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Abstract. Node localization is the core in wireless sensor 
network. It can be solved by powerful beacons, which are 
equipped with global positioning system devices to know 
their location information. In this article, we present 
a novel sparse localization approach with a mobile beacon 
based on LU decomposition. Our scheme firstly translates 
node localization problem into a 1-sparse vector recovery 
problem by establishing sparse localization model. Then, 
LU decomposition pre-processing is adopted to solve the 
problem that measurement matrix does not meet the re-
stricted isometry property. Later, the 1-sparse vector can 
be exactly recovered by compressive sensing. Finally, as 
the 1-sparse vector is approximate sparse, weighted Cen-
troid scheme is introduced to accurately locate the node. 
Simulation and analysis show that our scheme has better 
localization performance and lower requirement for the 
mobile beacon than MAP+GC, MAP-M, and MAP-M&N 
schemes. In addition, the obstacles and DOI have little 
effect on the novel scheme, and it has great localization 
performance under low SNR, thus, the scheme proposed is 
robust. 
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1. Introduction 
With the development of hardware and wireless tech-

nology, wireless sensor network (WSN) is broadly used in 
many applications, such as disaster relief, environmental 
observation, military surveillance, and so on. WSN is com-
posed by a large number of low-cost and energy-limited 
sensor nodes, which are randomly deployed in the sensing 
region. Various operations in WSN such as the network 
geographic coverage, deployment and localization of sen-
sor nodes are worthy of consideration. Clearly, sensor 
location information plays a key role for all these issues, 
besides that, it is also helpful for detecting where specific 
events happen, tracking mobile target, promoting traffic 
routing, and so on. Therefore, the techniques to ensure the 
location of sensor nodes are of critical importance in WSN. 

Due to the constraints of cost and power consump-
tion, it is impractical to equip all sensor nodes with global 
positioning system (GPS) devices. However, it is feasible 
to equip GPS for few nodes called beacons, in practical 
applications. Beacons can be static or mobile, which can 
usually be used to locate other nodes in WSN. The existing 
localization techniques can be classified into range-based 
schemes and range-free schemes. The range-based schemes 
need to measure the distance between two neighbor nodes 
[1–6], in which the distance is calculated based on received 
signal strength (RSS), time of arrival (TOA), time differ-
ence of arrival (TDOA), or angle of arrival (AOA). The 
range-based schemes have two obvious weaknesses: the 
nodes require additional measuring equipment and the 
localization accuracy is vulnerable to the environmental 
interference. Many range-free schemes have been proposed 
so far [7–14], in which, each node utilizes the information 
obtained from the few beacons to estimate its location. 
However, the node must be in the sensing range of bea-
cons. Of course, the information that a node cannot directly 
communicate with a beacon can also be used to ensure the 
tighter border on its location. 

Although beacons are powerful, they cost a lot in 
WSN. To minimize the number of beacons and complete 
localization for other nodes, a beacon which can move and 
periodically broadcast its location to its one-hop neighbor-
ing nodes is used to replace dense stationary beacons  
[15–22]. These approaches have shown the localization 
based on one mobile beacon or few mobile beacons is more 
accurate and cost-effective than the localization based on 
stationary beacons. 

In WSN, it is a hot research field to apply compres-
sive sensing (CS) [23], [24] to target localization [25–27]. 
Unlike the Nyquist theorem, CS just needs few noisy meas-
urements to reconstruct the signal, which is sparse or com-
pressible under a transform basis. It can recover exactly the 
original sparse signal with high probability by solving 
a minimization problem [28–30]. In the novel target locali-
zation algorithm based on CS theory [25], a preprocessing 
is introduced to make the measurement matrix meet the 
restricted isometry property (RIP) [24], so the performance 
can be guaranteed. Zhao and Xu [26] proposed a novel 
multiple target localization algorithm based on Bayesian 
CS. It can effectively reduce the energy consumption, but it 
may bring about false targets. Zhang et al. [27] presented 
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a greedy matching pursuit (GMP) algorithm to reconstruct 
the signal. Compared with traditional algorithms, GMP has 
better anti-noise performance and localization perfor-
mance. 

