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Abstract. This paper proposes the novel model for estima-
tion of bounds in digital coding of images. Entropy coding 
of images is exploited to measure the useful information 
content of the data. The bit rate achieved by reversible 
compression using the rate-distortion theory approach 
takes into account the contribution of the observation noise 
and the intrinsic information of hypothetical noise-free 
image. Assuming the Laplacian probability density func-
tion of the quantizer input signal, SQNR gains are calcu-
lated for image predictive coding system with non-adaptive 
quantizer for white and correlated noise, respectively. The 
proposed model is evaluated on seabed images. However, 
model presented in this paper can be applied to any signal 
with Laplacian distribution. 
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1. Introduction  
Information-theoretic image analysis has aim at defin-

ing and measuring the quality of digital images [1]. The 
information content of the image data can be evaluated 
objectively both from the signal-to-quantizing noise ratio 
(SQNR) and from the entropy of digital images [2]. The 
preliminary information-theoretic approach may suggest 
which image bands are more significant, i.e. potentially 
capable of conveying the amount of information larger 
than other bands, in order to reduce the volume of data to 
be processed without noticeable penalty.  

This paper is based on a model suitable for quantify-
ing the information content of digital images. In conse-
quence, information-theoretic assessment is presently 
an open problem [3]. Accurate estimate of the entropy of 
an image can only be obtained by suppression, or at least, 
large reduction of the correlation which exists in natural 
images [4]. Entropy, indeed, is a measure of statistical 
information that presents the uncertainty of the source. 

One of the problems when compressing images is the 
noise or other artifacts resulting from imperfect data acqui-

sition methods [3]. Therefore, any observation noise intro-
duced by the imaging sensor will result in increment of the 
entropy rate, which is accompanied by a decrement of the 
information content useful in application context, accord-
ing to Shannon’s information theory [5]. Estimation of the 
noise must be carried out at the beginning in order to quan-
tify its contribution to the entropy rate. 

The problem of digital images denoising is widely 
discussed in the literature [6–8]. By assuming additive 
noise, independent of the image and spatial stationary, the 
noise parameters can be estimated on the homogeneous 
areas of the image. The bit rate invoked by the entropy 
coder can be utilized to yield the estimate of the true infor-
mation content of the image source, i.e. of the entropy that 
the source would have if it were noise-free. For this pur-
pose, our model is devised from the rate-distortion theory 
describing how the relations between entropy and the vari-
ance of uncorrelated non-Gaussian source change when 
a stationary white Gaussian random process is superim-
posed [9]. The motivation underlying our model is investi-
gation of entropy of the noise-free source from the esti-
mated parameters of noise. 

In order to develop a novel model for information-
theoretic image assessment, we used differential pulse code 
modulation (DPCM) as a predictive method for image 
denoising [10]. The main goal in the DPCM is image de-
correlation and removing of redundancy. Since the DPCM 
coder is statistical in nature, the commonly used image 
distortion criteria are normalized mean-square-error (MSE) 
and SQNR. 

M. Kivanz et al. exploited an approximate minimum 
MSE estimation procedure on the problem of image coding 
[11]. The research presented in this paper contains theoreti-
cal results of estimation on upper bound on SQNR in the 
closed form for image DPCM systems with non-adaptive 
quantizer, by using the MSE estimation procedure. 

B. Aiazzi et al. defined the entropy model of the 
image source and estimated the information content of the 
noise-free source from the code rate [12]. They assumed 
the noise was white and Gaussian. In our paper, predictive 
image systems with white and correlated noise will be 
compared - DPCM system without and DPCM system with 
entropy modeling. The performance metric to be used is 
SQNR as an objective measure of quality of the recon-
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structed image. Further increase in the SQNR without in-
creasing the transmission rate is possible if we assume 
epsilon ( )-entropy of the bit stream at the quantizer input 
[13]. 

Fan and Xia developed a new hidden Markov model 
and applied it to image denoising by exploiting the local 
statistics of the signal [8]. Our model will imply local 
statistics through the analysis of the probability density 
function (PDF) of the input image signal. 

Concerning noise modeling, Jerzman and Kicinsky 
took into account kernel estimation of the PDF [14]. Their 
research focused on the estimation of the univariate, uni-
modal data representative for the normal distribution. With 
this in mind, we used the Laplacian PDF in development of 
our model and obtained the corresponding numerical 
results. 

