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Abstract. The channel matched filter (CMF) is the opti-
mum receiver providing the maximum signal to noise ratio 
(SNR) for the frequency selective channels. The output 
intersymbol interference (ISI) profile of the CMF con-
volved by the channel can be blindly obtained by using the 
autocorrelation of the received signal. Therefore, the in-
verse of the autocorrelation function can be used to equal-
ize the channel passed through its own CMF. The only 
missing part to complete the proposed blind operation is 
the CMF coefficients. Therefore, in this work, the best 
training algorithm investigation is subjected for blind esti-
mation of the CMF coefficients. The proposed method 
allows using more effective training algorithms for blind 
equalizations. However, the expected high performance 
training is obtained when the swarm intelligence is used. 
Unlike the stochastic gradient algorithms, the particle 
swarm optimization (PSO) is known to have fast conver-
gence because its performance is independent of the char-
acteristics of the systems used. The obtained mean square 
error (MSE) and bit error rate (BER) performances are 
promising for high performance real-time systems as 
an alternative to non-blind equalization techniques. 

Keywords 
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1. Introduction 
Mitigating the delay spread of the multipath channel 

is a challenging equalization task that requires significant 
processing power and effective training algorithms. Unless 
the communication frequency band is divided in small parts 
as it is the case in the orthogonal frequency division mod-
ulation (OFDM), the ISI nature of a channel has to be dealt 
as a finite impulse response (FIR) [1] and resolved either 
by one of complex Markov chain analysis methods as in 
Viterbi Algorithm (VA) or filtered by a channel inverting 
filter which is called equalizer. In order to implement any 
of these mentioned methods, either channel coefficients or 
some part of the transmitted data called training sequence, 
should be known by the receiver. In practice, a training 
sequence is placed at the beginning of the transmitted data 

packet. The training sequence guides to obtain the channel 
coefficients or is used to train the channel equalizer. On the 
other hand, the training sequence is not desirable for two 
main reasons. First, it degrades the throughput level and 
secondly it increases the implementation complexity 
because of its pre-requisites. Therefore, as it was a call by 
Labat saying that “Can you skip the training period?” 
an algorithm is required implementing the ISI cancellation 
without using any known symbols, such as training se-
quence [2]. 

As it is mentioned in [3], [4], there are some applica-
tions where training sequence cannot be used. Therefore, 
blind training techniques are emerged to train the equalizer 
without any cooperation between the transmitter and the 
receiver. In blind trainings there is no knowledge about the 
communication medium; only available information at the 
receiver is the statistical data obtained from the received 
signal.  

One of the early contributions to blind equalizations 
was made by Sato [5] and it was followed by several stud-
ies in order to improve training performance of blind algo-
rithms. In the literature a linear transversal equalizer (LTE) 
is used commonly for blind training studies [5]–[7]. Due to 
error propagation of the feedback filter, the decision feed-
back equalizer (DFE) has been mostly avoided in studies 
[8]. Nevertheless, there has been some research on blind 
trainings of DFE as its performance is better than LTE  
[9]–[11]. The most inspiring work on the area of blind 
training was published by Godard, by his proposition called 
Constant Modulus Algorithm (CMA) [6]. The CMA offers 
low complexity and reasonable stable convergence. How-
ever, most of the time it is found slow and its error level is 
high, considering the high performance required applica-
tions. Therefore several studies have been concentrated on 
improving the performance of CMA [4], [12]–[15]. 

There are other types of blind training algorithms, 
such as using second order statistic or Fourier analysis of 
incoming data. The blind equalization techniques which 
uses second or higher degrees moments of the received 
signals are presented in [16], [17]. The method which esti-
mates data and channel by using the maximum likelihood 
approach is studied in [18]. For example, in studies [19], 
[20], Baykal implemented an effective blind LTE and DFE 
trainings using Fourier analysis to obtain the matched filter 
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of the channel. The reference [19] is the first study using 
CMA algorithm in order to directly obtain the channel 
impulse response (CIR). In [20] the amplitude response of 
the channel is obtained blindly by using the autocorrelation 
of the channel output. In that study, the blind equalizer is 
used for the estimation of the phase response of the chan-
nel. Another work presents a simple recursive algorithm for 
matrix inversing and matrix multiplication operations for 
the match filter based blind receiver [21]. A CMF-DFE 
based blind channel estimation and equalization method is 
presented in [22]. 