In this article, we apply CS to node localization and 
present a novel node localization scheme with a mobile 
beacon in WSN – sparse localization approach with a mo-
bile beacon based on LU decomposition (SLMLU). This 
scheme can accurately localize nodes as the sensor node is 
unique in its sensing area. SLMLU firstly builds a sparse 
localization model by utilizing the mobile beacon infor-
mation (including the location and RSS sent by mobile 
beacon at each beacon point) collected by sensor node. 
Secondly, it introduces LU decomposition preprocessing to 
ensure that measurement matrix meets RIP. Then, SLMLU 
recovers the sparse signal exactly by CS. Finally, it gets the 
location of each sensor node by using weighted centroid 
scheme to solve the problem that the sparse signal is not 
exact 1-sparse vector. 

The major contributions of this article are as follows: 
1) We propose the SLMLU algorithm which can 

effectively improve the localization performance com-
pared with other algorithms. 

2) We present a sparse localization model by the 
uniqueness of the sensor node in its sensing area, and this 
model can translate node localization problem into CS 
problem. 

3) We utilize LU decomposition preprocessing to 
make the measurement matrix meet RIP. 

The rest of the paper is organized as follows. Sec-
tion 2 concerns the related works on localization in WSN. 
In Sec. 3, we propose a novel model for node localization. 
Section 4 describes the detail of SLMLU. The performance 
of SLMLU, MAP+GC, MAP-M, and MAP-M&N schemes 
is in Sec. 5. Finally, Section 6 relates to the conclusion. 

2. Related Works 
To solve localization problems in WSN, many 

schemes have been proposed in many literatures. Excellent 
surveys of the related studies can be found in [31–32]. The 
existing localization techniques are summarized briefly in 
this section. 

2.1 Range-based Schemes 
The range-based schemes are used to estimate locations 

by measuring either distances or angles. There are lots of 
approaches, such as strategies based on RSS, TOA, TDOA, 
and AOA, to calculate the distance between two neighbor 
nodes in range-based schemes. For example, Bahl et al. [1] 
converted the received signal strength to distance infor-
mation and made use of the triangulation to estimate 
a node’s location. Bergamo and Mazzini [2] proposed 
a triangulation strategy for localization and analyzed the 

effects of fading and sensor mobility. Priyantha et al. [3] 
used the beacon advertisements received by node to dis-
tance measuring and then estimated its possible locations. 
Niculescu and Nath [4], Nasipuri and Li [5] proposed some 
other schemes to estimate relative angles between one-hop 
neighboring nodes for angulations. Brida et al. [6] propose 
an enhanced DV-AOA algorithm. The angular information 
of nodes is ensured and processed by the original algorithm; 
however, the final location estimation is determined by the 
proposed novel algorithm using only a subset of all inter-
sections. 

2.2 Range-free Schemes 
The range-free schemes are more cost-effective than 

the range-based schemes, as they are without limitation of 
the hardware device. Brida et al. [7] give a survey of two 
proximity based location techniques performance, which is 
not the most accurate techniques, but a low cost alternative 
to more expensive techniques. Belusu et al. [8] proposed 
centroid scheme in which centriod formula was adopted to 
determine node’s locations based on received beacons’ 
locations. Jun et al. [9] and Yang et al. [10] improved cen-
troid scheme by RSS technology. Niculescu and Nath [11] 
introduced DV-Hop scheme to estimate the location of 
sensor nodes by computing hop counts from each node to 
specific beacons. In [12], the DV-Hop scheme was im-
proved by RSS technology. Bulusu et al. [13] proposed 
an approximate point-in-triangulation test (APIT) scheme. 
It firstly selects three one-hop neighboring nodes of a node, 
then, confirms whether or not the node is in the triangle 
ensured by the three beacons, and finally, estimates the 
location of the node. Tran and Nguyen [14] presented 
a localization scheme in wireless sensor networks based on 
support vector machines (LSVM), in which they introduce 
support vector machine (SVM) to identify the location of 
each node. 

2.3 Mobile Beacon 
The authors proposed many schemes by using one 

mobile beacon or few mobile beacons, these schemes can 
also be divided into range-based and range-free.  

