as follows

R̂xx = x(k)xH (k) . (28)

In this case, the suboptimal weight updating process of
our proposed iterative adaptive LCMV beamformer can be
rewritten as

y(k) = wH (k)x(k) , (29)

and

w(k+1) = P{w(k)−µy(k)x(k)}+G, (30)

in which the iteration index k = 1,2, · · · ,K with k being the
index of measurement number. The scalar y(k) is the in-
stantaneous output of beamformer in kth observation time.
Using the updating formulae (29) and (30), we can obtain
an adaptive iterative suboptimal solution of LCMV (AIS-
LCMV) beamformer.

It should be noted that the updating process of AIS-
LCMV beamformer can improve the dynamic behavior of
SIS-LCMV beamformer remarkably. However, one can
imagine that the error will be large due to the poor approx-
imation of covariance matrix. In order to improve the per-
formance of AIS-LCMV, we adopt the recursive strategy of
covariance matrix as follows

R̃xx (k) = βR̃xx (k−1)+(1−β)x(k)xH (k) , (31)

where β is a forgetting factor, and R̃xx (k) and R̃xx (k−1) are
the estimates of covariance matrix in the kth and (k−1)th
observation time, respectively. Based on the recursive esti-
mate of covariance matrix of (31), we obtain RAIS-LCMV
algorithm as follows

w(k+1) = P
(
I−µR̃xx (k)

)
w(k)+G. (32)

Obviously, the smooth technique used here can reduce the
estimating error of covariance matrix effectively.

It should be noted that AIS-LCMV and RAIS-LCMV
are the special cases of SIS-LCMV algorithm. Among them,
AIS-LCMV is just the case of K = 1 in the estimation of co-
variance matrix in (26), while RAIS-LCMV adopts a data
reusing strategy to improve the estimation precision of co-
variance matrix. We believe that RAIS-LCMV has a better
performance in both tracking speed and estimation of stable
covariance matrix than AIS-LCMV beamformer. Addition-
ally, the computational complexity of RAIS-LCMV is lower
than that of SIS-LCMV because the latter needs more ob-
servation time to compute the approximation of covariance
matrix and the robustness of RAIS-LCMV will be superior
to that of SIS-LCMV and AIS-LCMV with small number of
snapshots, low SNRs and JNRs cases.

Now we summarize the three listed algorithms: SIS-
LCMV, AIS-LCMV, and RAIS-LCMV in Tab. 1, Tab. 2 and
Tab. 3, respectively. In Tab. 1, N is the total number of iter-
ation in SI-LCMV and ε is the weight vector difference be-
tween two adjacent estimated weight vectors. 5δ is a small
threshold we set. In Tab. 2 and Tab. 3, the termination con-
dition of iterative process is determined only by the number
of snapshots K.

SIS-LCMV Algorithm
Step 1) Initialization

(a) w(0), µ, N (5δ);

(b) Calculate P using (23);

(c) Calculate G using (24);

(d) Calculate R̂xx using (26);

Step 2) For n = 1,2, . . . ,N

(a) Update weight vector using (27);

Step 3) n← n+1;
Step 4) If n>N or iterative error ε≤5δ, return;

else, go to (a) in Step 2).

Tab. 1. The proposed SIS-LCMV algorithm.
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AIS-LCMV Algorithm
Step 1) Initialization

(a) w(0), µ, K;

(b) Calculate P using (23);

(c) Calculate G using (24);

Step 2) For k = 1,2, . . . ,K

(a) Update the instantaneous output of
beamformer using (29);

(b) Update weight vector using (30);

Step 3) k← k+1;
Step 4) If k > K, return; else, go to (a) and (b) in

Step 2).

Tab. 2. The proposed AIS-LCMV algorithm.

RAIS-LCMV Algorithm
Step 1) Initialization

(a) w(0), µ, K, R̃xx (0), and β;

(b) Calculate P using (23);

(c) Calculate G using (24);

Step 2) For k = 1,2, . . . ,K

(a) Recursive estimation of covariance ma-
trix using (31);

(b) Update weight vector using (32);

Step 3) k← k+1;
Step 4) If k > K, return; else, go to (a) and (b) in

Step 2).

