
132 M. HENZL, P. HANACEK, A SECURITY FORMAL VERIFICATION METHOD FOR PROTOCOLS USING CRYPTOGRAPHIC . . .

A Security Formal Verification Method for Protocols
Using Cryptographic Contactless Smart Cards

Martin HENZL, Petr HANACEK

Dept. of Intelligent Systems, Faculty of Information Technology, Brno University of Technology,
Bozetechova 1/2, 612 66 Brno, Czech Republic

ihenzl@fit.vutbr.cz, hanacek@fit.vutbr.cz

Manuscript received August 28, 2015

Abstract. We present a method of contactless smart card
protocol modeling suitable for finding vulnerabilities using
model checking. Smart cards are used in applications that
require high level of security, such as payment applications,
therefore it should be ensured that the implementation does
not contain any vulnerabilities. High level application spec-
ifications may lead to different implementations. Protocol
that is proved to be secure on high level and that uses secure
smart card can be implemented in more than one way; some
of these implementations are secure, some of them introduce
vulnerabilities to the application. The goal of this paper is
to provide a method that can be used to create a model of
arbitrary smart card, with focus on contactless smart cards,
to create a model of the protocol, and to use model check-
ing to find attacks in this model. AVANTSSAR Platform was
used for the formal verification, the models are written in the
ASLan++ language. Examples demonstrate the usability of
the proposed method.

Keywords
Security, smart card, model checking, ASLan++, formal
verification, protocol

1. Introduction
Smart cards are usually used for storing some value or to

provide means for user authentication, so the smart card ap-
plications usually require high level of security. Applications
that use contactless smart cards are mainly payment systems,
electronic ticketing, electronic vouchers, access control sys-
tems, loyalty programs, etc. In this paper we show examples
of payment protocols with pre-paid credit on the card. For
purposes of this paper the word protocol means the order
and content of commands sent by the terminal and responses
from the card and the use of cryptographic functions that
will together perform the desired task in a secure way so that
confidentiality, integrity, and authenticity of protected data
will be ensured.

Contactless smart cards are usually simpler than smart
cards with contact interface and provide limited functional-

ity. They usually provide authentication based on symmetric
keys, multiple applications and file system with access per-
missions. Access control is based on keys that are used for
authentication, data may be encrypted using some symmetric
cipher. One of the most popular and widespread contactless
smart cards that uses this scheme is Mifare DESFire [1],
which will be modeled in our first example to demonstrate
our method. Some smart cards have more sophisticated op-
erating system and can execute applications on their chip,
such as Java Cards [2] or Basic Cards [3]. Their application
logic can be modeled as well, however, in this paper we focus
mainly on simple smart cards with pre-defined set of com-
mands that cannot execute other applications on their chip.
We have found out that some features of the Mifare DESFire
MF3ICD40 are very dangerous and it may be very difficult
to implement protocol using this card in a secure way. Al-
though these features are not considered vulnerabilities of
this smart card, they might help to introduce vulnerabilities
into the implementation. The second example shows an im-
proved Mifare DESFire. It is a fictional smart card that does
not have these dangerous features.

When designing and verifying security protocols using
informal techniques, some security errors may remain unde-
tected. Formal verificationmethods provide a systematicway
of finding protocol flaws. The protocol is specified in a for-
mal way and the correctness of security properties is proved
or disproved using formal methods and mathematics.

Many tools for verification of protocols are available.
Although general purpose formal verification tools can be
used to verify security protocols, such as Murphi, Spin, Is-
abelle, or UPPAAL, it is better and more intuitive to use one
of the tools designed specifically for verification of security
protocols, such as Casper [4] - a program that will take a de-
scription of a security protocol in a simple, abstract language,
and produce a CSP (Communication Sequential Process) de-
scription of the same protocol, suitable for checking using
FDR3 (Failure Divergence Refinement), and NRL protocol
analyzer [5] - a special-purpose verification tool for analysing
security protocols, written in Prolog. Other advanced tools
suitable for verification of security protocols are AVISPA [6]
and AVANTSSAR [7].