In this study, instead of implementing blind equaliza-
tion which is non-convex in essence, we propose a new 
method that implies the blind training for estimating the 
CIR coefficients where the operations are convex. The 
proposed method uses the CMF and DFE features exploited 
using the second order analysis. For the proposed algorithm 
the error function has been changed into estimation error 
form using the channel output. Therefore, the proposed 
method allows the usage of conventional training algo-
rithms, such as least mean square (LMS) or recursive least 
squares (RLS) algorithms. Another contribution of this 
study is to use particle swarm optimization (PSO) [23], 
which has a superior convergence speed than LMS in 
trainings and offers much simpler algorithm than RLS. 
Therefore, the convergence speed of the proposed method 
is as good as any training sequence based algorithm. In 
order to demonstrate the performance of the proposed blind 
algorithm, BER and MSE analysis have been carried out by 
simulation of frequency selective channels.  

The outline of the paper is as follows: In Sec. 2, the 
proposed CMF based DFE and its blind training equations 
are introduced. Section 3 explains the PSO algorithm and 
its applications to blind trainings. Section 4 compares MSE 
and BER performances of the conventional and proposed 
algorithms. And, finally we draw the conclusion of the 
paper in Sec. 5. 

2. The System Model of Blind CMF-
DFE 
The output signal of a typical communication channel 

can be represented with the convolution v(t) =

     s
n

x n h t nT t




   , where x(n) is the transmitted 

symbol, h(t) is the continuous time channel impulse re-
sponse (CIR), (t) represents the Additive White Gaussian 
Noise (AWGN) and Ts is the symbol period. Then, the 
equivalent discrete time model is v(k) =

     
i

h i x k i k




   . In the paper, it is assumed that the 

symbols x(k) are independent and identically distributed 
with a variance of x

2, the noise (k) is uncorrelated with 
the input symbols having a variance 

2. It is assumed that 
the channel is causal with finite memory of length L and 
transmit-receive filters do not create ISI. Finally, the output 
of the channel is given as follows 

lkx 
~

lkx ˆ

 
Fig. 1.  The block diagram of the CMF-DFE. 
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Figure 1 shows the block diagram of the CMF-DFE 
receiver where CMF(z), P(z) and Q(z) represent the 
impulse responses of CMF, feed-forward and feedback 
filters of the DFE, respectively. The CMF(z) is the matched 
filter of channel H(z), having its mirror image as m–i = hi

*, 
i = 0,…, L when hi’s are the channel coefficients. 

The CMF-DFE provides several advantages over the 
conventional DFE structure [24], [25]. In [24], static cal-
culation of CMF-DFE which provides quite stable and high 
performance equalizer implementation is studied. They are 
calculated blindly by using the autocorrelation function of 
incoming sequence at the receiver, and run the blind train-
ings for the CMF which is a linear filter. The impulse re-
sponse of CMF is given by (2) and (3) 

    * *1 /CMF z H z , (2) 

 *
 ,   0, , i im h i L    . (3) 

In order to obtain maximum energy at the input of 
equalizer filter, the size of CMF has to be equal to the size 
of channel, as it is the case in (3). The ISI components dk, 
k = –L,…, L, at the output of the CMF can be calculated as 
shown in (4). 

 *

0

,  0, ,
L k

k i i k
i

d h h k L





    (4) 

where the center ISI component of (4) is given in (5).  

 * * * *
0 1 1 1 1 0 0L L L Ld h h h h h h h h      .	 (5) 

In (5) d0 is a real largest component. This center tap com-
bines all of the multipath energy of the channel. In (4) the 
ISI components are symmetrical and complex conjugates 
on both sides of the center tap, d0 as shown in (6) 

 *
   ,  1, ,k kd d k L    .	 (6) 

Therefore, using (1) the output of CMF is given as 

 *

0

L

k L i k i
i

y h v 


  . (7) 

Using the final ISI components di’s, (7) becomes as given 
in (8) 

 '
L

k i k i k
i L

y d x 


   . (8) 

If the channel is known by the receiver, the ISI com-
ponents of CMF are calculated by (4) as in [25]. However, 
if the channel coefficients are unknown for the receiver and 
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there is no cooperation between the transmitter and the 
receiver, the ISI component can be calculated by (9). 