A commonly used source model in many digital 
applications is Laplacian source model, due to its simplic-
ity and fact that many parameters and characteristics can be 
found as the closed form relations. Also, for larger number 
of signal samples, the PDF of input signal is better repre-
sented with Laplacian functions. In numerous papers, the 
quantization of memoryless Laplacian source was analyzed 
since the PDF of the difference signal for an image wave-
form follows the Laplacian distribution [3], [14–15]. Our 
model can be extended to any image with Laplacian distri-
bution, but the evaluation will be carried out on seabed 
images. 

Sonar images are perturbed by a multiplicative noise 
called speckle, due to the coherent nature of the scattering 
phenomenon. In [16] an image denoising algorithm for 
sonar images in the wavelet domain was presented, which 
tends to reduce the speckle, preserving the structural 
features of the scene. 

Despite the actual proliferation of real sonar images, 
there are not numerous publications dealing with their 
denoising. A. Isar et al. [17] presented the particular case 
of sonar images starting with an overview of speckle re-
moval techniques both in the spatial domain and in the 
wavelet domain. 

Aiming at the information loss, serious noisy and low 
resolution of sonar image, a sonar image fusion denoising 
method based on multiple morphological wavelet packets 
is proposed in [18]. 

This paper is organized as follows. Section 2 intro-
duces information-theoretic analysis, starting gradually 
from noise modeling, as well as taking into account source 
decorrelation by DPCM approach and assumed noise 
models. In Sec. 3, entropy modeling of memoryless images 
is described. Section 4 invokes the concept of entropy 
coding. The development of novel analytical model on 
upper bounds of corresponding performances will be de-
veloped in Sec. 5. In Sec. 6, some simulations on several 
sets of sonar images are carried out. Section 7 contains the 
concluding remarks.  

2. Noise Modeling  
This section focuses on noise variance modeling from 

image data. Unlike coherent or systematic disturbances, 
which may occur in some kind of data, the noise is as-
sumed to happen due to a fully stochastic process. Let us 
assume for the noise an additive signal-independent model 
[15]:  
 ),(),(),( jinjifjix  (1) 

in which x(i,j) is the intensity level at the pixel position 
(i,j); f(i,j) is the signal intensity without noise, and n(i,j) is 
a zero-mean Gaussian process independent of f, stationary 
at the position (i,j), and spatially auto-correlated. Both x(i,j) 
and f(i,j) are regarded as non-stationary non-Gaussian 
(auto-correlated) stochastic processes. Let the correspond-
ing variances of the signal (with and without noise) and 
noise be x

2, f
2 and n

2, respectively. Thanks to the inde-
pendence of signal and noise components and to the spatial 
stationarity of the latter, the variances of sum random vari-
ables from (1) can be calculated as follows:  

 ),(),(),( 222 jijiji nfx . (2) 

2.1 Source Decorrelation by DPCM 
Lossless or reversible signal compression consists of 

source decorrelation and entropy coding. Differential Pulse 
Code Modulation (DPCM) is usually employed for reversi-
ble data compression [15]. DPCM is widely used in image 
coding. The main advantage of DPCM is its ability to per-
form efficient coding with low complexity. For a highly 
correlated source input, the DPCM coder removes correla-
tion by prediction and codes only the residue. The block-
scheme of the DPCM system is shown in Fig. 1, where e 
depicts prediction error, x̂  is the prediction signal, and q 
represents the quantizing noise. 

 

Fig. 1. Blok-scheme of the DPCM system. 

DPCM is a technique of converting an analog into 
a digital signal in which an analog signal is sampled and 
then the difference between the actual sample value and its 
predicted value is quantized. A predicted value of the 
actual sample is based on the value of the previous sample 
or the values of the previous samples [15]. The concept of 
DPCM is based on the fact that most source signals show 
a significant correlation between successive samples so 
that quantizer uses redundancy in sample values which 
provides lowering bit rate [15]. 
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DPCM basically consists of prediction followed by 
entropy coding of the resulting prediction errors [19]. The 
analysis for DPCM algorithm will be developed in this 
paper. DPCM system with non-adaptive quantizer and 
entropy coding will be considered. Adaptation of the quan-
tizer can be accomplished by making estimation of the 
standard deviation before it is quantized. The adaptive 
quantizers have considerably less idle channel noise than 
non-adaptive quantizers and are able to operate optimally 
over a wide range of input signal levels. Unfortunately, 
adaptation increases the entropy. 