DOI: 10.13164/re.2016.0132 APPLICATIONS OF WIRELESS COMMUNICATIONS



RADIOENGINEERING, VOL. 25, NO. 1, APRIL 2016 133

AVISPA (Automated Validation of Internet Security
Protocols and Applications) is a tool funded by the Eu-
ropean Union, which provides a push-button, industrial-
strength technology for the analysis of large-scale Internet
security-sensitive protocols and applications. Protocol mod-
els are written in the High Level Protocol Specification Lan-
guage (HLPSL) [8]. AVISPA utilizes four tools for validation
of security protocols: On-the-fly Model-Checker (OFMC),
Constraint-Logic-based Attack Searcher (CL-AtSe), SAT-
based Model-Checker (SATMC), and Tree Automata based
on Automatic Approximations for the Analysis of Security
Protocols (TA4SP). AVISPA is a popular tool and it was used
for verification of security protocols that use smart cardsmul-
tiple times.

AVANTSSAR (Automated VAlidatioN of Trust and
Security of Service-oriented ARchitectures) is a follow-
up project of AVISPA, introducing new languages for de-
scribing models, the AVANTSSAR Specification Languages
ASLan++ and ASLan. ASLan++ [9] is a high level formal
language similar to the HLPSL, used for specifying security-
sensitive service-oriented architectures, their associated se-
curity policies, and their trust and security properties. The
semantics of ASLan++ is formally defined by translation to
ASLan, the low-level specification language that is the input
language for the back-ends of the AVANTSSAR Platform -
OFMC, CL-AtSe, and SATMC.

Previous work on using formal methods for automated
vulnerability finding in contactless smart card applications
was presented by the authors of this paper in [10]. The
AVISPA tool was used to create model and then SATMC
model checker was used to find attack traces. The usability
of the method was demonstrated on Mifare DESFire, which
is a widespread contactless smart card, and possible attacks
on integrity of encrypted data were found in a simple proto-
col. The attacker would be able to cause sending of different
data to the terminal in the encrypted communication mode of
Mifare DESFire by changing parameters of commands and
the terminal would not have a chance to find it out. Presented
attacks were found by implementing only a couple of Mifare
DESFire commands.

2. Formal Verification of Protocol Im-
plementation

This section provides description of a proposed method
that can be used to create a model of contactless smart card
and terminal and to define states representing attacks. This
model can be then used in model checking to find attack
traces in the protocol. The model takes into account the im-
plementation details of the particular smart card which could
be possibly avoided in the high level protocol verification.
These details are important because wrong use of smart card
commands may introduce vulnerability even if the high level
definition of the protocol is secure. The ASLan++ language

was chosen for protocol modeling, it can be used as input for
multiple back-end model checkers of the AVANTSSAR Plat-
form, which is suitable for purposes of security verification
and is quite advanced.

A model of protocol in ASLan++ is defined by roles
that can be played either by a legitimate party or by an ad-
versary called intruder. We establish two main roles in the
model description to represent the implementation - first role
represents the smart card with its functionality and settings,
second role represents the protocol. The protocol is executed
by the terminal, the smart card only responds to commands
from terminal. The protocol can be therefore identified with
the terminal in our model. Contactless terminal is usually
called Proximity Coupling Device (PCD), so we denote this
role PCD. Contactless smart card is usually called Proximity
Integrated Circuit Card (PICC). The intruder model that is
used is the well-known Dolev-Yao intruder model [11]. All
communication is synchronous with the intruder, the intruder
intercepts messages from the legitimate user and each legit-
imate user receives messages only from the intruder. The
intruder can be therefore identified with the network. PCD
executes the protocol and communicates with PICC via the
intruder, who is aman-in-the-middle. The goal of our vulner-
ability finding method is to find out if the intruder would be
able to perform some attack in this configuration and identify
the attack trace.

The state explosion problem has to be addressed. If we
create precise model of the smart card and terminal function-
ality, the model will be too complex for the model checker,
the number of states will be so high that the model checking
execution time will be unacceptable. The goal of this paper
is to create modeling method that will create models which
can be computed using model checking in acceptable time
and which describe the functionality sufficiently. We cre-
ate simplified models that are weaker than the precise model
would be, so more attacks can be found. Attacks that are
found by the model checker can be tested and in case of
false positive the model can be adjusted to be more precise
and not contain the particular false vulnerability. The result-
ing model will be a trade-off between precision and model
checker execution time.