  *
j k k jd E v v   (9) 

where E{} shows the expectation operator. Additionally, 
(9) also represents the calculation of the autocorrelation 
coefficients of channel transfer function, blindly. The out-
put of DFE is calculated by 

 
fb

ff

0

1

ˆ
L

k n k n m k m
n L m

x c y c x 
 

     (10) 

where ci’s are equalizer coefficients, x̂k  and x̃k are the esti-
mated and detected data at the output of equalizer, respec-
tively. The constants Lff 	and Lfb are the number of feedfor-
ward and feedback tap numbers of DFE filter. When 
a CMF filter is assumed available before equalizer, the 
DFE coefficients can be directly calculated by the zero-
forcing method [24], [26] as 

  D c b  (11) 
when 

 c
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The Toeplitz matrix equation is given in (11), and can 
be easily solved by numerical techniques, such as Levin-
son-Durbin algorithm [25], [26]. The components of D 
matrix are calculated by (9) using only the received data. 
Equation (11) also corresponds to the Minimum Mean 
Square Error (MMSE) equalizer as in [27], providing that 
the CMF presents before DFE [24], [28]. In Fig. 1, the 
channel coefficients are unknown for the receiver. How-
ever, the ISI components at the output of the CMF (which 
is not the transfer function of the CMF) and DFE coeffi-
cients are calculated by (9) and (11). Therefore, a blind 
training is only required to estimate the CMF coefficients 
as shown in Fig. 1. 

3. Particle Swarm Optimization 
Algorithm 
PSO algorithm is one of the popular population based 

evaluation type optimization algorithm which has been 
developed by James Kennedy and Russell Eberhart [23]. 
The algorithm has been found useful for stochastic based 
optimizations and takes place in many industrial applica-

tions [29], [30]. PSO algorithm has high convergence rate, 
low complexity profile and is successful in avoiding local 
minimums. PSO uses swarm intelligence to provide differ-
ent solutions. The solution space is the constrained with the 
size of M. For the ith particle, the solution set is given by 
pi = [pi1 pi2 … piM]T. The initial values of every particle are 
randomly selected in order to start searching the optimum 
point. Every particle has two components which are shown 
by position (p) and speed (u) vectors. Position vector con-
tains the position state and the speed vector holds the speed 
and direction of the particle. The speed and position vectors 
are obtained by the experiences from the previous iterations 
using both the best performance of the particle (called 
personal best, pbest) and best performance observed within 
all particles (called global best, gbest) as in (12) and (13) 
[23]. 

    1 1 2 2id id id id d idu u c r pbest p c r gbest p     , (12) 

    1 id id idp p u d M     (13) 

where c1 and c2 are the acceleration coefficients which 
drive the particle towards the pbest and gbest values. r1 and 
r2 are two random variables uniformly distributed within 0 
to 1. The implementation of PSO is given below; 

1. The problem space (allowable maximum and mini-
mum values) is defined.  

2. All particles randomly placed into the defined prob-
lem space. 

3. Positions of particles are controlled whether they are 
in the problem space or not. If any particle is outside 
the problem space then a random position is assigned 
for the particular particle. 

4. The fitness function of each particle is calculated. 

5. The pbest value of every particle is controlled with its 
previous value, if the new value is better than previ-
ous one, then pbest is updated and algorithm is con-
tinued. Otherwise, the previous pbest value is kept.   

6. The best pbest value of all particles is attained as the 
gbest value. 

7. If the new gbest is better than the previous gbest, the 
gbest value is updated by the new one, but if it is not, 
then the previous gbest value is kept. 

