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Abstract. Although practically all function blocks of the
satellite navigation receivers are realized using the CMOS
digital integrated circuits, it is appropriate to create a sepa-
rate low noise antenna preamplifier based on a low noise
pHEMT. Such an RF front end can be strongly optimized to
attain a suitable tradeoff between the noise figure and trans-
ducer power gain. Further, as all the four principal naviga-
tion systems (GPS,GLONASS,Galileo, andCOMPASS)work
in similar frequency bands (roughly from 1.1 to 1.7 GHz), it is
reasonable to create the low noise preamplifier for all of them.
In the paper, a sophisticated method of the amplifier design is
suggested based on multiobjective optimization. A substan-
tial improvement of a standard optimization method is also
outlined to satisfy a uniform coverage of Pareto front. More-
over, for enhancing efficiency of many times repeated solu-
tions of large linear systems during the optimization, a new
modification of theMarkowitz criterion is suggested compati-
ble with fast modes of the LU factorization. Extraordinary
attention was also given to the accuracy of modeling. First,
an extraction of pHEMT model parameters was performed
including its noise part, and several models were compared.
The extraction was carried out by an original identification
procedure based on a combination of metaheuristic and di-
rect methods. Second, the equations of the passive elements
(including transmission lines and T-splitters) were carefully
defined using frequency dispersion of their parameters as Q,
ESR, etc. Third, an optimal selection of the operating point
and essential passive elements was performed using the im-
proved optimization method. Finally, the s-parameters and
noise figure of the amplifier were measured, and stability and
third-order intermodulation products were also checked.

Keywords
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1. Introduction
The optimization algorithms generally require strong

convergence behavior and adequate computational efficiency.

In state-of-the-art optimization procedures, these properties
are mostly searched as a combination of more reliable, but
slower metaheuristic algorithms [1–6] with faster, but less
stable direct optimization methods [7–10]. We have sug-
gested an original combination of these methods in a robust
three-step model identification procedure, which has been
used for necessary extraction of pHEMT model parameters.
Moreover, for themultiobjective optimization, a uniform cov-
erage of the Pareto front [11] is also very important, especially
for multidimensional tasks. We have used our improvement
of the goal attainment method [9], which covers the Pareto
front at least asymptotically uniformly and enables better
automation of the procedure.

The LU factorization is considered the most demanding
part of the circuit analysis from the computational point of
view, especially in the case of many times repeated solutions
during the multiobjective optimization. The elimination pro-
cess during the LU factorization creates nonzero entries at
positions, which correspond to zeros in the original matrix.
The fill-in is the set of all the entries, which were originally
zeros and took on nonzero values at any step of the factori-
zation. The fill-in is able to highly increase the memory
requirement, and the total computational time correspond-
ingly. Generally usable tools [12, 13] do not address this
problem because they operate with regular matrices only.

For solving this problem, the heuristic Markowitz cri-
terion is still widely used [14–16]. The Markowitz criterion
prevents expressions from swelling in a sparse matrix by se-
lecting a pivot such that the number of entries which remain
zero during the elimination is maximal, i.e., the fill-in created
by the factorization is minimal. However, the Markowitz cri-
terion is incompatible with a wide class of the fast algorithm
modes for the LU factorization because a selection of the
pivot from a whole submatrix is not allowed (the fast LU
factorization only allows the pivot selection from a row or
column). Therefore, the Markowitz criterion must be modi-
fied correspondingly for the fast LU factorization algorithm.

At present, there are many pHEMT models available in
CAD tools. Their precision is often compared in references
in a detailed way [17–20]. We have identified more types of
the models used in low noise amplifiers, and we selected the
one as a compromise between its accuracy and complexity.
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Fig. 1. Feasible region (S), feasible objective region (Z ), and
Pareto front.

2. Multiobjective Optimization
Any circuit optimization subject tomultiple, mostlymu-

tually contradictory requirements represents so-called multi-
objective optimization problem. A comprehensive descrip-
tion of the procedure for solving the multiobjective optimiza-
tion problem can be found in [21]; in this section, a brief but
improved and a bit more precise definition will be given.