For the benefit of clarity, our model will be developed 
for one-dimensional DPCM system [20]. Prediction will be 
linear throughout it. Let )(ˆ ix  denotes the prediction at 
pixel i obtained as a linear regression of the values of P 
previous pixels [12]: 

 )()()(ˆ
1

jixjix
P

j

 (3)  

where (j) represents the coefficients of the linear predic-
tor and is assumed to be constant throughout the image. By 
replacing the additive noise model from (1), we reached 

 )()()(ˆ)(ˆ
1

jinjifix
P

j

 (4) 

in which )(ˆ if  represents the prediction for the noise-free 
image as formulated from its previous pixels:   

 )()()(
1

^
jifjif

P

j

.    (5) 

Prediction errors e(i) of the input image pixels x(i) are 
defined by [9] 

 )()()()()(ˆ)()(
1

jinjinieixixie
P

j
f  (6) 

where ef (i) = f(i) )(ˆ if  is the error the predictor would 
produce if it were fed by noise-free data with the corre-
sponding variance factor ef

2. Both e(i) and ef(i) are zero-
mean processes, uncorrelated and non-stationary. The zero-
mean property stems from an assumption of local first-
order stationarity within the (P+1)-pixel window compris-
ing both the current pixel and its prediction support.  

2.2 White Noise Model 
Let us assume that the noise n(i) is white and Gaus-

sian, i.e. a stationary and uncorrelated random process with 
zero mean and variance n

2. Under this assumption, the 
variance of e(i) from (6) becomes [12]  
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in which the summation term at right-hand stems from the 
statistical independence and stationarity of noise samples. 

Term 
P

j

jG
1

2 )(  refers to the power gain of the linear 

filter responsible for the prediction. Equation (7) states that 
the variance of prediction errors calculated on the noisy 
image equals that of prediction errors calculated on the 
noise-free image incremented by the noise variance multi-
plied by 1 + G. This means that any attempt to predict 
a white noise process results in an increment of the 
variance of the outcome prediction errors, unless the 
predictor has coefficients all identical to zero.  

2.3 Correlated Noise Model 
When the noise is correlated, equation (7) no longer 

holds, because of the statistical dependence of n(i) from the 
previous noise samples. Let us assume for the stationary 
zero-mean Gaussian noise the first-order Markov model 
[15], uniquely defined by the coefficient correlation  and 
the variance n

2:  

 )()1()( iinin n   (8) 

where )(in is a white Gaussian uncorrelated random proc-
ess having variance n

2. From (8) it stems that 

 )1( 222
nn  . (9) 

In the case of the correlated noise, (6) may be written 
as 
 )()()(ˆ)()()( ieieininieie nff  (10) 

in which )(ˆ)()( ininien  is the error produced when the 
correlated noise is being predicted. This error is assumed to 
be zero-mean, stationary and independent of ef(i), since f 
and n are assumed to be independent of each other. The 
zero-mean additive signal-independent correlated noise 
model from (1) is relatively simple and mathematically 
tractable. Its accuracy has been validated for two-dimen-
sional (2-D) signals [6]. Thus, the relation among the vari-
ances of the three types of prediction errors becomes 

 222
enefe . (11) 

By replacing the noise model (8) with (11), the 
variance en

2 can be calculated as 
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When the noise is white, i.e.  = 0, that means the 

third and fourth terms in (12) are equal to zero and in that 
case it can be easily noticed that (12) reduces to (7). On the 
other hand, from the noise model (8) it can be concluded 
that the variance en

2 is lower bounded by n
2 (9), which 

means )1( 222
nen . 
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The optimal predictor for the first order Markov 
model in (8) is (1) =  and (j) = 0 for j = 2,…,P; it 
yields to 

 
2222 )1( nnen  (13) 

for the correlated noise, and it can be easily verified. Thus, 
the residual variance of the noise after decorrelation may 
be approximated from the estimated variance of the corre-
lated noise, and from its estimated correlation coefficient. 
The approximation becomes more accurate as the predictor 
attains the optimal performance. A better understanding of 
correlation in noise and target signals would provide 
an additional input to signal processing algorithms.  