8. New speeds and positions of particles are calculated 
by (12) and (13) respectively. 

9. The algorithm is continued from step 3, unless an ac-
ceptable error limit has been obtained. 

4. The Proposed MF-DFE Blind 
Equalizer 
Fast convergence rate of PSO has made PSO algo-

rithm be used in time limited applications and considered 
as a potential tool for optimization problems for complex 
engineering applications [31], [32]. Another advantage of 
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PSO is that it is not sensitive to parameter selection and 
does not involve with any differential equation [23]. The 
non-convex profile of error functions of stochastic based 
algorithms, like equalizer filter, suffers from slow conver-
gence and low performance. On the other hand, if the sto-
chastic process is required to operate blindly, the conver-
gence problem rises quickly. Multiple solutions space of 
PSO offers quite high convergence and avoids remaining in 
a local minimum by its information transfers between par-
ticles. Therefore, in this study the PSO is chosen for the 
required blind training algorithm and found to be good 
candidate for practical applications thanks to its high per-
formance and fast convergence profiles. Fig. 2 shows the 
proposed blind equalizer architecture. During the blind 
training the switch is closed to “1” side. Since the compo-
nents of D matrix in (11) are autocorrelation products of 
the channel and they can be calculated blindly by using (9), 
then the component of b vector corresponding to cursor 
point is equal to 1 and all other components of b vector are 
equal to zero in (11). Therefore, the equalizer coefficients 
(ci) are directly calculated by solving (11). The only miss-
ing part in Fig. 2 is the CMF coefficients which are equal 
to channel coefficients to be trained blindly. Equation (11) 
implies the zero-forcing rule by placing unit gain for cursor 
symbol and zero gain for all other symbols involved in 
DFE equation in (10), as in [28]. Thus, the non-convex 
convergence profile of an equalizer is avoided by only 
remaining channel coefficients to be estimated, which is 
turned to be linear filter estimation in order to complete the 
receiver. In addition, CMF plays a crucial role in equaliza-
tion by providing a uniform ISI profile and accurate syn-
chronization [24]–[28]. However, the equalization problem 
has been significantly simplified. The required filter coeffi-
cients, CMF components, are equal to channel coefficients 
as in relation stated by 

 *, ˆ ,ˆ 0,i im h i L      (14) 

where Lʹ is the length of the estimated channel filter which 
is greater than the actual size of the channel, L, and m̂i′s are 
the CMF coefficients to be estimated. The output of CMF 
is given by 

 *

0

ˆˆ
L

k L i k i
i

y h v


 


  . (15) 

At the output of the detector, an estimate of the detected 
symbol x̃k would be fed into the feedback section of the 

DFE. The detector implementation depends on the modu-
lation type (if it is known at the receiver). 

Alternatively, instead of using the detected data in the 
feedback filter, the estimated soft data can be used instead. 
In this case, there would be no degradation in ISI cancella-
tion and any unknown modulation data would be equalized. 
However, in this case, the data would be aligned in 
an arbitrary direction as mentioned in [33] and slower con-
vergence in parameter estimation would be observed. For 
faster convergence, a soft limiter, as defined by (16) and 
(17), can be used. The output of the soft limiter is defined 
as 
 ˆ

k k kx      (16) 

where  arˆ ˆgk kx , which is phase angle of the estimated 

data x̂k, and γk is the amplitude of the soft limiter output. 
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After obtaining the estimates of the incoming signal as 
given in (18), an error function based on the received data 
can be set as given in (19).  

 
0

ˆˆ
L

k l i k i l
i

v h x 



 


   , (18) 

 ˆk k k lv v   	 (19)	

where vk is the output of the channel, Lʹ is the expected 
maximum number of interfering symbols in the channel 
and l is a fixed delay pointing the cursor symbol. The best 
choice for l is equal to Lff + Lʹ – 1 where –1 is for the non-
delayed tap at the input of matched filter. It is better to 
choose Lʹ ≥ L since the symbol span of the estimated CMF 
should be equal or greater than the symbol span of the 
channel. However, the recovery process of the proposed 
equalizer starts from an arbitrary symbol synchronization 
point, which initially coincides with any symbol at the any 
tap of the estimated CMF filter. Therefore, best choice for 
the length of the estimated CMF is Lʹ = 2L + 1 which is the 
resulted symbol span of the autocorrelation of channel, cal-
culated by (9). When the selected length for the CMF is 
greater than the actual length of the channel, it contributes 
to provide better ISI cancelation window for equalization, 
where the price is paid for more complexity. The error 
function in (19) provides a true identity for the equalization 

lkx 
~

lkx ˆ
lkkk vv  ˆ

lkx 
~

lka 
~

lkv ˆ
kv

 
Fig. 2.  The proposed system, switch is closed on “1” during the blind training and turned to position “2” for data recovery phase. 
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lkv̂

vk
lkkk vv ˆ

From channel matched filter DFE 

From channel output,

PSO
Algorithm

 
Fig. 3.  The error circuit. 

process of data xk. Equation (19) can be configured as 
an MMSE type training process with a cost function 

 2min kJ . (20) 

The error calculation circuit is given in Fig. 3 where 
the coefficients of matched filter,  and estimated 
channel filter, (z) are calculated by PSO algorithm. The 
proposed PSO algorithm is explained below. 