2.1 The Multiobjective Optimization Problem
The multiobjective optimization problem can be for-

mally written in the standard form of a minimization:

minimize
x∈S

{ f1(x), f2(x), . . . , fk (x)}. (1)

Vectors of design variables x belong to a feasible region
S, S ⊆ �n , which can be specified by several equality
constraints, inequality constraints, and/or by bounding al-
lowed intervals for design variables xi . Let us denote
f (x) = ( f1(x), f2(x), . . . , fk (x))ᵀ the vector of objective
functions and Z = f (S) the image of the feasible region.

2.2 Pareto Optimality
Because the applied constraints are opposing one an-

other, it is impossible to minimize them all simultaneously.
Some tradeoffs need to be made, which leads to the concepts
of Pareto optimality and noninferiority. A noninferior solu-
tion is one, whose any component can be further improved
only at the cost of deteriorating another one. The set of non-
inferior solutions is called Pareto front, illustrated in Fig. 1
as the thicker part of the curve between points zA and zB. By
solving the problem (1) is then understood the obtaining of
a sufficient number of noninferior solutions covering part of
the Pareto front with a sufficient density (and uniformity).
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Fig. 2. Geometrical representation of the (unmodified original)
Goal Attainment Method.

2.3 (Standard) Goal Attainment Method
The classical (unmodified) Goal Attainment Method

(GAM) [7–9] solves the multiobjective optimization prob-
lem by solving the singleobjective problem

minimize
γ∈�, x∈S

γ

subject to f i (x) − wiγ � z∗i , i = 1, . . . , k,
(2)

in which f i are the individual design goals to be minimized,
S is the feasible solution set (feasible region), z∗i are some
predetermined reference design goal values corresponding to
f i , wi , wi ∈ � are predetermined weighting coefficients and
γ is an artificially introduced variable representing the single
objective function.

GAM thus needs 2k parameters z∗i and wi provided by
the user, although only 2k − 1 degrees of freedom determine
the obtained result, as can be seen from the 2D example in
Fig. 2. The objective vector z∗ = (z∗1, z

∗
2)
ᵀ represents a pivot

point in the objective space throughwhich the zS point moves
in the direction of w = (w1,w2)ᵀ while varying γ. Therefore
only the direction of the vector w is significant.

2.4 Suggested Method for an Assymptotically
Uniform Coverage of the Pareto Front
Our proposed method further enhances the classical

Goal Attainment Method with automatic generation of the
predetermined parameters. A normalization is used instead
of applying a weighting vector:

minimize
x∈S

max
i=1, ...,k

f i (x) − z∗i
znadi − z̄i

, (3)

where z̄i represent the components of the ideal vector
z̄ = ( z̄1, z̄2, . . . , z̄k )ᵀ found by independent minimization of
each objective function

z̄ =
[
min
x∈S f1(x),min

x∈S f2(x), . . . ,min
x∈S fk (x)

]ᵀ
, (4)

znadi compose the nadir objective vector znad and they are the
maximum (i.e., the worst-case) values of corresponding com-
ponents ( z̄i ) j resulting from the independent minimization:

znad =
[
max
i

( z̄i )1, . . . ,max
i

( z̄i )k
]ᵀ
. (5)

A uniform coverage of the Pareto front is secured
by a pseudorandom generation of the pivot vector z∗ in
such a way that it uniformly covers a preselected region
in the Z space. The random generation of the reference
set can be performed as follows: starting with k vertices
z0,1, z0,2, . . . , z0,k and a (k − 1)-tuple of uniformly dis-
tributed and independent random numbers ri ∈ [ 0, 1) for
i = 1, . . . , k − 1, this sequence of assignments will be per-
formed to calculate a point zk−1,1:

for i � 1 to k − 1 do
begin ti � k−i√ri
for j � 1 to k − i do

zi, j � (1 − ti )zi−1,1 + ti zi−1, j+1
end

(6)
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This procedure calculates a total of N =
∑k−1

i=1 i = k (k −1)/2
points zi, j in the k-dimensional objective space (i.e., N = 1,
3, and 6 points for k = 2, 3, and 4) from k initially known
vertices of the reference set. Much more details about this
procedure can be found in [21], and a mathematical proof of
the asymptotic uniformity of the coverage is given in [22].