Tab. 3. The proposed RAIS-LCMV algorithm.

4. Parameters Selection
The parameters to be considered here are the step size

parameter µ, the initial weight vector w(0), the total itera-
tive number N or equivalently speaking, the iterative error
5δ, the initial covariance matrix R̃xx (0), and the forget fac-
tor β. Among them, the initial covariance matrix R̃xx (0) is
usually set to be identity matrix with size of M×M and the
forget factor β is always selected as a constant close to one,
e.g., β = 0.998. Note that AIS-LCMV and RAIS-LCMV
are just the special cases of SIS-LCMV, for the sake of sim-
plicity, we only take SIS-LCMV algorithm as an example to
demonstrate the selection of some parameters. Such conclu-
sions can be applied to AIS-LCMV and RAIS-LCMV algo-
rithms directly.

4.1 The Step Size Parameter µ

The first parameter to be determined is the step size pa-
rameter µ. In order to determine the range bound of µ, we

substitute (17) and (24) into (25), which yields

w(n+1) = P(I−µRxx)w(n)

+C
(
CHC

)−1 CHw(n+1) . (33)

Further simplifying (33), we obtain a compact form about w
as follows

Pw(n+1) = P(I−µRxx)w(n) . (34)

Note that P is a full-rank matrix if all signals and interfer-
ences are not coherent.

Premultiplying both sides of (34) by P−1 yields

w(n+1) = (I−µRxx)w(n) . (35)

Recall that the eigen-decomposition of Rxx is given as

Rxx = QΛΛΛQH =
M

∑
i=1

λiqiqH
i , (36)

where λ1,λ2, · · · ,λM is the eigenvalue of Rxx, q1,q2, · · · ,qM
is the normalized eigenvector, Q is a unitary matrix whose
columns are composed of all eigenvectors.

Q = [q1,q2, · · · ,qM] , (37)

and the diagonal matrix ΛΛΛ is composed of its eigenvalues

ΛΛΛ = diag{λ1,λ2, · · · ,λM} . (38)

Substituting (36) into (35), we have

w(n+1) =
(
I−µQΛΛΛQH)w(n) . (39)

Because of QHQ = QQH = I, (39) can be rewritten as

w(n+1) = Q(I−µΛΛΛ)QHw(n) . (40)

Premultiplying both sides of (40) by QH and denoting
b(n) = QHw(n), we have

b(n+1) = (I−µΛΛΛ)b(n) . (41)

Assume that b(n) = [b1 (n) ,b2 (n) , · · · ,bM (n)]T , we can ex-
pand (41) as

b1 (n+1)
b2 (n+1)

...
bM (n+1)

=

 1−µλ1
. . .

1−µλM



×


b1 (n)
b2 (n)

...
bM (n)

 . (42)

Equivalently, each row of (42) has the following recursion
form

bi (n+1) = (1−µλi)bi (n) . (43)
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If the initialized value of bi (n) is bi (0), then the following
relationship holds

bi (n) = (1−µλi)
n bi (0). (44)

Obviously, if |1−µλi|< 1, i.e., −1 < 1−µλi < 1. Or equiv-
alently, if the following condition is satisfied,

0 < µ <
2
λi
, (45)

we can always have lim
n→∞

bi (n) = 0, i = 1,2, · · · ,M.

To ensure the step size parameter µ satisfies (45) for all
λi, i = 1,2, · · · ,M, the step size parameter µ should satisfy

0 < µ <
2

λmax
, (46)

where λmax is the biggest eigenvalue of Rxx.

4.2 The Initialized Weight Vector w(0)

The second parameter to be determined in our proposed
algorithm listed in Tab. 1, Tab. 2, and Tab. 3 is w(0). Recall
that G in (25) is a fixed part in each iteration and note that
the expression of G is just a min-norm solution to (3), if we
choose the initialized condition of w(0) = 0, then

w(1) = G, (47)

that is to say, w(1) is the min-norm solution of LCMV. In
other words, the expected weight vector will be the min-
norm solution after only one iteration. Meanwhile, setting
w(0) = 0 can ensure the constrain condition in each itera-
tion due to

CHG = CHC
(
CHC

)−1 f = f. (48)

Based on w(0) = 0, we can calculate w(n+1) by

w(n+1) = (Pn (I−µRxx)
n + · · ·+ I)G. (49)

Because P is the orthocomplement matrix of C, we have

CHPn = 0,n = 1,2, · · · ,N. (50)

Premultiplying both sides of (49) by CH , we find that the
weight vector in each iteration satisfies the following con-
strain condition

CHw(n+1) = f. (51)

From the analysis above, we find that the choice of w(0) = 0
is reasonable and it can give a good suboptimal solution of
weight vector.