Sichitiu and Ramadurai [15] presented a range-based 
localization algorithm. They estimate locations of nodes by 
using RSS technique to deal with the beacon messages 
heard from single mobile beacon. In [16], the authors pro-
posed a probabilistic localization method based on a mo-
bile beacon. It comprises TOA technique and Centroid 
formula to range and compute locations of nodes. Xia and 
Chen [17] proposed a localization scheme, which deter-
mines locations of nodes by using TDOA technique and 
trilateration. 

Xiao et al. [18] proposed a range-free localization 
scheme – half arrival and departure overlap (HADO). The 
scheme uses arrival and departure constraint area to decide 
the location of each node. However, HADO has a strict 
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requirement for the path of mobile beacons. In [19], the 
authors proposed a range-free localization scheme. It uses 
directional antennas to estimate each node location, but 
needs to equip mobile beacon with four directional anten-
nas. Ssu et al. [20] proposed a localization scheme with 
mobile anchor points (MAP). It uses the information re-
ceived from the mobile beacon to find two chords of 
a circle, and lets the center of the circle be the location of 
senor node. On this basis, Lee et al. [21] presented 
MAP+GC scheme. MAP+GC is a geometric constraint 
algorithm, in which the intersection area is obtained by two 
reference points. Liao et al. [22] proposed two improved 
MAP algorithms called MAP-M and MAP-M&N. These 
algorithms obtain two possible locations when the centers 
and radii of two circles are known, and then ensure the 
location of node according to beacon or neighbor node. 

3. Sparse Localization Model 
CS offers a novel framework to reconstruct the sparse 

signal or compressible signal in a certain basis, with far 
fewer measurements than the traditional techniques. It 
explores an l1-minimization problem to recover the sparse 
signal. To make this possible, two basic elements must be 
guaranteed in CS: sparsity (the signal must be sparse or 
compressible) and incoherence (the measurement matrix 
must meet RIP). 

As the sensor node is unique in the sensing area, it 
can be modeled as an ideal 1-sparse vector. Divide the 
sensing area into N grids (see Fig. 1), and then the location 
of the sensor node over the grid is described by X  as 
follows: 
 1=( , , , , )T

n Nx x x⋅ ⋅ ⋅ ⋅ ⋅ ⋅X   (1) 

where X is a N by 1 column vector, ( )T⋅  means transpose, 
nx  (1 n N≤ ≤ , N is the number of grid) is a element of X , 

which describes  the n-th grid. If the sensor node lies in the 
i-th grid, ix  equals to 1 and the other elements of X  are 0. 
Thus, the node localization problem can be well formulated 
as a 1-sparse vector recovery problem in sparse localization 
model, as shown in Fig. 1. 

 
Fig. 1.  Sparse localization model. 

In the sparse localization model, Rm,n represents the 
RSS between the m-th beacon point and the center location 

of the n-th grid, which is the element of measurement ma-
trix A. Thus, CS process of the sparse signal X  can be 
described as: 
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where Y is a M by 1 measurement vector, ym is the RSS 
from the m-th beacon point to the sensor node. If the sensor 
node lies in the i-th grid, xi is equal to 1, otherwise xi is 
equal to 0. Obviously, the signal X  is a 1-sparse signal. 

4. The Proposed Scheme 

4.1 LU Decomposition Pre-processing 
As the measurement matrix A  is composed of the 

RSS between M beacon points and all grids, it cannot sat-
isfy RIP. In order to solve this problem, SLMLU intro-
duces a data pre-processing for measurement matrix A  
and measurement vector Y . The process is as follows. 

Theorem 1 (LU Decomposition) [33]: If M N
M

×∈A C , 
A  can be only decomposed by the following formula: 

 =A LU    (3) 

where U  and L  are M by N unitary matrix and M by M 
lower triangular matrix, respectively, U  can be ensured by 
Schmidt orthogonalization and normalization [33], and 

=T
MUU I . 

According to Theorem 1, it can be found that the 
measurement matrix A  can be decomposed into a unitary 
matrix U and a lower triangular matrix L  by LU decom-
position, and U  can be obtained by Schmidt orthogonali-
zation and normalization. 

The Schmidt orthogonalization process can be given 
by 

 1 -1
1 -1

1 1 -1 -1

, ,
=

, ,
m m m

m m m
m m

− − ⋅⋅⋅ −
A B A B

B A B B
B B B B

  (4) 

where m = 1, …, M, ,⋅ ⋅  expresses the dot-product of 
vectors, mA  and mB  are the m-th row vectors of A  and B , 
respectively. The row vectors of B  are orthogonal to each 
other.  