3. Modifying the Markowitz Criterion
Precise modeling of RF devices generally leads to

a number of transmission lines, vias, T-splitters, and parasitic
inductors and capacitors to be included to a circuit model.
Therefore, the matrix of the system created in the DC, AC,
and transient analyses could be quite large, and the LU fac-
torization of the (Jacobian) matrix should be arranged to
suppress the fill-in (the set of all the entries, which were
originally zeros and took on nonzero values at any step of
the LU factorization). For solving this problem, the heuris-
tic Markowitz criterion is still widely used [14–16]. The
Markowitz criterion prevents expressions from swelling in
a sparse matrix by selecting a pivot such that the number of
entries which remain zero during the elimination is maximal,
or phrased the other way around, that the fill-in created by
the operation is minimal. However, the Markowitz criterion
is incompatible with a wide class of the fast algorithm modes
for the LU factorization [23] because a selection of the pivot
from a whole submatrix is not allowed (the algorithm mod-
ifications for the fast LU factorization only allow the pivot
selection from a row or a column). Therefore, the Markowitz
criterion must be modified correspondingly for an efficient
implementation of the (fast) LU factorization algorithm.

3.1 Classical Form of the Markowitz Criterion
The algorithm itself is not too complicated [15]. Sup-

pose the LU factorization of A has proceeded through the
first k stages. For each ith row in the active (m− k)× (m− k)
submatrix, let r (k )

i denote the number of entries. Similarly,
let c(k )

j denote the number of entries in the j th column. The
Markowitz criterion is to select as pivot the entry A(k )

i j from
the (m − k) × (m − k) submatrix that satisfies

min
i, j

(
r (k )
i − 1

) (
c(k )
j − 1

)
. (7)

The usage of this entry as the searched pivot causes(
r (k )
i − 1

) (
c(k )
j − 1

)
entry modifications at the k th step. Not

all these modifications will result in fill-in – therefore, the
Markowitz criterion is actually only an approximation to the
choice of the pivot which introduces the least fill-in.

3.2 Simplest Fast Mode Compatible Criterion
The entry modifications as a conclusion of applying the

Markowitz weights (7) are incompatible with the fast LU
factorization algorithm because the matrix structure changes
in every stage. Therefore, remembering the structure of the

nonzero elements could not have any practical sense under
these conditions. For this reason, we should use a criterion
that does not change the matrix structure during the LU fac-
torization provided that the pivots remain relatively weighty
in comparison with the other matrix elements. The simplest
algorithm is natural. The total numbers of the potentially
nonzero elements are determined for all the matrix columns.
After that, the columns are reordered according to these num-
bers – the first and last should be those with the minimum
and maximum numbers of such elements, respectively.

3.3 Modified Form of the Markowitz Criterion
A more sophisticated criterion can be created on the

basis of idea of the Markowitz weights (7). However, they
must be used in another way compatible with the fast LU
factorization algorithm. To each potentially nonzero element
located in ith row and j th column, the weight is assigned equal
to the product of the numbers of other potentially nonzero
elements in the ith row ri − 1 and j th column cj − 1 (ri and
cj are the numbers of the nonzero elements in the ith row and
j th column, respectively)

Wi j =
⎧⎪⎨⎪⎩

(ri − 1)(cj − 1) for potentially nonzero element,
0 for element which is always zero,

i = 1, . . . ,m, j = 1, . . . ,m. (8)

The weight Wi j represents an estimation of the fill-in addi-
tion that can arise if the (i, j) element becomes a pivot. The
next part of the procedure differs from that in (7) because the
column orientation of the LU factorization [23] must be held.
Instead of an immediate reordering in the matrix, the average
weights are determined for all columns using the element
weights (8)

w j =
1
cj

∑
i=1, ...,m ∧ Ai j�0

(∀ potentially nonzero elements)

Wi j, j = 1, . . . ,m. (9)

Finally, the columns are reordered according to the weights
(9) – the first and last should be those with the minimum and
maximum weights, respectively.

4. ATF-54143 Model Identification

4.1 Approximating the Scattering Parameters
We have selected the Avago ATF-54143 low noise

pHEMT [24], and we have identified its model using DC
characteristics and s-parameters measured at a number of
operating points [24]. We have extracted parameters of vari-
ous nonlinear models (Statz, etc.) and carefully checked
their accuracy. A typical comparison of the TriQuint TOM2
and Dobes (called Dobes in [17, 18]) models [17–20, 25] is
shown in Fig. 3. We have identified the models in the nar-
rower frequency band from 1.1 GHz to 1.7 GHz, because the
suggested low noise preamplifier for the satellite navigation
systems always works between these two frequencies.
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Fig. 3. Measured and from-model-generated s-parameters of the
ATF-54143 pHEMT in the s-plane for the TOM2 and
Dobes models for the frequencies from 1.1 to 1.7 GHz,
id = 60 mA, and vds = 3 V. At this operating point, the
Dobes model gives slightly more accurate s11 and s21.