4.3 The Iteration Number N and5δ

The third parameter to be determined is the iteration
number N. The iteration number N can be set preliminarily

and the value of N must be big enough for obtaining the op-
timal weight vector wopt. Based on our experiences of many
simulations, the iteration number N must be big enough to
obtain a reasonable suboptimal weight vector. Empirically,
any N ≥ 20 is appropriate because a suboptimal weight vec-
tor can be acheived after several iterations in most cases.
Such selection of N is justified subsequently by convergence
analysis in Section 5 and simulation results in Section 6.

As a candidate parameter, the iterative error of weight
vector 5δ is also an efficient way to control the termina-
tion condition of our proposed SIS-LCMV, AIS-LCMV, and
RIAS-LCMV algorithms. The iterative error 5δ can be
computed in the following way

5δ = ‖ŵ(n+1)− ŵ(n)‖2
2, (52)

where ŵ(n) is the estimate of the nth iteration and ‖ · ‖2
2 is

the `2-norm. We set 5δ = 10−3 in our simulation unless
stated otherwise. A smaller 5δ will take much time to get
stable point.

5. Discussion
In this section, we evaluate the performance of our pro-

posed algorithms from two aspects, i.e., convergence perfor-
mance and computational complexity.

5.1 Convergence Analysis
It is obvious that the orthocomplement matrix P of C

has the following properties

Pn = P,n = 1,2, · · · . (53)

Based on (49) and (53), with w(0) = 0, the relationship
between weight vectors w(n+1) and w(n) can be further
rewritten as

w(n+1) = P(I−µRxx)
n+1 w(0)

+P(I−µRxx)
n G+ · · ·+G. (54)

Hence, (54) can be rewritten as

w(n+1) =

P
(
(I−µRxx)

n +(I−µRxx)
n−1 + · · ·+ I

)
G+G. (55)

Note that the formula of finite sum of matrix can be ex-
pressed as

n

∑
i=1

Ai =
(
I−An+1)(I−A)−1 . (56)

Let A = I− µRxx in (56), and (55) can be equivalently ex-
pressed as

w(n+1) =
1
µ

P(I− (I−µRxx)
n)R−1

xx G+G. (57)

The first term on the right side of (57) is the transient
component of the vector x(n), and the second term is the
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steady-state component. Equation (55) shows that the es-
timated suboptimal weight vector of our proposed algo-
rithm includes two parts: fixed part and adaptive part. The
fixed part is known as the aforementioned min-norm solu-
tion of constraint condition CHw = f. The adaptive part is
1
µ P(I− (I−µRxx)

n)R−1
xx G, which is related to the covari-

ance matrix of the receiving data. To prove the convergence
performance of our proposed methods, we only require to
consider the extreme value of 1

µ P(I− (I−µRxx)
n)R−1

xx G
when µ lies in 0 < µ < 2

λmax
.

From the step size selection of (46), we know that if
n→ ∞, item (I−µRxx)

n→ 0 for any µ lies in 0 < µ < 2
λmax

.
Therefore, (57) can be rewritten as

w(n+1)' 1
µ

PR−1
xx G+G. (58)

Equation (58) tells us that the stable point of suboptimal
weight vector is 1

µ PR−1
xx G+G when the step size lies in the

range of 0 < µ < 2
λmax

. That is to say, our proposed algo-
rithms are stable when finding the suboptimal weight vector.