2.1 Contactless Smart Card Model
The PICC can be seen as a state machine. The PICC

reads commands from PCD, changes its internal state ac-
cording to these commands, and responds back. States of
the machine are determined by the internal state of the PICC
logic and by the value of internal variables of the PICC, such
as content of files and used cryptographic keys. Since the
logic must have finite number of states and the files and keys
can only have finite number of values, the number of states
of the machine will be finite. The transition rules of the au-
tomaton are defined by the set of commands and parameters
of these commands. Although the set of parameters will be
high, it will be finite, so the number of transition rules will



134 M. HENZL, P. HANACEK, A SECURITY FORMAL VERIFICATION METHOD FOR PROTOCOLS USING CRYPTOGRAPHIC . . .

be finite as well. We can therefore model the PICC behavior
using a finite-state automaton, or more specifically a Mealy
machine, whose output is determined by the current state and
the current input. Another state machine concepts can be
used instead, such as UML state machine, which is an en-
hanced realization of the finite-state automatonmathematical
concept with characteristics of Mealy machine. However, in
this paper wewill describe the behavior of PICC using simple
finite-state automatons and Mealy machines.

We can create theMealymachine representing the PICC
by combining an automaton describing the PICC logic and
an automaton representing the state of memory. The for-
mal definition of the PICC Mealy machine will be provided
later in this paper. We can analyse the logic and memory
automatons separately.

The PICC logic automaton should describe behavior of
PICC as a response to the commands sent by PCD. Themem-
ory cards will result in very simple automatons, while smart
cards with more complex logic like Java Cards or BASIC
Cards, which allow execution of arbitrary code, will result in
more complex automatons.

Let Mlogic be a deterministic finite automaton defined
as a quintuple, (Qlogic, Σlogic, σlogic, qlogic0, Flogic), consisting
of:

• a finite set of states Qlogic

• a finite set of input symbols Σlogic

• a transition function σlogic : Qlogic × Σlogic → Qlogic

• a start state qlogic0 ∈ Q

• a set of accept states Flogic = Qlogic (PICC may end in
all states)

The automaton describing the state of PICC memory
has states determined by the content of files, values of cryp-
tographic keys, and values of all other variables that are per-
sistent in the PICC memory and that can be changed during
the life of the card. It can be defined similarly as the Mlogic.
Let A = a1, a2, ...an denote all memory blocks (files, keys,
etc.), n is the number of memory blocks. Let D be a set of all
possible data that can be stored in a block. LetCwrite = A×D
be a set of all write command parameters, which consist of
memory address and data to be written and let Cread = A
be a set of read command parameters consisting of mem-
ory address and let cnoop be a command for no operation.
Let Mmemory be a deterministic finite automaton defined as
a quintuple, (Qmemory, Σmemory, σmemory, qmemory0, Fmemory),
consisting of:

• a finite set of statesQmemory = D1×D2× ...×Dn , where
n is the number of memory blocks

• a finite set of input symbols Σmemory = Cwrite
⋃

Cread
⋃

{ cnoop }

• a transition function σmemory : Qmemory × Σmemory →

Qmemory (commands for writing data Cwrite change state
appropriately, Cread and cnoop do not change state)

• a start state qmemory0 ∈ Q (initial content of memory)

• a set of accept states Fmemory = Qmemory (PICCmay end
in all states)

The automaton describing the PICC is the combination
of the automaton describing the PICC logic and the automa-
ton representing the state of memory.

Let M be a Mealy machine defined by a 6-tuple
(S, S0, Σ,Λ,T,G) consisting of the following:

• a finite set of states S = Qlogic ×Qmemory

• a start state S0 = (qlogic0, qmemory0), which is an element
of S

• a finite set of input symbols Σ ⊆ Σlogic × Σmemory; input
alphabet will contain only meaningful commands:
(write, ci ), where write ∈ Σlogic, ci ∈ Cwrite
(read, ci ), where read ∈ Σlogic, ci ∈ Cread
(ci, cnoop), where ci ∈ Σlogic\ {write, read}, cnoop ∈
Σmemory

• a finite set called the output alphabetΛ = D
⋃

R, where
R is a set of PICC status responses and D will be used
for read command responses

• a transition function T : S × Σ → S mapping pairs of
a state and an input symbol to the corresponding next
state

• an output function G : S × Σ → Λ mapping pairs of
a state and an input symbol to the corresponding output
symbol

In order to reduce the number of states in the model, we
can minimize the number of states in the Mealy machine M .
The number of states can be reduced by reducing the number
of states in Mlogic or Mmemory or both.

To reduce the number of states in the Mlogic automaton,
we can keep only states that perform data transfer (read or
write) and join them with the supporting states that represent
the chain of commands leading to data transfer. We can cre-
ate complex commands that are combination of multiple real
commands. Each such command results in some data trans-
fer. This optimization reduces execution time of the model
checker.