For a quantified comparison of the models, we use the
criterion

abss =
1
4mn

2∑
i=1

2∑
j=1

m∑
k=1

n∑
�=1

�����
smodel
i j,k

( f�) − smeas
i j,k

( f�)

smeas
i j,k

( f�)

����� ,
(10a)

rmss =

√√√
1
4mn

2∑
i=1

2∑
j=1

m∑
k=1

n∑
�=1

�����
smodel
i j,k

( f�) − smeas
i j,k

( f�)

smeas
i j,k

( f�)

�����
2

,

(10b)

where m and n are numbers of the operating points and fre-
quencies at which the s-parameters were measured, respec-
tively. In our case, m = 11 and n = 7, and the values of abss
for the TOM2 and Dobes models were 3.58 % and 3.73 %,
respectively. In other words, the two models are comparable
using (10a). However, the Dobes model was better using
(10b): the values of rmss for the TOM2 and Dobes models
were 19.79 % and 17.96 %, respectively. The reason consists
in the s22 accuracy, where the Dobes model was better in nine
cases of eleven. (Let us emphasize that the accuracy of the
s22 parameter is well-known problem of the pHEMT mod-
els due to frequency dependence of output characteristics.
Even contemporary models have this problem as can be seen
in [26, Fig. 5], e.g.) Hence, the better s22 precision was the
reason why we selected the Dobes model. Other parameters
were comparable, e.g., for id = 60 mA and vds = 3 V (it is
shown in Fig. 3), the precisions of the s11 and s21 parameters
were 3.09 % and 7 % for the TOM2 model and (a bit better)
2.94 % and 6.06 % for the Dobes model, respectively.

4.2 Modeling the Drain and Gate Noise Sources
For the purpose of the maximal accuracy of the noise

modeling, we have used the contemporary Curtice3 model
[25,27]. (The Curtice3 model incorporates more other ones).
The drain noise source is defined by semiclassical equation

〈
i2d
〉
=

(
4kTgmP + 4kTgmP

Fnc

f
+ K f

IA f

ds

f Ffe

)
Δ f , (11)

where k, gm, P, Fnc , K f , Af , and Ffe are Boltzman con-
stant, transconductance, drain noise coefficient, flicker noise
corner frequency, flicker noise coefficient, flicker noise ex-
ponent, and flicker noise frequency exponent, respectively.

The relatively novel part of the noise model is repre-
sented by gate noise source〈

i2g
〉
= 4kTC2gsω

2 R
gm
Δ f , (12)

where Cgs and R are zero bias gate-source junction capaci-
tance and gate noise coefficient, respectively. There is also
a correlation between the two noise sources (with a modified
absolute temperature Tj )〈

ig, i∗d
〉
= 4kTj Cgsω

√
PR CΔ f , (13)

where C is gate-drain noise correlation coefficient; and the
thermal noises generated by gate, source, and drain ohmic
resistances Rg, Rs, and Rd are included, too:〈

i2G |S |D
〉
=
4kT
Rg |s |d

Δ f . (14)

The C.I.A. program [23] always contained (11) and (14)
– however, for the accuracy purposes, the gate noise source
model (12) has also been implemented. We have identified
this model using datasheet [24], where some of the parame-
ters are defined: Fnc = 1 MHz, R = 0.08 Ω, P = 0.2, and
C = 0.1, and the exact values have been found by optimiza-
tion comparing with the set of measured noise parameters.