5.2 Complexity Evaluation
In this section, we compare the computational com-

plexity of our proposed algorithms, i.e., SIS-LCMV, AIS-
LCMV, and RIAS-LCMV, with the aforementioned CF-
LCMV [19], GSC-LCMV [1], and two other iterative al-
gorithms, i.e., constrained affine-projection (CAP) algo-
rithm [12], and low-complexity addition or removal of sen-
sors/constraints in LCMV beamformers [17]. The compu-
tational analysis is based on the complexity of basic oper-
ations defined in Tab. 4. For the convenience of compari-
son, we summarize the computational complexities of them
in Tab. 5. Among them, the computational complexities of
CF-LCMV and GSC-LCMV can be derived directly from
the closed-form solution of optimal weight. It should be
noted that here we considered is only L = 1 case in CAP
algorithm because it has the lowest computational complex-
ity among all the cases of L≥ 1 (L is the data reuse number,
refer [12] for details) to justify the fairness of the complex-
ity comparison. Despite of multiple different updating al-
gorithms proposed in, we only consider the typical sensor
update incremental LCMV (SUI-LCMV) algorithm for the
sake of simplicity. For the listed iterative algorithms, we
only consider the computation in each iteration. Note that
for our proposed algorithms, we do not need compute P and
G in each iteration because they are computed in initializ-
ing step. Hence, the computation number of our proposed
algorithms have nothing to do with D. Compared with other
algorithms in Tab. 5, it is obvious that our proposed algo-
rithms have lower computational complexity compared with
other listed algorithms. Among them, AIS-LCMV has the
lowest computational complexity.

Operation Computations

Matrix mult. (m×n)× (n× p) mnp

Matrix inversioin n×n 2
3 n3

Tab. 4. Complexity of basic operations.

Different LCMV Computations
algorithms
CF-LCMV 2

3 M3 + 2
3 D3 +2M2D−MD+D2

GSC-LCMV 9 2
3 D3 +4M2D+9MD2−MD+D2

CAP 2
3 D3 +D2 +D+4MD+2M2

SUI-LCMV 4M2 +2MD+5D2−6M+11D+2
SIS-LCMV 5

2 M2− 1
2 M

AIS-LCMV M2 +2M+1
RAIS-LCMV 4M2

Tab. 5. Computational complexity of five listed LCMV algo-
rithms.

6. Simulation and Results
In this section, we compare the performance of our pro-

posed algorithms with CF-LCMV, GSC-LCMV, CAP, and
SUI-LCMV algorithms from calculations, robustness and
convergence.

6.1 Comparison of Computational Complexity
In this section, the computational complexity of five

aforementioned algorithms is validated by simulation data.
From Tab. 5, we note that CF-LCMV and GSC-LCMV are
direct solutions without any iteration process and the com-
putational complexities of them exceed the other listed algo-
rithms by far. We do not plot the calculations of CF-LCMV
and GSC-LCMV algorithms in the following simulations
due to their heavy computation burden. We only compare
the calculations of our proposed algorithms with other two
existing iterative adaptive LCMV algorithms, named CAP,
and SUI-LCMV, for the convenience of comparative.

Considered that the source number D is usually much
smaller than the number of sensors M. So we only consider
the case of D≤M without loss of generality. To test the re-
lationship between the computational complexity of listed
LCMV algorithms and the number of sensors, we fix the
number of sources D and only change the number of sen-
sors M. Fig. 1 gives the results of different number of sen-
sors versus calculations of listed LCVM algorithms when
the number of source D is five. Here the number of sensors
varies from 20 to 100 with increment of 10. To test the rela-
tionship between and computational complexity of listed al-
gorithms and the number of sources, we change the number
of sources D from 5 to 15 and keep the number of sensors M
varying as before to show the relationship between the cal-
culations and the number of sources D. Figures 2 gives the
results of calculations of listed LCMV algorithms when the
number of sources D is 15.
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From Fig. 1 and Fig. 2, we observe that our proposed
SIS-LCMV, AIS-LCMV, and RAIS-LCMV algorithms have
competitive computational complexity in both cases. For the
three proposed LCMV algorithms, the calculations of AIS-
LCMV are smaller than that of the other two algorithms. In
the former case, the calculations of AIS-LCMV are a bit
smaller than that of SUI-LCMV while the calculations of
RAIS-LCMV are close to that of CAP. In the latter case,
the calculations of AIS-LCMV are smaller than that of SUI-
LCMV and the calculations of RAIS-LCMV are smaller
than that of CAP. As the number of sources increases, the
superiority of our proposed algorithms is remarkable.
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Fig. 1. Number of calculations versus different M for different
LCMV algorithms with D = 5.
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Fig. 2. Number of calculations versus different M for different
LCMV algorithms with D = 15.

