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Abstract. This article deals with modeling of astronomi-
cal objects, which is one of the most fundamental topics in
astronomical science. Introduction part is focused on prob-
lem description and used methods. Point Spread Function
Modeling part deals with description of basic models used
in astronomical photometry and further on introduction of
more sophisticated models such as combinations of interfer-
ence, turbulence, focusing, etc. This paper also contains
a way of objective function definition based on the knowledge
of Poisson distributed noise, which is included in astronom-
ical data. The proposed methods are further applied to real
astronomical data.
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1. Introduction
Astronomy is a natural science that deals with the study

of objects such as planets, moons, stars, etc. Modeling of
the mentioned objects is one of the most fundamental topics
in astronomical science and the branch dealing with object
identification is called astronomical photometry. Under the
term modeling can we understand finding of exact infor-
mation about objects parameters such like its coordinates,
magnitude, etc.

Previously mentioned objects are far away from the
Earth and thus they appear as a bright point on the night sky.
When an astronomical image, Fig. 1, is acquired, the situa-
tion is quite different and the bright point has changed and
as a result the image will appear as smeared pattern. This is
caused by passing of original information through the imag-
ing system [1, 2] used for an image acquisition. The result
shape of captured objects is given by the impulse response

of this system, also called Point Spread Function (PSF). PSF
of applied imaging system is influenced by many factors
and is composed as a convolution of particular PSFs of sys-
tem’s components. The knowledge or a good estimate of the
resulting system’s PSF plays a key role in astronomical pho-
tometry [3, 4], when we want to know accurate information
about the observed objects.

Fig. 1. Analyzed astronomical image.

Astronomical images can be expressed in mathematical
way as follows

x(k, l) = f(k, l) + n(k, l) (1)

where f(k, l) are the data and n(k, l) represents noise called
the dark current. This type of noise is caused by thermally
generated charge, due to the long exposure times. Dark cur-
rent can be simply removed by a dark frame, which maps
mentioned thermally generated charge in CCD sensor. It
can be considered that this type of noise is Poisson dis-
tributed [5, 6, 7] in the following way

n(k, l) ∼ Poisson(λ(k, l)). (2)
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This article is intended to present commonly used PSF
models such as Gauss and Moffat which are popular in PSF
modelling are easy to evaluate and provide good approxi-
mation of analyzed objects [7, 8, 9, 10]. Another physical
phenomena known as interference, focusing and atmospheric
turbulence are rarely used [8, 11, 12, 13]. The main aim of
this article is to compare commonly usedmethods with PSF’s
based on their combinations to show their advantage in PSF
modelling.

Optimization of described PSF models is based on au-
thors previous work dealing with detection [5] and identi-
fication [14] of analyzed objects based on analysis of dark
and light frames using hypotheses testing. One of the key
roles plays also the way of the objective function estima-
tion. Objective functions determination based on hypothesis
of Poisson noise is described in Section 3 as well as brief
introduction of Harmony Search algorithm which was used
for purpose of objective function optimization.

2. Point Spread Function Modeling
Astronomical photometry based on the two-

dimensional fitting uses the hypothesis that the profiles
of astronomical point sources which are imaged on two-
dimensional arrays are commonly referred to as PSF [2, 15],

x(x, y) = object(x, y) ∗ PSF(x, y) (3)

where ∗ is a convolution operator and x, object, PSF are
2D functions, which represent the result image, the original
object and the system response, respectively. PSFs can be
modeled by a number of simple or more complex mathe-
matical functions that are derived from deeper knowledge of
studied problem.

2.1 Basic PSF Models
Statistical models based on different PSFs are com-

monly used for objects localization in astronomical science.
There are usually applied two simple models, i.e., the first
one is two-dimensional Gaussian function [3]

fG(k, l, p) = A · exp
(
−

(k − x0)2 + (l − y0)2

2σ2

)
(4)

where A is amplitude, x0, y0 are shifts in the x − y plane,
σ > 0 is its standard deviation and k, l are pixel indices as
coordinates.

The secondmodel is statisticalmodel described byMof-
fat [3, 16], which is a generalization of Cauchy distribution

fM(k, l, p) =
A(

1 + (k−x0)2+(l−y0)2

σ2

)β (5)

where β is a shape parameter of PDF satisfying 0 ≤ β ≤ 50.