First operation of PSO is to assign random values for 
each particle where particles represent the CMF coefficient 
sets. Therefore, multiple starting points for the CMF coef-
ficients are maintained by using multiple particles of PSO. 
The values of particles have been controlled whether or not 
they are within acceptable limit which is pre-defined for 
CMF coefficients. Then, at the output of channel, the out-
put of matched filter is calculated using (15) and the output 
of equalizer is calculated by (10) for every individual parti-
cle. The estimated data related to each individual particle is 
used to calculate the error function and every particle 
(every set of CMF coefficients) is updated by using (12) 
and (13). PSO approximates the channel matched filter 
coefficients from different random starting points to the 
optimum values. Therefore it minimizes the error function 
and MSE as well. The fitness function considered in every 
iteration represents an estimation of MSE over the input 
window. At the nth iteration, the estimation of MSE for the 
ith particle is given by (21). 

 2

1

1 N

i ji
i

J n n
N

 (21) 

where N is the length of the window of the input data and 
ij(n) is the jth error for the ith particle. When  and 
(z) coefficients are adaptively optimized by controlling 

the trend of the error value for the best performing particle, 
the training is terminated and the operation is switched to 
data recovery processes.  

5. Computer Simulation Results 
In this section, the performance analysis of proposed 

PSO-CMF-DFE is given. The simulation results are ob-
tained over 2000 Monte-Carlo type packet averaging. 
Every packet containing 4000 QPSK modulated symbols 
are transmitted by 2000 different channels where the chan-
nel profile is 3 taps Proakis’s B type channel [25]. The 
RMS delay spread of channel is 42 ns and bandwidth of the 

channel is 24.5 MHz. In order to cover all channel profile, 
the size of the estimated channel profile is selected as 
L = 5 at the receiver. A DFE filter with Lff= 5 taps of feed-
forward and Lfb= 4 taps of feedback filter are used for 
equalization. The performance of proposed PSO-CMF-
DFE has been compared with those using LMS-CMF-DFE 
and CMA-DFE algorithms. In the LMS-CMF-DFE, the 
blind training is carried out using the error function given 
by (19). In this study, the implemented PSO algorithm is 
the classic one and first presented by [23]. In our simula-
tion 40 different particles are used for PSO implementation 
where the problem constraint space is [–1.5, 1.5] for ini-
tializing the particles. This limitation leads to constraint the 
channel coefficients within minimum of –1.5 and maxi-
mum of 1.5. The other parameters used in the algorithms 
are given in Tab. 1. 

 
CMA-DFE LMS-CMF-DFE PSO-CMF-DFE 

μ μCMF-DFE c1 c2 N 
0.0075 0.02 1.5 2.0 150 

Tab. 1.  Algorithm parameter settings in simulations. 

The MSE performances of the algorithms are given 
by Fig. 4 and Fig. 5, and the BER performances are given 
in Fig. 6 and Fig. 7. Figure 4 and Figure 5 show the con-
vergence rate of the algorithms in low SNR and high SNR 
values, respectively. For low SNR values given in Fig. 4, 
where SNR is equal to 15 dB, the MSE performances of 
LMS-CMF-DFE and proposed PSO-CMF-DFE are much 
better than the performance of conventional CMA-DFE 
algorithm. The error floors of both LMS-CMF-DFE and 
PSO-CMF-DFE has decreased below MSE = 1.5 × 10–2 
and almost stabilized after 600 training iterations. How-
ever, as it is shown in Fig. 4, the proposed PSO based algo-
rithm starts with high error level but quickly decreases 
below the other trainings within 50 to 100 training itera-
tions and keeps performing better. The final error floor for 
the proposed algorithm is MSE = 7 × 10–3 which is ac-
ceptable for many high performance applications when the 
SNR is lower than 15 dB.  