3. Entropy Modeling  
The performance of a quantizer can often be im-

proved by variable-length coding of the sequence of the 
quantizer outputs, i.e. by entropy coding. Entropy coding is 
a source encoding technique. This is a variable-length 
procedure that assigns shorter code words to highly prob-
able symbols and longer code words to less probable sym-
bols. When symbols to be transmitted are independent, it is 
possible to generate codes such that the average word 
length of these codes is approximately equal to the entropy 
of the symbols. To understand efficient coding when using 
entropy coding, it is necessary to keep the quantizing error 
fixed and obtain quantization characteristics that will mini-
mize the entropy. 

Let us assume a stationary memoryless source 
uniquely defined by its probability density function (PDF) 
p(x), having zero-mean and variance e

2, and the step size 
 of the uniform quantizer. Wood has shown that when the 

number of quantizing levels gets large, the minimum bit 
rate R needed to encode one of its samples approaches 
[21]:  

 2loghR  . (14) 

This approximation gets closer to the true differential 
entropy as  tends to one. The differential entropy h of the 
source signal is defined as [22]  

 )(log
2
1)(log)( 2

22 ecdxxpxph   (15) 

with 0 < c  2 e a positive constant accounting for the 
shape of the PDF and called as entropy factor, while 
e = 2.718 is the base of the natural logarithm. The entropy 
factor attains its maximum c = 2 e for the Gaussian den-
sity function. The p(x) is an even function representing the 
probability density of quantizer input. Such quantizer was 
originally studied by Panter and Dite [22]. Nitadori [23] 
and O’Neal [10] found that the quantizer input for non-
adaptive DPCM image systems has approximately expo-
nential two-sided Laplacian function, i.e:  

 
ee

x
xp

2
exp

2
1)(  . (16) 

If the source is non-stationary, as it may happen for 
prediction errors, it is still possible to define the differential 
entropy from the average PDF, i.e. a PDF given by the 
superposition of many space-varying Gaussian PDFs. Such 
a PDF may be calculated from the whole set of occur-
rences, same as if the source were stationary, and usually 
results to be non-Gaussian. However, in this case, the bit 
rate given by (14) does not necessarily attain the minimum. 
By classifying the source into a number of quasi stationary 
Gaussian subsources and by applying (14) to each of the 
new sources, a moderately lower rate may be achieved 
[24]. 

The distortion criterion to be used will be the squared-
error criterion. Panter and Dite have shown that the mini-
mum mean-square quantizing error is given by [22]  

 
3

0

3/1
2
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3

2 dxxp
N

v

q
  (17) 

where N = 2n is the total number of the quantizing levels, 
and n depicts the number of bits per sample. The major 
assumption is that the limiting degradation factor is general 
quantizing noise. When the range of the quantizer v in the 
(17) becomes large [10], we obtain the approximation for 
the mean-square error of the quantizing noise by solving 
the integral from (17)  

 2
2

2

2
9

eq N
 . (18) 

In the DPCM system without entropy coding, the 
quantizer is designed to minimize the ratio q

2/ e
2 for the 

fixed number of the quantizing levels N. For the DPCM 
system with entropy coding, the quantizer is designed to 
minimize q

2/ e
2 when the entropy of the quantizer output 

is fixed. For both DPCM systems, this results in minimiz-
ing the ratio q

2/ e
2 and therefore maximizing the SQNR 

for the fixed bit rate in a channel. 

When the quantizer input has the Laplacian density, 
the differential entropy h of (15) becomes [15]  

 eeh 2log2  . (19) 

Bennett [25] has shown that if the signal is evenly 
distributed between equispaced quantizing levels of step 
size , the mean-square quantizing error is related to the 
step size by 

 22

12
1

q . (20) 

Let us assume e(i) are regarded as an uncorrelated 
source and are uniformly quantized with the step size . 
This represents a high bit rate approximation. The mini-
mum average bit rate R (in bits per pel), necessary to rever- 
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sibly encode an integer-valued sample of the signal x, 
which is equal to the entropy of the quantizer output H, 
may be then approximated as in (14) [3]:  

 
2

22

2 6
log

2
1

q

eeHR   (21) 

where 2
e  is the average variance of the prediction error. 