5. Using Multiobjective Optimization

5.1 Description of the Low Noise Preamplifier
Let usmention a design of the low noise antenna pream-

plifier within the frequency range 1.1 to 1.7 GHz in Fig. 4
(a standard circuit diagram), Fig. 5 (a simplified simulation
schematic), and Figs. 6, 7, and 8 (a detailed circuit diagram
used for the optimization). The terminal impedances were
50Ω. The multiobjective optimization was used to simulta-
neously maximize the minimum transducer power gain Apt
over the whole frequency range, minimize the maximum
noise figure FdBn , while maintaining certain stability criteria
and the quiescent operating point within chosen limits. The
result is a set of noninferior solutions. The noninferior solu-
tion is the one in which an improvement in one objective –
in this case, Apt or FdBn – requires a deterioration in another.
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Fig. 4. Standard circuit diagram of the low noise antenna preamplifier for the multiconstellation GPS/Galileo/GLONASS/Compass receiver.
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Fig. 5. Simplified simulation schematic of the low noise antenna preamplifier for the multiconstellation GPS/Galileo/GLONASS/Compass re-
ceiver. Actual power supply is brought through the output port and diverted by choke L7. The actual biasing circuitry that transfers it to
the places of voltage sources E3 and E4 is not part of the simulation. Nuances like intermediate transmission line segments, T splitters or
component models have been omitted here. The controlled sources are used for checking the optimization constraints id and Pdiss. The
circles mark the six circuit parameters p1, . . . , p6 (L8,C3,C2, L2, E3, and E4) to be determined by the multiobjective optimization.
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Fig. 6. Detailed simulation schematic. Transmission line segments and T-splitters are specified with sets of frequency dependent s-parameters,
the former also being supplemented with frequency dependent noise sources. Biasing and power supply branches with chokes L1, L3 and
L7 are not used for setting the DC operating point as the s-parameter specified blocks do not work appropriately for the DC analysis in the
C.I.A. simulator, and also because the actual DC resistances involved are much different from the frequency dependent AC ones. Instead,
ideal extremal capacitors C91–C93 and inductors L91–L93 are used to provide transistor biasing in DC analysis with correct resistance
values without affecting AC behavior. Matching shunt coils L8 and L2 are modeled by means of controlled voltage sources E78 and E92
(as a function of the current through the inductor and its time derivative) providing inductance, series resistance and its noise contribution,
all being nominal value and frequency dependent and based on linearly interpolated catalog data for the equivalent inductance and quality
factor. Chokes L1, L3 and L7, which have only a minor effect on AC behavior, are left constant, with constant series resistances R1, R3
and R77 based on an assumed quality factor of 20 at 1.5 GHz. Series capacitances in the signal path C1, C3, C2 and C6 are supplemented
with a frequency dependent ESR provided by controlled voltage sources E71, E73, E72 and E76. One-ohm resistances present in the
schematic serve as sources of reference noise voltage used by the controlled sources. Transmission line segments marked as ‘V’ represent
PCB vias providing ground connections. Detailed noise models of the pHEMT, transmismission lines and vias are shown in Figs. 7 and 8.

Fig. 7. The transistor noise model is composed of partially cor-
related sources of noise voltage and noise current placed
at the input of the original (noise-free) s-parameter speci-
fied twoport. The noise current is a combination of three
components: two fully correlated with the noise voltage
(inphase and quadrature) and an uncorrelated third one
based on the noise of another reference resistor.

5.2 Description of the Requested Design Goals

The topology is a natural single stage application
of pHEMT in the common source configuration with LC
impedance matching networks at the input and the output.
There are six design parameters: four component values of
L8,C3,C2 and L2, and two bias voltages, gate E3 and drain E4
as shown in Fig. 5. Design goals are also six; they are shown
in Tab. 1: the above mentioned two objectives, Apt and FdBn ,
and four inequality constrained goals, the maximum drain
current id, drain-source voltage vds, Rollett stability factor
KRs, and the determinant of the s-matrix |Δ|. The abso-
lute stability criteria KRs and |Δ| were still used, even if the
transistor’s parameters did not allow for achieving a full un-
conditional stability (KRs > 1, |Δ| < 1), and had to be relaxed
to the region of potential instability (KRs > 0.5, |Δ| < 0.9).
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Fig. 8. The used noise model of short transmission line segment injects the collective noise of the R and G parts of an equivalent symmetrical
T-structure, transferred to the input as noise voltage and noise current.