 
Fig. 4.  MSE performance of the blind adaptive channel 

equalizers for an SNR of 15 dB in a stationary 
environment.  

lkv −ˆ

lkkk vv −−= ˆε
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Fig. 5.  MSE performance of the blind adaptive channel 

equalizers for an SNR of 30 dB in a stationary 
environment. 

Figure 5 presents the MSE performances of simulated 
algorithms in higher SNR region, where SNR = 30 dB. 
Similar performance comparisons can also be made in low 
SNR region presented in Fig. 4. But, here the error floor of 
proposed PSO-CMF-DFE gets into the stable region after 
300 training iterations, having the minimum MSE of 
1.3 × 10–3 which is unexpectedly low. The performances of 
LMS-CMF-DFE and CMA-DFE get better when the SNR 
gets higher, but their performances are still much lower 
than the performance of the proposed method.  

So far, the error floor of blind equalizations has been 
found too high to take place in practical high performance 
applications. Therefore, they are not able to compete with 
those using a training sequence based non-blind equaliza-
tions. However, the presented results show that the conver-
gence rate of proposed PSO-CMF-DFE is quite higher. 
Furthermore, the error floor of the proposed method is 
comparable to the performances of training based algo-
rithms as shown in Fig. 7. Therefore, the BER performance 
analysis of algorithms can be carried out for comparisons 
of blind and non-blind algorithms. 

Whatever the training algorithm is, the phase infor-
mation of a coherent modulation technique, such as QPSK, 
cannot be recovered [19]. So, a CAZAC sequence of 64 
symbols is placed at the beginning of the data symbols in 
order to recover the phase information which is required to 
calculate BER performances. This CAZAC sequence is not 
used for trainings and can be considered as the available 
information in simulations only. Figure 6 shows the BER 
performances of blind equalization algorithms. The ob-
tained BER performances are compatible with the MSE 
performances given in Fig. 4 and Fig. 5. It can be easily 
seen that the proposed method outperforms the perfor-
mances of conventional CMA-DFE and LMS-CMF-DFE.  

BER performances of blind (LMS-CMF-DFE, PSO-
CMF-DFE) and non-blind (LMS-DFE, PSO-DFE) equali-
zation algorithms are given in Fig. 7. The BER perfor-
mance  graphics  are  obtained  after 196 iterations for blind 

 
Fig. 6.  BER performance results of the blind adaptive channel 

equalizers. 

 
Fig. 7.  BER performance results of the blind and non-blind 

adaptive channel equalizers. 

and non-blind trainings. As it can be seen from the perfor-
mance graphics, LMS-CMF-DFE has a poor performance 
because of the low convergence speed. As expected, the 
conventional LMS-DFE equalizer has higher performance 
than the LMS-CMF-DFE equalizer. It can be observed that 
while LMS-CMF-DFE equalizer convergences to 4.2 × 10–2  
error floor, LMS-DFE equalizer convergences to 3.0 × 10–4 
error floor. When the PSO algorithm is used as the adaptive 
algorithm, PSO-CMF-DFE equalizer has higher perfor-
mance than LMS-DFE equalizer because of its high con-
vergence speed and low steady state error floor. PSO-
CMF-DFE equalizer convergences to 2.0 × 10–4 error floor. 
As expected, PSO-DFE has the highest performance and 
convergences to  1.0 × 10–4  error floor in steady state.  

6. Conclusions 
In this study, a new blind equalization method is pro-

posed by using pre-calculated DFE coefficients, error cal-
culations at the output of channel and PSO algorithm for 
high performance trainings. Here, the DFE coefficients are 
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obtained blindly at the beginning of training by using the 
autocorrelation coefficients. Therefore, the blind training is 
carried out only to estimate the channel or its matched filter 
coefficients, which requires implementing linear system 
parameter estimation. The PSO has provided high speed 
convergence to complete the whole blind equalization 
process and produced low error level in this high perfor-
mance blind receiver architecture. Since the proposed 
method transforms the blind channel equalization problem 
to the linear filter estimation problem, its performance is 
much better than the conventional blind trainings, i.e. 
CMA. The proposed method may be used as an alternative 
to training sequence based non-blind equalization tech-
niques. 
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