6.2 Accuracy in Beamforming and Inter-
ference Constraining

This experiment is carried out in a beamforming appli-
cation. In this scenario, a uniform linear array with M = 8
antennas with element spacing equal to a half-wavelength
was used in a system with D = 4 users. The signal of
one user whose look-direction is 0◦ is of interest, and the
other three signals whose incident angles are −20◦, −40◦,
and −50◦, respectively, are treated as interferences or jam-
mers. In order to show the performance of our proposed
algorithms, we also compare the performance of our algo-
rithms with a constrained affine-projection (CAP) algorithm
[12]. Because GSC-LCMV is only a different version of
CF-LCVM and they have the same performance in beam-

forming ability, we omit GSC-LCMV in this simulation. Ad-
ditionally, SUI-LCMV is a sensor update incremental algo-
rithm and it is not appropriate for fixed sensor case, hence
we do not consider its performance in this experiment. The
parameters used in CAP algorithm in this experiment are,
L = 1, δ = 10−4, and µ = 0.05, respectively. The forget fac-
tor β used in RAIS-LCMV is 0.998 and the initial covari-
ance matrix used in RAIS-LCMV is set to identity matrix,
i.e., Rxx (0) = IM×M .

Firstly, we consider the performance of different algo-
rithms against snapshot number. The signal-to-noise ratio
(SNR) is set to 0 dB, and jammer-to-noise ratios (JNRs) of
10 dB are used. The beamforming performances versus the
number of snapshots with fixed SNR, JNRs, and the number
of sensors are depicted in Fig. 3 and Fig. 4, respectively. It is
evident that the listed iterative adaptive algorithms, including
our proposed algorithms and CAP algorithm, are more ro-
bust to small number of snapshots, while CF-LCMV is very
sensitive to the number of snapshot and its performance is
poor when fewer snapshots are available.

Secondly, we fix that the number of snapshots N is 20
and the number of sensors M is 8. Fig. 5 shows the beam-
forming performance of listed algorithms with SNR being
10 dB, and JNRs being 20 dB. Fig. 6 plots the beamforming
performance of listed algorithms with SNR being −10 dB,
and JNRs being −20 dB. It is evident that our proposed al-
gorithms and CAP algorithm are robust to low SNR and
JNRs, while CF-LCMV shows degraded performance in low
SNR and JNRs case, as demonstrated in Fig. 6. From the
four listed figures, we observe that our proposed algorithms
have a competitive performance in both cases. Among SIS-
LCMV, AIS-LCMV, and RAIS-LCMV, RAIS-LCMV has
a better performance in trade-off robustness and tracking
speed of LCMV beamformer. It is noted that the sidelobe
level of RAIS-LCMV is lower than other algorithms, includ-
ing CAP, in the four listed simulation cases. AIS-LCMV has
the lowest computational complexity but is more sensitive to
low SNR, JNRs, and small number of snapshots and sensors.
SIS-LCMV is not an adaptive beamformer but it has a better
performance than CF-LCMV in the same condition.
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Fig. 3. Beamforming patterns of five listed algorithms with
snapshot number N = 20, SNR = 0 dB, JNRs = 10 dB.
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Fig. 4. Beamforming patterns of five listed algorithms with
snapshot number N = 200, SNR = 0 dB, JNRs = 10 dB.
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Fig. 5. Beamforming patterns of five listed algorithms with
snapshot number N = 20, SNR = 10 dB, JNRs = 20 dB.
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Fig. 6. Beamforming patterns of five listed algorithms with
snapshot number N = 20, SNR = -10 dB, JNRs = -20 dB.