By averaging (11) and replacing it with (21), H may be 
then written as 

 )(
6

log
2
1 22

2

2

2 enef
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eH   (22) 

in which 2
ef  is the average variance of the ef(i). If 2

ef =0, 
then H from (22) becomes Hn:  

 2
2

2
2 2log

2
1log

2
1

enenn ecH   (23) 

because in this case the entropy factor corresponds to the 
Gaussian PDF of en(i). Analogously, if en

2 = 0, then (22) 
reduces to 

 2
2

2

2 6
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2
1
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q

f
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Thus, the average entropy rate of the noise-free image 
f in the case of white noise will be given by (7) and (24) as 

 22
2

2

2 )1(
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log
2
1

ne
q

f GeH   (25) 

whereas in the case of correlated noise, replacing (13) with 
(24) gives 
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The average variance 2
e  can be measured during the 

compression procedure by averaging e
2, and this determi-

nation is crucial for the accuracy of the estimation of Hf .  

4. Bound on Entropy Modeling  
Since the variance e

2 is the same for DPCM systems 
with and without entropy coding, from (18) and (21), and 
assuming the constant bit rate in the channel, we obtain the 
following from (25) for the white noise:  
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Taking into account the number of quantizing levels 
N and the fact that the mean-square error of the quantizing 
noise q

2 and the variance of the noise n
2 are equal when 

the number of quantizing levels is large [10], we can obtain 

the relation between the mean-square quantizing error q
2 

and the mean-square error of the quantizing noise:  

 2
2

2
2 11

27 qq N
Ge . (28) 

The realistic value for the coefficient correlation  of 
the image signal is 0.95 [15], i.e. 2 = 0.902. For the opti-
mum predictor, the power gain of the linear filter becomes 
G = 2 = 0.902. Without loosing on generality, if we take, 
for instance, n = 3 bits per sample and N = 23 = 8 quantiz-
ing levels, we can obtain that in such case 

 22 266.0 qq . (29) 

The following equation (30) gives the relation be-
tween the quantizing noise powers, when two observed 
systems operate at the same bit rate:  
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This study leads to the conclusion that when the bit 
rate is large, the quantizing system using entropy coding 
can achieve the SQNR of 10 log{27/[e2(1–(1+G)/N2)]} 
greater than the system without entropy coding. In the case 
of N = 8 quantizing levels, the numerical value of the 
SQNR gain will be 5.76 dB with applied entropy coding. 

The similar calculation can be carried out in the case 
of correlated noise. Taking into account (18) and (21), (26) 
leads to 
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If we suppose N number of quantizing levels, the fol-
lowing relation between the mean-square quantizing error 
and the mean-square error of the quantizing correlated 
noise can be obtained:  

 2
2

22
2 11

27 qq N
e .  (32) 

If we take the value of  = 0.95 and N = 8 quantizing 
levels, the following relation can be obtained:  

 22 274.0 qq .  (33) 

Equation (34) presents the relation between the quan-
tizing noise powers, assuming the two systems (with and 
without entropy coding):  
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To conclude, in the case of correlated noise in image 
coding, the quantizing system using entropy coding can 
achieve the SQNR of 10 log{27 /[e2 (1 – (1 – 2)/N2)]} 
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greater than the system without entropy coding. For N = 8 
quantizing levels, the corresponding value of the SQNR 
gain will be 5.64 dB with entropy coding and correlated 
noise, which is improvement in comparison with existing 
models [26].  

5. Upper Bound on SQNR Ratio 
A matter often arising in signal quantizing and proc-

essing is the minimum average number of bits per sample 
which is necessary to achieve certain fidelity. The answer 
to this question is given by epsilon-entropy ( -entropy) 
[13]. The concept of epsilon-entropy was introduced and 
developed in order to describe the problem of signal trans-
mission with maximum error constraint. Namely, we desire 
to compress a source to R bits per pixel where it is required 
that we must be able to reconstruct the original source 
sequence with error on each pixel that never exceeds . The 
major result of this subject is that the epsilon-entropy can 
be expressed as an information-theoretic minimization. 