Then, U  can be ensured by the following Schmidt 
normalization process 
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where || ||iB  is the modulus of the vector iB , which is 2l -
norm of the vector iB . Finally, a new measurement matrix 
Q  can be obtained by renormalizing each column of the 
unitary matrix U  

 

1

2

00
00

=

00 N

U
U

U Q

U

  (6) 

where U1, U2, …, UN are column vectors of the unitary 
matrix U . From the above analysis and [23], it can be seen 
that the measurement matrix Q is an incoherent measure-
ment (one of the most common measurement matrices in 
CS). Therefore, the measurement matrix Q  can completely 
meet RIP. 

The same procedure is carried out to obtain a new 
measurement vector 'Y , which is expressed as follows: 

 

'

1

2 '

=( ) =( ) =( )
00
00

= = =

00 N

∗ ∗ ∗Y L Y L AX L LUX

U
U

UX Q X QX

U

  (7) 

where ( )∗⋅  is the inverse of a matrix. As UUT = IM, 
L = AUT. Via the above formula, 'X  can be represented as 

 

1

2'

00
00

=

00 N

U
U

X X

U

   (8) 

Since X  is sparse, 'X  is ensured to multiply X  by 
a diagonal matrix, thus, 'X  also is sparse. 

4.2 RIP Analysis 
Definition 1 [24]. A matrix Φ  obeys RIP with 

parameters ( )k, δ  for  (0,1)δ ∈  if 

 
2

2
2

2

1- 1
x

x
δ δ≤ ≤ +

Φ
   (9) 

holds for all k -sparse vector x . 

In [23], the most common measurement matrices, 
which can obey RIP, include Gaussian measurements, 
binary measurements, Fourier measurements, and incoher-
ent measurements. The definition of incoherent measure-
ments is shown as follows. 

Definition 2 [23]. Incoherent measurement Φ  is ob-
tained by selecting M rows uniformly at random from an N 

by N orthonormal matrix UN and renormalizing the 
columns. 

From the above definition, the incoherent measure-
ment Φ  is ensured by renormalizing the columns of an M 
by N partial orthonormal matrix. What’s more, U  obtained 
by LU decomposition is a M by N unitary matrix, in other 
words, U is also a partial orthonormal matrix. Therefore, Q 
is an incoherent measurement, which is obtained by renor-
malizing the columns for U, that is,Q can completely meet 
RIP. 

Above all, 'X  is sparse, and Q  can completely meet 
RIP, so 'X  can be accurately recovered by the new 
measurement vector 'Y , thus X  can be ensured. 

4.3 Location Estimation 
As the sensor node does not often lie in the center of 

the grid, the recovered signal X  is not an exact 1-sparse 
vector, but a sparse vector with a large coefficient and 
a few non-zero small coefficients. Then, a post-processing 
procedure is conducted by using weighted centroid algo-
rithm [13–15] to estimate the location. The process is as 
follows. 

First, normalization for the recovered signal X  is 
made as follows: 

 
1

= /
N

n n n
n

x xω
=

  (10) 

where nω  is the weighted coefficient of the center location 
of the n-th grid. Then, the location of the sensor node 
( , )x y  is ensured as: 

 ( ) ( )
1

, ,
N

n n n
n

x y x yω
=

= ⋅  (11) 

where ( , )x y  is the estimated location of the sensor node, 
( , )n nx y  is the center location of the n-th grid. 

4.4 Sensing Area 
Since the sensor node does not know its position, it is 

unable to determine the sensing area only by itself. Then 
the node can ensure the sensing area by the beacon points 
within its sensing area.  

SLMLU scheme determines the sensing area by 
improving beacon box of Monte Carlo Localization boxed 
(MCB) algorithm [34]. The beacon box of MCB can be 
given by 

 
min max 11

min max 11

= max ( ) = min ( )

= max ( ) = min ( )

M M

i iii
M M

i iii

x x r x x r

y y r y y r

==

==

− +

− +
   (12) 

where xmin, xmax, ymin, and ymax are the minimum and 
maximum values of x  and y coordinate of the beacon box, 
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respectively. xi and yi are x  and y coordinate of the i-th 
beacon point, respectively. r is communication radii of 
node and M is the number of beacon points. 