To reduce the number of states in the Mmemory, we have
to reduce the number of memory blocks that can be written
to, and/or reduce the number of possible data that can be
stored. The number of possible write locations on a smart
card can be tremendous, good approach is to have only mem-
ory locations that the application is supposed to write to or
read from and one undesired location for each file that will
be used to simulate writing or reading to bad location that
will corrupt the result. Using this approach the total number



RADIOENGINEERING, VOL. 25, NO. 1, APRIL 2016 135

of states will be reduced dramatically, which will also reduce
the model checker execution time.

Now we have simplified automaton representing the
PICC behavior, so we can create the PICC role in ASLan++.
There are some basic concepts that can be put together to
form a smart card model. These concepts are general and
can be used to create a model of arbitrary smart card with
pre-defined set of commands. We describe modeling of the
following concepts: Authentication, Multiple Applications,
File system, Permissions, Encryption, and Personalization.
The following sections describe the method of creating the
PICC role in ASLan++ for these concepts.
Applications

Multi-application contactless smart cards support multiple
applications even from different vendors on a single card.
The application on cryptographic memory card is not an ex-
ecutable program, it is rather a set of resources dedicated for
application outside the card. The application on the card can
consist of files used to store data and symmetric keys used for
authentication and data encryption. The application outside
the card can securely store data in the card and read them
back later. This can be used for instance for payment appli-
cations or loyalty program applications, where some credit is
stored on the card.

To simulate the application selection in the PICC role,
we can use a variable which is set by the PCD using
a select Application command. The value of selected appli-
cation is then used for file access. If we use the simplified
automaton, the application selection is part of another com-
mand, such as the read or write command.
Authentication

The authentication process between smart card and termi-
nal is usually mutual, both parties must prove possession of
a common secret. The mutual three-pass authentication can
be modeled as only one-pass authentication thanks to the fact
that in the model we can be certain of things that we cannot
be in the real environment. The way of modeling the mutual
authentication process in ASLan++ using only one message
pass is a fresh session key generation performed by one of the
parties (PCD) and sending it encrypted using the authentica-
tion key to the other party (PICC). The other party (PICC)
must check that the session key is fresh and was never used
before, which would not be feasible in real environment. The
fresh session key generation will prevent replay attacks.

After the one-pass authentication PCD and PICC share
a common session key, which could not have been eaves-
dropped by the attacker, because it had been encrypted with
a key not known by the attacker. The PICC knows which
authentication key was used and can grant access to files ac-
cordingly. The authentication needs to be implemented in
both PCD and PICC roles. The PCD always starts the com-
munication and sends commands, so it will also generate the
random session key. In case of the simplified automaton, the
authentication can be part of another message.

Encryption

The high level language ASLan++ already supports model-
ing of communication encryption, but it does not consider
various modes of encryption algorithms. In ASLan++ any
data can be encrypted using symmetric or asymmetric cipher,
and for purposes of modeling these ciphers are considered
unbreakable, hence the intruder cannot learn the plaintext
of the encrypted data unless he knows the corresponding
key. But there are different modes of encryption that must
be taken into account when creating a model even if the ci-
pher algorithm itself is considered unbreakable. Symmetric
ciphers are used in the following modes: Electronic Code-
book (ECB), Cipher Block Chaining (CBC), Cipher Feed-
back (CFB), Output Feedback (OFB), and Counter (CTR).

In ASLan++ each block is encrypted using same key
and there are no initialization vectors, so we can consider it
the ECB mode. From the protocol modeling perspective, the
CBC, CFB, OFB, and CTRmodes do not differ. They use the
initialization vector which is different for each block. We can
model these modes by adding random fresh number to the
data being encrypted, simulating the changing initialization
vector, which will provide resistance to replay attacks.

Files and Permissions

Smart cards provide file system with permissions that can
control access to each file based on the key that was used
for authentication. We can model files and permissions in
ASLan++ either as variables or as facts. Facts are global and
more flexible, so when using facts it is possible to check con-
tent of PICC files even from the PCD role, and it is possible
to add new facts and retract existing facts, which can be used
to simulate flexible file system where files can be created and
deleted. Let us denote the file system fact fileSystem and
declare it with four parameters for data address, authentica-
tion keys to get read and write permission, and data itself in
ASLAN++ in the following way:
fileSystem(text, symmetric_key, symmetric_key,
message): fact;

The first parameter of the fact represents the address of
the file and is of type text, which is the most simple type in
ASLan++. The second parameter represents authentication
key that must be used to obtain read permission to this file
and is of type symmetric_key, which is an ASLan++ type
for symmetric keys. Analogously, the third parameter is the
authentication key for write permission. The fourth param-
eter represents data stored in the file and is of type message,
which is a compound type that can store any combination of
data of any other type.