Let us assume that in a digital communication system, 
the information source generates the random signal x which 
is encoded with an accuracy , where  > 0. The random 
signal y at the encoder’s output and the generated signal x 
belong to the same space. Their associated probability 
belongs to the same class of distribution, which is deter-
mined by . Thus, -entropy H  is an infinum of the mutual 
information for two random signals, one of which is given 
as [13], [19]:  

 );(inf yxIH .  (35) 

Assume that a signal x arising from the source is ex-
pressed by pixel values as well as the restriction that the 
mean-square error per image pixel should not exceed 2. 
When x is an M-dimensional random variable and has 
a sufficiently smooth density function, the -entropy H  is 
given as [19]  

 2log
2

1log 22
MhMH   (36) 

where h is the differential entropy of the signal [15], [19]. 
The behavior of -entropy is determined in the first place 
by the dimension of the variable. 

Further increase in the signal-to-quantizing noise ratio 
without increasing the transmission rate is possible if we 
assume -entropy of the bit stream of the quantizer output. 
For the Laplacian model probability density, the average  
-entropy of the one-dimensional quantizer output using 

(36) is 
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q
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whereas q
2

 
is the mean-square quantizing error. The uni-

form quantization includes the equality 2 = q
2. Comparing 

the white quantizing noise of the system in which we as-

sume -entropy of the bit stream of the quantizer output 
and the system without entropy coding [27], we shall ver-
ify in the framework of our model that the quantizing sys-
tem using -entropy of the bit stream can give the SQNR 
greater than the system without entropy coding:  
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Finally, it will lead to 
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For N = 8 quantizing levels,  

 22 186.0 qq . (40) 

Equation (41) gives the relation between the white 
quantization noise powers when two systems operate at the 
same bit rate:  
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An optimum quantizer is one that minimizes the 
mean-square error subject to the constraint of a given out-
put entropy rate. When the bit rate is large, the quantizing 
system using -entropy of the bit stream can give the SQNR 
improvement of 10 log{9 /[2e(1 –(1 + G)/N2)]} [dB] 
greater than the system without entropy coding. For N = 8 
quantizing levels, the upper bound on the SQNR gain for 
image DPCM system with non-adaptive quantizer and 
white noise has resulted in 7.29 dB, which indicates the 
improvement compared with the existing results [28]. 

The similar procedure will be applied to the correlated 
noise:  

 222
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leading to the following relation:  
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In the case of N = 8 quantizing levels, this relation has 
the numerical value:  

 22 192.0 qq . (44) 

The above equation gives the relation between the 
correlated quantization noise powers:  
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In the considered case of correlated noise, the quan-
tizing system using -entropy of the bit stream can give the 
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SQNR improvement of 10 log{9 /[2e(1 – (1 – 2)/N2)]} 
[dB] greater than the system without entropy coding. 
Taking N = 8 quantizing levels, the upper bound on the 
SQNR gain for image DPCM system with non-adaptive 
quantizer and correlated noise will be 7.17 dB. 

The obtained numerical results for N = 8 quantizing 
levels in this paper can be summarized in Tab. 1: 
 

Method  SQNR gain [dB] 

Entropy coding with white noise 5.76 
Entropy coding with correlated noise 5.64 
Upper bound (epsilon-entropy coding)  
with white noise 7.29 

Upper bound (epsilon-entropy coding)  
with correlated noise 7.17 

Tab. 1. Obtained numerical results for SQNR gain for N = 8 
quantizing levels. 

6. Experimental Results 
Our model will be evaluated on sonar side-scan 

images. Side-scan images are generally mounted on the 
sides of towfish (sensor), which are pulled behind ships, or 
on automated underwater vehicles [29]. At either side of 
the vehicle, the seabed is scanned in a series of strips. 
These strips are stacked together to form an image of the 
whole seabed. A typical side-scan sonar image is shown in 
Fig. 2, where the horizontal axis represents pixels, whereas 
the vertical axis shows scan lines. In order to evaluate our 
model on seabed images, we used the set of 511 side-scan 
images captured by the autonomous vehicle system. 