However, the beacon box described above cannot 
make sure all beacon points within the box. Therefore, 
SLMLU improves the beacon box by the following 
formula: 

' '
min max 11

' '
min max 11

=min{ ,max ( )} =max{ min ( )}

=min{ max ( )} =max{ min ( )}

M M

i i i iii
M M

i i i iii

x x x r x x x r

y y y r y y y r

==

==

− +

− +

,

, ,
 (13) 

where '
minx , '

maxx , '
miny , and '

maxy  are the minimum and 
maximum values of x  and y coordinate of sensing area, 
respectively. 

4.5 The Number of Beacon Points 
In [23], the study shows the sparse signal can be ex-

actly recovered by CS theory, while the number of beacon 
points M is larger than 2 4( (log ) )O C K Nμ⋅ ⋅ ⋅ , where C  is 

a constant, ,,
= max | |i ji j

N Uμ . While M is large, it will 

increase computation amount. Therefore, in real-world 
networks, it is very necessary to select M reasonably. 

To make a quantitative analysis of M, the node local-
ization could be abstracted into target localization in 
a sensing area. Suppose there are M sensors randomly dis-
tributed in a 20 m × 20 m sensing area, which is divided 
into a 15 × 15 grid, and SNR = 20 dB. As shown in Fig. 2, 
the relationship between localization performance and M is 
obtained by running the simulation 100 times for a fixed M. 

Note that the average location error is decreased with 
the increase of M. The error is about 0.5 m while M  4, 
what's more, the average location error is almost no change, 
while M  8. 
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Fig. 2.  Relationship between localization performance and M. 

5. Simulation Study and Analysis 
The performance of MAP+GC [21], MAP-M [22], 

MAP-M&N [22] and the proposed SLMLU scheme is 
discussed in this section.  

The simulation study is based on a network with 
1 000 sensor nodes, which are randomly distributed in 
a 100 m × 100 m 2D area. Assume the mobile beacon and 
all the sensor nodes have the same communication range 
r = 20 m, the mobile beacon is moving straightly with 
a velocity 20 m/s, and the random waypoint (RWP) model 
[35] for the mobile beacon is adopted. The other parame-
ters are as follows: the mobile beacon in MAP+GC,  
MAP-M and MAP-M&N broadcasts a message every 
0.1 sec and 10000 times, the chord threshold is specified as 
0.3 r. The beacon distance in MAP+GC is 2 m. In the pro-
posed SLMLU, the mobile beacon broadcasts a message 
every 1 sec and 400 times. The sensing area is divided into 
a 15 × 15 grid. To balance the accuracy and complexity, M 
equals to the number of beacon points actually received 
while the number is no more than 8, otherwise M equals to 
8. The signal transmission model employs IEEE 802.15.4 
standard [36], 

 
40.2 20log , 8

( )
58.5 33log , 8

t

t

P d d
RSS d

P d d
− − ≤

=
− − >

   (14) 

where ( )RSS d  is the strength of the signal received, Pt is 
the strength of the signal transmitted, d is the actual dis-
tance of these two nodes.  

In this section, we discuss the performance of four 
schemes under ideal environment (see Fig. 3a) and obstacle 
environment (see Fig. 3b), and analyzes the effects of radio 
range, GPS error and the radio irregularity on the perform-
ance of four algorithms. It also discusses noise to impact 
on SLMLU and the computation complexity of four algo-
rithms at the end of the section. 
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(a)                                                        (b) 

Fig. 3.  Simulation environment: (a) Ideal environment;  
(b) Obstacle environment. 

5.1 Ideal Environment 
Figure 4 shows location error of each node in ideal 

environment (see Fig. 3a).  
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The circles in Fig. 4(b), Fig. 4(c), and Fig. 4(d) repre-
sent the nodes which are not located. As roughly shown in 
Fig. 4, SLMLU scheme has better localization performance  
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Fig. 4.  The location error of each sensor node. (a) SLMLU;  
(b) MAP+GC; (c) MAP-M; (d) MAP-M&N. 

than MAP+GC, MAP-M and MAP-M&N schemes. In 
addition, the location error of SLMLU is more concen-
trated than MAP+GC, MAP-M or MAP-M&N schemes, in 
other words, SLMLU has smallest location error standard 
deviation among these four schemes. 