Although address has a simple type, it represents a num-
ber of values that constitute the address on a real card, such
as selected application number, file ID, offset, and length of
data. We decided to have a separate fact for each data block
that can be addressed instead of one fact per file, which results
in more than one fact per file. Blocks of different lengths and
offsets may overlap, so not all blocks will contain meaning-



136 M. HENZL, P. HANACEK, A SECURITY FORMAL VERIFICATION METHOD FOR PROTOCOLS USING CRYPTOGRAPHIC . . .

ful data. Such blocks will contain the message corrupted to
easily recognize unwanted data.

Long files will contain many fact definitions, but for
modeling purposes we can reduce the number of possible
file addresses by defining only the desired addresses and
one invalid address instead of all possible invalid addresses.
Reading from this invalid address will return corrupted and
writing to this location will save corrupted.

Smart Card Personalization

For using in a protocol, such as payment protocol or loyalty
program, the smart card must be personalized. Personaliza-
tion is a process when the smart card is initially populated
with data of the intended smart card user, such as name or
account number. Consequently, each smart card will con-
tain different data in files. This process should be taken
into consideration when modeling the smart card protocol.
The personalization process does not have to be modeled,
since it usually takes place in a trusted environment. The
smart card can be used in the modeled protocol only after the
personalization, so we can create the model of the already
personalized card. To create the model of a personalized
smart card, all files must be created and populated as they
would be during the personalization process.

2.2 Modeling Application Logic
During the development, the developer can use the se-

quence diagram of the protocol or the flow diagram of the
application as the basis for the PCD model. The PCD role
should contain the logic (or simplified logic) of the applica-
tion. The intruder can also play the PCD role, but he does
not have to follow the logic in the role definition, he can
perform arbitrary actions. The role definition applies only to
the legitimate entity.

The previously described optimization of the PICC role
will reduce the number of commands by making them more
complex. So for example the three-pass authentication fol-
lowed by the selectApplication command and then by the
read command will result in only one command combining
them together. This fact must be taken into account when
translating the model checker results into the applicable at-
tack paths.

2.3 Attack Definition
The attack definition must be provided for the model

checker to find any attack traces. The attack is defined as
a condition that should never happen in normal protocol run
and that means that the intruder learned something that he
should not have learned (confidentiality), or that he changed
something that he should not have changed (authentication,
integrity). These conditions are defined in the ASLan++
model and then translated to states that mean an attack. If the
model checker finds a path to one of the attack states, a pos-
sible attack is reported. The attack trace should be evaluated

and in case of false positive, refinements should be made to
the model. The model checker should be run again and this
process should be repeated until real attack is found or the
model checker concludes that there is no attack.

Although there are means for defining security goals
of confidentiality and authentication in ASLan++, these do
not fit well for the purposes of our attack definitions. We
will use assertions that will always hold unless an attack is
under way. We can easily set goals that the protocol should
achieve, covering all desired security goals, by defining as-
sertions in PCD role that can contain information from PICC
which would not be available in real environment, such as
content of files (because files are modeled as global facts).
The following example shows an assertion that can be used
at some point in the PCD or PICC role to check content of
some file on the card:

assert ok:
fileSystem(addressBalance,key1,key1,newBalance)

We can interpret this assertion as follows: if the file at
address addressBalance contains the value newBalance, it is
ok, otherwise the model checker will stop and an attack will
be reported.

3. Sample Protocol Implementation
To demonstrate how the model creation process works

and how the security attributes of a protocol can be verified,
an example is provided in this section. The example intro-
duces very simple payment system that uses Mifare DESFire
like contactless smart card to store the balance. The model of
communication protocol between the terminal and the card
will be created and used as an input to the model checker.