The image shows the seabed to each side of the ship’s 
path, which should been vertical, through the centre of the 
image. Both sides of the sensor are equipped with an array 
of sonar transducers which can transmit and detect sound. 
The array of transmitters is used to beam from the signal, 
aiming it in a narrow beam. This enables the sonar system 
to cover the seabed in narrow strips.  Each row of pixels in 

 
Fig. 2. Seabed side-scan image. 

the final image is generated from the echoes received from 
a single pulse of sound which is transmitted by the trans-
ducer arrays on both sides of the towfish. As the sensor is 
dragged through the water it repeatedly emits pulses and 
records the echoes, building the consecutive rows of the 
image. 

The main strip in the center of the image is the area 
under the sonar and hence not actually part of the image 
and is not useful. Moving from the strip the rippled region 
corresponds to a sharp bottom return near the location of 
the sonar. The very bright white lines past the rippled 
region correspond to surface returns of the ocean surface. 

The distance from the central line of the image can be 
equated with the sensor along the seabed. Range is related 
to the time taken between the transmission of the outgoing 
pulse and the reception of its echo. The brightness of the 
image at each pixel represents the amplitude of the echo 
that was received from the corresponding part of the scene. 

Resultant images have resolution based on the setup 
and limitations of a particular side-scan sonar system. The 
resolution perpendicular to the direction of platform mo-
tion is related to the pulse length. Short pulses provide 
greater detail but they have less power than long pulses. 
Since they have less power, their range is reduced. 

The resolution in the direction of motion, sometimes 
called the along track or azimuth resolution, is related to 
vessel speed, frequency of pings and, primarily, the sonar 
beam width. The beam can be narrowed by increasing the 
length of the sonar aperture, however, very long arrays 
become more cumbersome and difficult to maneuver. 
Spreading of the sonar beam causes resolution to diminish 
with range [30]. 

Since sound propagates so well under water, sonar 
technology is used widely for mapping the sea floor and 
ascertaining what is down there. This means that an abun-
dance of sonar images is generated. Analyzing them is 
a highly skilled job. Due to various distortions, artifacts of 
noise and the nature of the image formation process itself, 
it can be difficult to read sonar images effectively. 

Sonar images are often corrupted by noise during the 
process of their acquisition and transmission. The quality 
of the original images shown in Fig. 2 is non-exceptional. 
It is affected by various kinds of noise, including the dif-
ferent parameters that are presumed to be xed (e.g., the 
range and sh height) during the process of their capturing. 
Image denoising is therefore necessary to remove the addi-
tive noise while retaining as much as possible the impor-
tant image features. 

Sonar images are inherently noisy due to various arti-
facts of acoustic imaging. To reduce the noise, an adaptive 
thresholding method is proposed in [31], preserving the 
structural features and textural information of sonar 
images. An assessment of the SQNR characteristics is 
rather informative prior to the application of many vision 
algorithms, including feature detection, matching and 
tracking in visual motion studies [32].  
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We used an approach based on statistical analysis 
over a large number of images of a stationary scene under 
relatively uniform imaging conditions. Ideally, averaging 
over all the overlapping pixels gives the ideal noisy-free 
image. For our data, however, we also have to account for 
the structured noise due to non-uniform illumination, varia-
tions in the imaging condition during data acquisition, and 
camera motion. These effects could be distinguished in the 
estimated distribution of the variances. Further processing 
by estimating the structured component as a constant multi-
plicative term within small local windows and subtracting 
output gives the error distribution due to sonar noise. 

A preliminary experiment was carried out on sonar 
data and was aimed at demonstrating the estimation accu-
racy of the method when the data obey to the assumed 
models. Figure 3 reports modeled PDF of seabed image. 
The probability density function of pixel intensity is of 
interest because it describes the echo stability of a single 
object or portion of the bottom. A representative estimated 
PDF for this data set is shown in Fig. 3, a histogram of the 
image intensity values corresponding to a range at which 
a strong return is received from·the bottom. The distribu-
tion of intensity values appears to be approximately Lapla-
cian, described in the first part of the paper. 

Usually, the gray-scale image is underexposed and 
blurry, due to underwater light limitations, seeing an exam-
ple image in Fig. 2. The image is extremely dark; it lacks 
detail since the range of colors seems limited to low grey 
levels. We can verify this by looking at the image’s histo-
gram, illustrated in Fig. 3. In an image processing context, 
the histogram of an image normally refers to a histogram of 
the pixel intensity values. The image is scanned in a single 
pass and a running count of the number of pixels found at 
each intensity value is kept. It forms a tight, narrow peak 
cluster in the lower grey level region between the grey 
level intensity values of 0 to 50, which means the whole 
image is represented almost entirely by dark pixels.  