Finally, we also compared the performance of RAIS-
LCMV with CMV-CCG (constrained minimum variance-
conventional conjugate gradient) [9], CCM-MCG (con-
strained constant modulus-modified conjugate gradient) [9],
and SM-CG (set membership-conjugate gradient) [11] algo-
rithms. The number of snapshots, the number of sensors,
SNR, JNRs and the directions of sources are all the same as
the above case. The parameters of CMV-CCG, CCM-MCG,
and SM-CG algorithms are listed in Tab. 6. These parame-
ters are used in the simulations of [11] and [9]. It is worthy to

point out that we just consider the fixed bound case of δ for
the sake of simplicity. And the results are shown in Fig. 7.
From the figure, we observe that our proposed RAIS-LCMV
has a competitive performance in beamforming with respect
to the other listed algorithms. Our proposed algorithm can
work well with small snapshots number, while the CCM-
MCG, CMV-CCG, and SM-CG need more snapshots num-
ber to obtain a good performance (more than 3000 in the sim-
ulation parts of the original literatures). Hence the speed of
convergence of RAIS-LCMV is better than the above three
algorithms because the steepest descent strategy is adopted.

Algorithms Parameters

CMV-CCG K = M/2, δ = 0.002, λ = 0.998, γ = 1

CCM-MCG δ̃y = 0.002, λy = 0.998, η̃ = 0.5, γ = 1

SM-CG δ = 0.8, η = 0.5, γ = 1

Tab. 6. The simulation parameters of three algorithms.
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Fig. 7. Beamforming patterns of four listed algorithms with
snapshot number N = 20, SNR = -10 dB, JNRs = -20 dB.

6.3 Convergence Speed
In this scenario, we fix the number of sensor element

as eight. Four sources are the aforementioned directions-of-
arrival. The number of snapshots is set to 1000 in order to
test the ability of convergence of our proposed algorithms
under different SNR and JNRs cases. We compare the con-
vergence speed of our proposed algorithms with CAP al-
gorithm. Fig. 8 and Fig. 9 show the convergence speed of
our proposed algorithms and CAP algorithm under differ-
ent SNR and JNRs. Note that the vertical axis in Fig. 8 and
Fig. 9 is `2-norm of the difference of weight vectors between
two adjacent iterations, i.e., ‖∆w(k)‖ is given by

‖∆w(k)‖= ‖ŵ(k)− ŵ(k−1)‖2
2, (59)

where ŵ(k) and ŵ(k−1) are the estimates of the kth and
(k−1)th snapshots, respectively. We observe that, from
both figures, our algorithms present a better performance in
terms of convergence speed for both SNR and JNRs cases.
Among them, the convergence performance of AIS-LCMV
is slightly poorer than that of CAP algorithm due to adopt-
ing poor approximation of covariance matrix. The conver-
gence performance of SIS-LCMV and RAIS-LCMV is su-
perior to that of CAP algorithm no matter what SNR and
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JNRs are in both cases. Also we see from the two figures
that our proposed algorithms performs very similarly to the
CAP algorithm in convergence speed: they all obtain a stable
point after only several iterations, as demonstrated in Fig. 8
and Fig. 9. In other words, our algorithm needs only sev-
eral snapshots to obtain the suboptimal weight vector under
lower and higher SNR and JNRs cases.
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Fig. 8. Convergence performance of our proposed algorithms
and CAP versus different JNRs, N = 1000, SNR = 10 dB,
JNRs = 20 dB.
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Fig. 9. Convergence performance of our proposed algorithms
and CAP versus different JNRs, N = 1000, SNR = 0 dB,
JNRs = 10 dB.

7. Conclusion
In this paper, we derive a low-complexity RAIS-

LCMV algirithm using conjugate gradient (CG) optimiza-
tion method. Our proposed algorithms can, in certain ap-
plications, substantially improve the robustness to low SNR,
JNRs, and small number of snapshots.

Through theoretical analysis and simulation results, we
show that our proposed algorithms can effectively overcome
the dilemma of acquiring long observation time for stable
covariance matrix estimates and short observation time to
track dynamic behavior of targets. Parameters used in our
algorithm are easily determined and the performance of our
proposed algorithms are superior to existing iterative adap-
tive algorithms, such as CAP, SUI-LCMV, etc., in inter-

ference suppression, computational complexity, and robust-
ness. Simulation results show the efficacy of our proposed
algorithm.
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