Let us suppose that we need to develop a new payment
protocol which uses contactless smart cards. The card will
be issued to the cardholder personalized with his name and
the initial balance. The cardholder will be able to pay for
goods with this card. After he pays using the card, the price
will be subtracted from the current balance. The balance
can be increased by the authorized entity. From these basic
requirements we can decide how the payment system should
be implemented and create a sequence or flow diagram of the
application. The developer should first create the sequence
or flow diagram of the protocol and create and optimize the
automaton representing the smart card, then he can create
the PCD and PICC models, define conditions that represent
attacks and verify using model checking. Finally, he can
implement the protocol in the target programming language.

Let us create an intuitive protocol that will ful-
fil the stated requirements. The cardholder’s name and
balance will be stored on the contactless smart card in
files. The card model which is used is inspired by
the Mifare DESFire MF3ICD40 contactless smart card.
When the cardholder puts the contactless smart card
to the proximity of the contactless smart card reader



RADIOENGINEERING, VOL. 25, NO. 1, APRIL 2016 137

PCD

PCD

PICC

PICC

Generate fresh session key S

read(addressName, auth(key1, S))

{name}S

read(addressBalance, auth(key1, S))

{oldBalance}S

newBalance = oldBalance - price

write(addressBalance, auth(key1, S), {newBalance}S)

status

read(addressBalance, auth(key1, S))

{newBalance}S

Check written balance

Fig. 1. Payment protocol with reduced set of commands.

at the point of sale (POS) terminal, the anti-collision proce-
dure is performed and the payment protocol can be executed.
The mutual authentication should be performed at the begin-
ning of the transaction and the data that are then transmitted
should be encrypted in both directions. The terminal first
reads the cardholder’s name and then the balance. If the
balance is higher than the price of the goods, the price is
subtracted from the balance by the POS terminal and the re-
sulting balance is written to the smart card. To check the
written value, the balance should be once more read from the
card and verified. If the read balance is correct, the protocol
ends and the cardholder can take the goods.

Figure 1 shows how the PICC role implementation of
the protocol may look like when the number of PICC com-
mands is already reduced to read and write in order to re-
duce model checking execution time. First two parameters
of both commands are same. The first parameter is in both
cases the address of data to be read or written. Mifare DES-
Fire MF3ICD40 uses application number, file ID, offset of
data in file, and length to address particular data block, so
the address will represent the combination of these values.
For modeling purposes, each of these combinations will be
named according to the variable it will store. So for example
the cardholder’s name will be stored in application number
1, in file with file ID 1, with offset 0 and length 20; this
particular data block address will be named addressName to
indicate that this address is used to store the name. Other
addresses will be named in the same manner. Addresses not
intended to store data will also have some name.

The second parameter auth(key1, S) is an authentica-
tion token. It can be seen as session key S encrypted using
private key key1 (key1 is shared between legitimate entities
and not known by the intruder). The PICC checks whether
S is the current session key (no new authentication) or S
is a fresh session key (authentication using key1). Every
old session key (evoked by replay attack) is rejected by the
PICC. The third parameter in the write command is the data
to be written encrypted using the session key from second

PCD

PCD

Intruder

Intruder

PICC

PICC

read(addressName, auth(key1, S))

{name}S

read(addressBalance, auth(key1,S))

read(addressName, auth(key1,S))

{name}S

PCD expects oldBalance

Intruder changes address

Generate fresh session key S

Fig. 2. Attack based on forged address.

parameter. The response of the read command is the data
encrypted using the session key from second parameter, the
response of the write command is only a status message.
Symmetric encryption of oldBalance using key S is denoted
{oldBalance}S .

The attack definition consists of integrity and confiden-
tiality checks implemented using assert. There is one assert
at the end of the PCD role stating that the balance on the card
is equal to the newBalance value. In other words, when
the protocol is executed successfully and the PCD checks
the written balance and comes to a point where it believes
that the balance on the card is set to newBalance, the actual
value on the card is really newBalance. This assert can be
realized thanks to modeling of files as facts, which are visi-
ble globally. Other asserts can be used to check intermediate
states of the protocol.

The ASLan++ model was translated to the ASLan for-
mat and used as an input for the Cl-Atse model checker. Sev-
eral model checker runs and protocol adjustments revealed
some possible attacks, which are discussed in the following
sections.

3.1 Sample Verification 1
The first attack that was found was caused by the fact

that the address of data blocks on the card is not crypto-
graphically protected. The attacker changes the data address,
which consists of the application number, file ID, length, and
offset. This results in the PICC returning wrong data block or
writing into wrong address. These attacks were described in
[10]. Figure 2 shows the output of the model checker trans-
lated into the sequence diagram. Intruder’s actions causing
an attack are shown in bold in figures.