Optimum/
No. Symbol Type Direction Bound Unit
1 Apt Objective Maximum � 15.5 dB
2 FdBn Objective Minimum � 2 dB
3 id Constraint � 75 mA
4 vds Constraint � 3.75 V
5 KRs Constraint � 0.5 –
6 |Δ| Constraint � 0.9 –

Tab. 1. Design goals for the antenna low noise preamplifier.
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Fig. 9. Computed Pareto front in the objective space Apt, FdBn .
The dot marked with 0 represents the original unopti-
mized reference design. Solutions marked with 1–4 were
selected as the representatives with the results shown in
Tab. 2 and Fig. 11 . They were numbered from the lowest
Apt of 15.5 dB to the highest Apt of 17.2 dB. The green
dots (those for Apt � 16.635) mark the part of the Pareto
front with KRs > 1, the red dots (including the original
0) mark the part of the Pareto front with KRs � 1. (Let
us also note the uniformity of the Pareto front covering.)

5.3 Description of the Obtained Design Results
Totally 262 solutions have been obtained, spanning the

whole part of the Pareto front selected by the requirements
Apt � 15.5 dB ∧ FdBn � 2 dB as shown in Fig. 9. There were
no solutions found with Apt above 17.2 dB. Tab. 2 shows
a selection of four representative solutions. All have their
E4 (i.e., vDD) at the chosen upper bound value of 3.75 V.
Finally, Fig. 11 shows plots for the four selected solutions as
well as for the original unoptimized circuit (marked with 0).
It is obvious the multi-objective optimization improved the
circuit. For example, the tested solution No. 2 gives better
noise figure for all frequencies, and a comparable and more
uniform frequency dependence of the transducer power gain.

Original Solution Number
No. Symbol Value: 0 1 2 3 4 Unit

1 L8 6.8 5.78 6.18 4.93 4.15 nH
2 C3 4.7 6.2 5.62 4.46 3.63 pF
3 C2 33 1.64 5.74 7.97 200 pF
4 L2 18 6.94 7.2 7.01 11.2 nH
5 E3 0.602 0.595 0.57 0.567 0.552 V
6 E4 3.26 3.75 3.75 3.75 3.75 V

1 Apt 16.4 15.5 16.7 16.9 17.2 dB
2 FdBn 0.659 0.572 0.599 0.8 1.16 dB
3 id 60 62.9 54.3 53.2 48.3 mA
4 vds 3 3.47 3.51 3.52 3.54 V
5 KRs 0.986 1.04 0.988 0.991 0.98 –
6 |Δ| 0.686 0.539 0.685 0.734 0.737 –
7 Pdiss 180 218 191 187 171 mW

Tab. 2. Four selected solutions from the Pareto front with their
frequency characteristics shown in Fig. 11.
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Fig. 10. Measured s-parameters of the low noise preamplifier.

5.3.1Measurement of the s-Parameters and Noise Figure
The low noise preamplifier has been carefully measured

and the results (as well as the typical data from Avago [24])
confirm a localminimumof the noise figure somewhere in the
middle of the band: the unoptimized configuration (marked
with 0) has the measured minimum at 1.225 GHz, the solu-
tion No. 2 (2) at 1.25 GHz. Moreover, the tested solution
No. 2 gives better noise figure in the frequency band from ap-
proximately 1.1 to 1.7 GHz as shown in Fig. 11. Moreover,
the measured s-parameters of the circuit confirm the good
amplifier’s properties: both s11 and s22 are about −10 dB in
the frequency band 1.1–1.7 GHz as shown in Fig. 10.
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Fig. 11. Simulated (solid lines and the dotted one) and mea-
sured (dashed lines) Apt and FdBn plots for the original
(marked with 0) and four selected (marked with 1–4) so-
lutions shown in Tab. 2. (The plot marked with 1’ shows
the noise figure plot in the case when the gate noise (12)
is not included.) Let us emphasize that the (declared) er-
ror of the equipment for measuring the noise figure was
(at least) 0.1 dB; therefore, the difference between the
original solution and the solution No. 2 is more impor-
tant here than the obtained values themselves. (And this
difference clearly shows that the algorithm has improved
the noise figure comparing with the original solution.
Further, we have detected an interference with an outer
signal at some frequencies, and these measurements
were excluded.)

f (GHz) |Δ| KRs μ

1.15 0.411 0.916 0.900
1.25 0.417 0.929 0.916
1.35 0.408 0.95 0.943
1.45 0.406 0.932 0.926
1.55 0.385 0.949 0.946
1.65 0.368 0.958 0.958

Tab. 3. Measured stability factors of the preamplifier.