Due to the significance of correlation in DPCM sys-
tem, in this paper we study the influence of correlation 
coefficients on SQNR for sonar images. Correlation coeffi-
cient is the measure of extent and direction of linear combi-
nation of two signals. If two signals are closely related with 
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Fig. 3. Probability density function of a seabed image. 
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Fig. 4. SQNR values at different correlation coefficients for 

added noise. 

stronger association, the correlation coefficient is close to 
value 1. On the other hand, if the coefficient is close to 0, 
two signals are not related and cannot predict each other. 
The prediction quality can be improved by adapting the 
correlation coefficient to the image content, e.g. edges or 
texture. 

In the framework of this study, the SQNR is measured 
over all collected 511 sonar images. This measure com-
pared the level of desired signal to the level of undesirable 
noise. SQNR is calculated between original full compres-
sion and noisy full compression to degree  (rho). The 
resulting plot is the average SQNR value for each  and it is 
shown in Fig. 4. 

The case  = 1 means it is the no noise case, but it has 
an SQNR value because of the rescaling of the histogram 
that was presented. We can see that SQNR decreases 
sharply when values for correlation coefficient approach 
the critical value 1. Dankovi  and Peri , however, obtained 
sharp decrement of SQNR value when correlation coeffi-
cient equaled 0.8 for DPCM system [33]. D. Zogas et al. 
also measured dependence of SQNR on the correlation 
coefficient for wireless communications system [34]. They 
found as well that SQNR degrades as the correlation coeffi-
cient increases, but slightly compared to our system. On 
the other side, the algorithm presented in [35] can effi-
ciently improve the SQNR of the sonar images. 

7. Conclusion 
This paper describes one model for information-theo-

retic assessment of digital images. It relies on robust noise 
estimation and entropy modeling in order to calculate 
information of the ideal noise-free signal starting from the 
observed digitized image. Thanks to predictive entropy 
modeling of information sources, we obtained the upper 
bound on the amount of information generated by an ideal 
noise-free process of sampling and digitization. 

The theoretical estimation on upper bound on SQNR 
gain in DPCM entropy coding of images is obtained under 
the following constraints:  

 The quantizer input has approximately the Laplacian 
probability density. 

 The limiting degradation factor is quantizing noise.  
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 The distortion criterion used is the squared-error 
criterion.  

The full knowledge of the parametric noise model 
proves useful not only in applications requiring preliminary 
denoising, such as sonar imaging systems, but also in ap-
plication of surveillance, where no denoising is performed. 

The results of this paper can be applied to DPCM sys-
tems which don’t change or adapt themselves to the statis-
tics of the input signal. In adaptive systems, the quantizer 
levels may change in accordance with certain properties of 
the quantizer input signal. In this paper, we derived ap-
proximate expressions for the upper bound on the SQNR 
gain for image DPCM system with non-adaptive quantizer 
in closed form that depends only on the number of quantiz-
ing levels. 

The following predictive image coding systems with 
white or correlated noise are observed concerning the 
SQNR gain: with entropy coding; with -entropy of the bit 
stream of the quantizer output as well as without entropy 
coding. The upper bounds on SQNR gain for N = 8 quan-
tizing levels are calculated to be 7.29 and 7.17 dB for sys-
tems with white and correlated noise, respectively, com-
pared to the system without entropy coding. The gains 
predicted for entropy coding assume that the quantizer 
inputs are Laplacian. Moreover, models presented in this 
paper can be applied for any other signal with Laplacian 
distribution. 

A better understanding of correlation in noise and tar-
get signals would provide the additional input to signal 
processing algorithms. Future work and further improve-
ment of this model can be done using perceptual measures 
by taking the properties of human visual system. One pos-
sible extension of the system is to make it scalable, which 
means the coder is able to produce one bit stream that can 
be used to decode the source at different rates with differ-
ent distortion levels. This attractive feature can be useful in 
image browsing, progressive transmission, and trans-
coding.  
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