A countermeasure to this attack can be some integrity
check on the application layer of the payment system. For
purposes of integrity checking CRC or cryptographic signa-
ture can be used. CRC would be enough, because all data
transmitted between PCD and PICC are encrypted, so the
intruder cannot change data nor CRC, which is part of the
encrypted data, without corrupting whole data block. If there
is for example only one file containing the CRC protected



138 M. HENZL, P. HANACEK, A SECURITY FORMAL VERIFICATION METHOD FOR PROTOCOLS USING CRYPTOGRAPHIC . . .

PCD

PCD

Intruder

Intruder

PICC

PICC

Generate fresh session key S

read(addressName, auth(key1, S))

{name}S

read(addressBalance, auth(key1, S))

{oldBalance}S

newBalance = oldBalance - price

write(addressBalance, auth(key1,S), {newBalance}S)

Intruder discards command

read(addressBalance, auth(key1,S))

{newBalance}S

addressBalance contains oldBalance

and remembers {newBalance}Sstatus

Fig. 3. Attack based on discarding write command.

data, the PCDcan easily distinguish this valid data block from
another data block. So let us add such integrity checking to
the protocol model in the PCD role which will help PCD to
distinguish valid balance from another corrupted data. Fig-
ure 3 shows an attack on this improvement that was found and
that is based on discarding write command by the intruder.

A countermeasure to this attack can be re-authentication
after data writing, which means that data that are read after
re-authentication are encrypted using new session key, so the
intruder cannot replay the previously eavesdropped encrypted
balance. Figure 4 shows an attack on this improvement that
was found and that is based on changing the address in the
write command to another valid file. The newBalance will
be saved to another file and then read from this file after re-
authentication for checking. The check will pass; however,
the file storing the balance will contain oldBalance.

A countermeasure to this attack can be allowing writing
to only one file and restricting writing to all other files.

The cause of all these attacks is the weakness of Mifare
DESFire contactless smart card - not encrypting or signing
commands, application number, file ID, length, and offset.

Note that the size of files and data being transferred be-
tween PCD and PICC is ignored in the model, so the model
checker will sometimes find an attack which is not feasible
in real environment due to the size limitations. These false
positives can be avoided by also including size of files and
data in the model.

3.2 Sample Verification 2
The second example of attack finding using formal

verification methods described in this section is based on
an improved protocol from the previous example using an
improved contactless smart card. The contactless smart
card used is a hypothetical card similar to Mifare DESFire

PCD

PCD

Intruder

Intruder

PICC

PICC

Generate fresh session key S

read(addressName, auth(key1, S))

{name}S

read(addressBalance, auth(key1, S))

{oldBalance}S

newBalance = oldBalance - price

write(addressBalance, auth(key1,S), {newBalance}S)

Intruder changes address

write(addressName, auth(key1,S), {newBalance}S)

PCD re-authenticates

New session key T

read(addressBalance, auth(key1,T))

Intruder changes address

read(addressName, auth(key1,T))

{newBalance}T

addressBalance contains oldBalance

Fig. 4. Attack based on writing to another file.

with the difference that everything in the communication is
encrypted (after successful authentication), not only data.
This improvement will prevent attacks from the previous ex-
ample. Another small change is that anyone can change the
name on the smart card; this field is only informative, so
there is no need to protect it. This will be modeled using
key2, which will be known to the intruder and which will
be required for granting write permission. The balance field
will be protected in the same way as in the previous example,
using key1, which is not known by the intruder.

The model checker found an attack that we call com-
mand injection attack. This attack is more sophisticated
and complicated than the previous attacks. An attacker au-
thenticates using the publicly known key2 and writes the
forged command to the address addressName. Then, dur-
ing the protocol run initiated by the legitimate PCD, when
the PCD reads the name field from addressName, an at-
tacker (man-in-the-middle) eavesdrops the forged command
encrypted using current session key (not known by the at-
tacker). He can then send the encrypted forged command
to the PICC and the PICC cannot find out that it was not
sent by the legitimate PCD, because it is encrypted using the
current session key that was established during the authen-
tication using key1, which is known only to the legitimate
PCD. Despite the fact that commands and their parameters
are encrypted, the intruder can execute arbitrary command,
he only has to prepare it in advance. Figure 5 shows the com-
mand injection attack found by the model checker translated
to human readable form with the imaginary command called
maliciousCommand, that is here to emphasize the fact that
it can be arbitrary malicious command.