5.3.2Checking the Low Noise Preamplifier Stability
The low noise preamplifier stability has been checked

by additional calculations and measurements. It is clear that
the solution No. 1 is probably the most stable because its
Rollett stability factor KRs shown in Tab. 2 is greater than
one. For the tested solution No. 2, the factors |Δ|, KRs, and μ
have also been computed from measured data in a wide band
analogically to [28, Fig. 5], and the values inside the satellite
navigation band 1.1–1.7 GHz are shown in Tab. 3.
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Fig. 12. Graphical post-processing of the IP3 measurement re-
sults for the original (unoptimized) amplifier (No. 0).
Individual input tone frequencies f1 and f2 were 1.575
and 1.576 GHz, respectively. The ( f1/ f2) level ratio
was 1. (This method of creating the 3:1 slope line led to
a “worst-case” IP3 estimation.) Let us note the typical
shape of the IM3 curve for the amplifiers with pHEMTs.
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Fig. 13. Graphical post-processing of the IP3 measurement re-
sults for the solution No. 2. Individual input tone fre-
quencies f1 and f2 were again 1.575 and 1.576 GHz,
respectively. The ( f1/ f2) level ratio was 1, too.

5.3.3Checking the 3rd-Order Intermodulation Products
We have also measured the third-order intermodulation

products for the original unoptimized low noise preamplifier
(marked with 0 in Figs. 9 and 11) and for the tested solution
No. 2 (see the same figures), and the results are compared
in Figs. 12 and 13. The measurements confirm improved
properties of the solution No. 2 – let us emphasize better
output/input dynamics, and, first of all, the better location of
the IP3 point for the solution No. 2, comparable with [28].
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Fig. 14. Measured spectra of the low noise amplifier. The signal generator has been set to the constant level −20 dBm. The spectra are shown for
the case of the signal frequencies 2 and 3 GHz (i.e., it could be clearly seen here how the output voltage decreases with the growing signal
frequency – the spectrum was also measured at 1.5 GHz, and the exact result for the frequency 1.507777778 GHz was −10.7 dBm).

After LU Factorization (average values)
Before LU Factorization DC Analysis Frequency and Noise Analyses

Disarranged Numb. in cols Modif. Mark. Disarranged Numb. in cols Modif. Mark.
1570 4154 264.6% 2826 180.0% 2604 165.9% 4340 276.4% 2739 174.4% 2566 163.4%

Tab. 4. Comparison of the total number of nonzero matrix elements before and after the LU factorization for its tested three versions.

5.3.4Checking the Efficiency of the Modified Markowitz
Criterion
As the Jacobian matrix generated in the DC and fre-

quency & noise analyses of the circuit is quite large, we have
also tested the criteria for suppressing the fill-in defined in
Sec. 3, and the results are shown in Tab. 4. The worst re-
sults are clearly for classical (unmodified) LU factorization:
although the matrix has 1570 nonzero elements before the
LU factorization, this number increases to the values 4154
and 4340 after the LU factorization for the DC and frequency
& noise analyses, respectively. If the simplest criterion for
reordering the LU factorization described in Subsec. 3.2 is
used, the results are better: the total numbers of the nonzero
elements are 2826 and 2793 after the (correspondingly modi-
fied) LU factorization for the DC and frequency & noise
analyses, respectively. However, the best results are obtained
using the proposed modified form of the Markowitz criterion
defined in Subsec. 3.3: the monitored numbers are finally
2604 and 2566 for the DC and frequency & noise analyses.

6. Conclusions
An improved algorithm for determining the tradeoff be-

tween the transducer power gain and noise figure of a low
noise preamplifier was suggested. The modified algorithm
is based on an improved Goal Attainment Method of the
multiobjective optimization, which generates an asymptoti-
cally uniform coverage of the Pareto front. The efficiency
of the whole procedure of the multiobjective optimization
is increased using the implementation of the modified form
of the Markowitz criterion. The complete design process is

demonstrated using very accurate modeling the circuit active
and passive elements followed by a reliable constrained op-
timization of the whole circuit. The final properties of the
circuit including its stability were checked by various types
of measurements in linear and nonlinear domains.
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