It can be also found that the maximum location error 
of SLMLU is smallest. This is because, in GAP+GC,  
GAP-M, and GAP-M&N schemes, the sensor node selects 
improper beacon points which causes a large location error, 
but the problem is nonexistent in SLMLU. Besides, 
although the mobile beacon broadcasts 10000 times, some 
sensor nodes still cannot be located in MAP+GC, MAP-M 
and MAP-M&N. Among these three schemes, MAP+GC 
scheme has restricted condition, MAP+GC has better local-
ization performance than the other two schemes. Compar-
ing with MAP-M, MAP-M&N has worse localization 
performance. That is because the located nodes which are 
used to determine the locations of other nodes in  
MAP-M&N may have error, so other nodes may select 
wrong location. 

Table 1 illustrates the average location error of the 
four algorithms obtained by running Monte Carlo experi-
ment 10 times. Note that the average location error and 
location error standard deviation of SLMLU scheme is 
much smaller than that of the other three schemes. There-
fore, SLMLU scheme is relatively a good choice for local-
ization. 
 

Scheme Avg. location 
error (m) 

Location error 
std. dev. (m) 

SLMLU 
MAP+GC 
MAP-M 

MAP-M&N 

0.73 
2.06 
2.37 
4.15 

1.48 
4.45 
4.51 
9.01 

Tab. 1.  Comparison of localization performance for four 
schemes. 

5.2 Obstacle Environment 
Obstacles in the sensing area cause radio irregularity 

in the sensor network. Both the size of the sensing area and 
the number of sensor nodes are the same as the previous 
environment. In addition, there are four 10 m × 20 m obsta-
cles in the area (see Fig. 3b). To gain the robustness of 
SLMLU scheme, simulation is performed by using the 
obstacle mobility (OM) model [37]. The OM model as-
sumes that signals can only be received in the line-of-sight 
(LOS) propagation. Table 2 illustrates the localization 
performance comparison under obstacle environment for 
the four methods. As shown, SLMLU has the smallest 
average location error and location error standard deviation 
among these four schemes. That is, SLMLU scheme has 
better localization performance compared with other three 
schemes in obstacle environment. 

According to Tab. 1 and Tab. 2, compared with ideal 
environment, the four schemes all have worse localization 
performances under obstacle environment. However, 
SLMLU proposed has lesser environment impact than 
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MAP+GC, MAP-M or MAP-M&N. Due to existing obsta-
cles, the choice of beacon points is more prone to errors in 
MAP+GC, MAP-M and MAP-M&N schemes, therefore, 
these three schemes have much worse localization per-
formance. However, SLMLU scheme use RSS to compute 
the location of the node, so obstacles have little effect on 
SLMLU scheme. 
 

Scheme Avg. location 
error (m) 

Location error 
std. dev. (m) 

SLMLU 
MAP+GC 
MAP-M 

MAP-M&N 

0.91 
6.26 
6.96 

13.06 

1.81 
10.51 
10.48 
14.53 

Tab. 2.  Comparison of localization performance for four 
schemes. 

5.3 Impact of GPS Error 
All GPS receivers have localization error in real envi-

ronments, which include three basic location errors (i.e., 
single-point positioning accuracy, differential positioning 
accuracy, carrier positioning accuracy [38]).  
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Fig. 5.  Relationship between localization performance and 
GPS error. (a) Average location error. (b) Location 
error standard deviation. 

The simulations apply the carrier positioning error, assume 
GPS errors based on a normal distribution, and specify the 
mean GPS errors as 0, 0.1, 0.2, 0.3 and 0.4 meter, respec-
tively, with a standard deviation of 0.05 meters [19], [21]. 

Figure 5 shows the variation of the average location 
error and location error standard deviation with the GPS 
error for the four methods. In general, with the increase of 
the GPS errors, the average location errors and location 
error standard deviations of the four methods are increased 
with a slow trend. In other words, the impact of GPS errors 
is not very obvious for localization accuracy. Besides, 
SLMLU still has smaller average location error and loca-
tion error standard deviation than other three schemes. 