RADIOENGINEERING, VOL. 25, NO. 1, APRIL 2016 139

PCD

PCD

Intruder

Intruder

PICC

PICC

PCD not in the proximity of PICC

new session key S

{write(addressName, auth(key2,S), maliciousCommand)}S

PCD in the proximity of PICC

new session key T

{read(addressName, auth(key1,T))}T

{maliciousCommand}T

Intruder executes malicious command

{maliciousCommand}T

Fig. 5. Command injection attack.

The countermeasure to this attack can be any replay
attack protection which will ensure the freshness of the mes-
sages. Any encryption mode different from the default ECB
mode would prevent this attack.

4. Conclusion
We have presented a method that can be used for secu-

rity verification of smart card protocol implementation. The
focus is on contactless smart cards, because they are simpler
than smart cards with contact interface, often only mem-
ory cards providing encrypted communication. This method
was demonstrated on one of the most widespread contactless
smart cards, the Mifare DESFire. However, the method can
be used on other smart cards as well, even on more complex
cards with operating system. Two sample verifications were
shown to demonstrate the usability of the method. By using
this method, the developer can iteratively fix the vulnerabili-
ties found by the model checker and secure the application.

Acknowledgments
The research has been supported by the

EU/Czech IT4Innovations Centre of Excellence project
CZ.1.05/1.1.00/02.0070 and the internal BUT project FIT-S-
14-2486.

References

[1] NXP SEMICONDUCTORS. Mifare DESFire MF3ICD40
ContactlessMulti-Application IC (Short FormSpecification). [online]

Available at: http://www.nxp.com/documents/short_data_sheet/075
532.pdf

[2] ORACLE. Java Card Technology. [Online] Cited 2015-08-15. Avail-
able at: http://www.oracle.com/technetwork/java/embedded/javacard

[3] ZEIT CONTROL. Basic Card. [Online] Cited 2015-08-15. Available
at: http://www.basiccard.com/

[4] LOWE, G. Casper: A compiler for the analysis of security pro-
tocols. Journal of Computer Security, 1998, vol. 6, p. 53–84.
ISSN: 0926-227X

[5] MEADOWS, C. The NRL protocol analyzer: An overview. The
Journal of Logic Programming, 1996, vol. 26, no. 2, p. 113–131.
ISSN: 0743-1066. DOI: 10.1016/0743-1066(95)00095-X

[6] ARMANDO, A., BASIN, D., BOICHUT, Y., et al. The AVISPA tool
for the automated validation of internet security protocols and ap-
plications. In Proceedings of the 17th international conference on
Computer Aided Verification (CAV’05), Springer-Verlag, Berlin, Hei-
delberg, 2005, p. 281–285. DOI: 10.1007/11513988_27

[7] AVANTSSAR. Automated Validation of Trust and Security
of Service-Oriented Architectures. [online] Cited 2015-08-15.
Available at: http://www.avantssar.eu/

[8] CHEVALIER, Y., COMPAGNA, L., CUELLAR, J., et al. A high
level protocol specification language for industrial security-sensitive
protocols. In Proceedings of the Workshops on Cooperative Support
for Distributed Software Engineering Processes (CSSE’04), Austrian
Computer Society, 2004, p. 193–205.

[9] VON OHEIMB, D., MOEDERSHEIM, S. A. ASLan++ –
A formal security specification language for distributed systems.
In Formal Methods for Components and Objects: 9th Inter-
national Symposium, Graz, Austria, Springer, 2010, p. 1–22.
DOI: 10.1007/978-3-642-25271-6

[10] HENZL, M., HANACEK, P. Modeling of contactless smart card
protocols and automated vulnerability finding. In International
Symposium on Biometrics and Security Technologies (ISBAST)
2013. Chengdu, IEEE Computer Society, 2013, p. 141–148.
DOI: 10.1109/ISBAST.2013.26

[11] DOLEV, D., YAO, A. C. On the security of public key protocols.
Technical report, Stanford, CA, USA, 1981.

About the Authors . . .

Martin HENZL received his M.Sc. at Masaryk University
and is currently a Ph.D. student at Faculty of Information
Technology, Brno University of Technology. His research
interests are in information technology security, especially in
smart cards and applied cryptography.

Petr HANACEK is an associate professor at the Faculty of
Information Technology at Brno University of Technology.
He concerns with information system security, risk analysis,
applied cryptography, and electronic payment systems for
more than ten years.