5.4 Impact of Radio Range 
Figure 6 describes the variation of the average loca-

tion error and location error standard deviation as the radio 
range for the four methods. Note that with the increase of 
the radio range, the average location errors and location 
error standard deviation of the four methods are increased. 
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Fig. 6.  Relationship between localization performance and 
radio range. (a) Average location error. (b) Location 
error standard deviation. 
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A large radio range will lead to a weaker restriction, and 
ultimately lead to larger average location errors and loca-
tion error standard deviations of the four schemes. Never-
theless, the impact of radio range on MAP+GC, MAP-M, 
MAP-M&N schemes is much greater than SLMLU 
scheme. 

5.5 Impact of Radio Irregularity 
As the radio range of node is irregular in practical 

environment, the influence of degree of irregularity (DOI) 
is discussed in the section. DOI is defined as the maximum 
radio range variation per unit degree change in the direc-
tion of radio propagation as 

 
1

1, 0
, 0 360i
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i
K

K Rand DOI i−
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=

± × < <
  (15) 

where 0 359K K DOI− ≤  [39]. 

Figure 7 compares the average location error and 
location  error  standard  deviation  of these  four  schemes 
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Fig. 7.  Relationship between localization performance and 
DOI. (a) Average location error. (b) Location error 
standard deviation. 

under different DOI. As shown, the average location errors 
and location error standard deviations of MAP+GC,  
MAP-M, MAP-M&N schemes are increased with the in-
crease of DOI, and DOI has an evident influence on these 
three schemes, but a slight influence on SLMLU proposed. 
As MAP+GC, MAP-M, MAP-M&N schemes make use of 
the radio range, which is irregular, to estimate the location 
of the node, DOI has great effect on them. However, 
SLMLU use RSS to compute the location of the node, so 
DOI has little effect. Therefore, SLMLU has more localiza-
tion performance. 

5.6 Impact of Noise 
Figure 8 describes the localization performance of 

SLMLU scheme under different signal-to-noise ratio 
(SNR). The average location error and location error stan-
dard deviation of SLMLU degrades with the decrease of 
SNR. This is because the estimation of RSS will be more 
and more inaccurate with the decrease of SNR. From Fig. 8 
and Tab. 1, it can be seen that, even in 0 dB SNR environ-
ment, SLMLU scheme still has better localization perform- 
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Fig. 8.  Relationship between localization performance and 
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ance than MAP+GC, MAP-M or MAP-M&N schemes. 
That is, SLMLU scheme is still a good choice under 
extreme low SNR. 

5.7 Complexity Analysis 
In terms of computation cost, each sensor node in 

MAP+GC requires 75 addition/subtraction and 52 multipli-
cation/division operations. Each sensor node in MAP-M 
and MAP-M&N our method requires 26 addition/subtrac-
tion and 36 multiplication/division operations. The compu-
tation complexity of SLMLU is O(2MN). The computation 
complexity of SLMLU is more than other three schemes. 

6. Conclusion 
We propose a novel sparse localization algorithm 

with a mobile beacon based on LU decomposition 
(SLMLU). First, the scheme makes use of sparse localiza-
tion model to convert the node localization problem to 
 a 1-sparse vector recovery problem. Then, it adopts LU 
decomposition pre-processing and compressive sensing 
(CS) theory to solve the problem of restricted isometry 
property (RIP) and exactly recover the sparse signal, re-
spectively. Finally, weighted centroid scheme is adopted to 
exactly locate the node. The simulation results and analysis 
show that the SLMLU scheme proposed has better local-
ization performance than the previous schemes. As 
SLMLU adopts the received signal strength (RSS) to local-
ize each node, the obstacles and degree of irregularity 
(DOI) have little effect on SLMLU, and even under low 
Signal Noise Ratio (SNR), SLMLU also has better local-
ization performance than MAP+GC, MAP-M, and MAP-
M&N schemes. Therefore, SLMLU is more suitable for 
practical application. In addition, to localize all nodes, 
SLMLU scheme has a lower requirement of the mobile 
beacon compared with the previous schemes. However, 
SLMLU algorithm has a shortcoming of high computa-
tional complexity. Therefore, the future research direction 
will consider how to reduce the computational complexity. 
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