As mentioned above, these two presented models are
commonly used in astronomical photometry using (3), but

do not comprise some important facts. If we consider that
the light passes through the optical system before incidence
onto the image sensor, than it is possible to make an approx-
imation of the result system PSF by diffraction of circular
aperture [17]

I (θ) = I0 ·
2J1(ka sin θ)

ka sin θ
(6)

where I0 is the maximum intensity of the pattern, J1 is Bessel
function of the first order, k = 2π/λ, λ is the wavenumber,
a is the radius of the aperture and θ is the angle of observa-
tion.

From physics, it is known that the diffraction phe-
nomenon described by (6) is accompanied by the interference
phenomenon [17] and thus we can call this relation as inter-
ference model, which is in the frequency domain expressed
as

G(ω) =
{

1 if ω ≤ Ω,
0 otherwise (7)

where Ω > 0 is frequency and therefore adequate PSF is

g(r) = H{G(ω)} = 2π
∞∫

0

ωG(ω)J0(ωr)dω =
2J1(Ωr)
Ωr

(8)
whereH is Hankel transform [18].

Another important factor that influences resulting image
is passing of the information through the atmospheric condi-
tions. Thus, important phenomenon that influences result im-
age is atmospheric turbulence. The interference phenomenon
occurs in any optical system with constrained view. The PSF
of interference is the well known Airy disc [19]. The main
question is whether the interference dominates the other pro-
cesses, only affects them or is dominated by them. According
to [19] we can express frequency spectrum of the turbulence
as

S(ω) = σ2 2ψ
π

1
1 + (ψω)2 (9)

where ψ is the scale of the turbulence and σ > 0 represents
the standard deviation of the velocity disturbance.

The role of atmospheric turbulence increases mainly in
the case of wrong weather and observation conditions.

The last phenomena described in this article and that
can influence result PSF is focusing [20, 21], which can be
expressed as follows

f(r) =
1
πρ2 · δ(r, ρ) (10)

where ρ > 0 is focusing radius and

δ(r, ρ) =
{

1 if r ≤ ρ,
0 otherwise, (11)

F(ω) = H{f(r)} = 2π
∫ ∞

0
rf(r)J0(ωr)dr =

2J1(ωρ)
ωρ

.

(12)
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The focusing can be easily eliminated by setting
ρ → 0+ in the case of perfect focusing of real telescope.
But the importance of non-perfect focusing is in its combina-
tion with interference in real telescope as will be explained
in the next section.

2.2 Combined Models
In this article, there are compared previously mentioned

models, i.e., Gauss, Moffat, Interference, Turbulence and Fo-
cusing with more sophisticated models given by their con-
volutions, excluding Moffat. Thus, we can find 7 possible
combinations we can use. Possible combinations are listed
below and always mentioned in frequency domain with re-
spect to the convolution theorem, as multiplying of Fourier
images.

Those are Interference in combination with Turbulence
(IT)

H(ω) = G(ω) · S(ω) (13)

which is model of constrained observation in the case of
wrong atmospheric condition. Fortunately, the effect of tur-
bulence can eliminate Airy disc around every point light
source.

Interference plus Focusing (IF)

H(ω) = G(ω) · F(ω) (14)

which is model of constrained observation in the case
of wrong focusing. But this non–perfect focusing is very
pragmatic way of Airy pattern suppression. Therefore, the
IFmodel is the favorite candidate tomodeling of images from
real but unknown telescopes.

Gauss model in combination with Interference (GI)

H(ω) = FG(ω) · G(ω) (15)

where FG is Fourier transform of (4) and can be expressed as

FG(ω) = exp
(
−
σ2ω2

2

)
. (16)

This model is similar to IF but less pragmatic and used only
for completeness.

Next models are the other useful combinations of basic
ones. Those are Gauss with turbulence (GT) as

H(ω) = FG(ω) · S(ω), (17)

Focusing with Turbulence (FT)

H(ω) = F(ω) · S(ω), (18)

Gauss, Interference and Focusing (GIF)

H(ω) = FG(ω) · F(ω) · G(ω), (19)

and finally combination of Interference, Focusing and Tur-
bulence (IFT)

H(ω) = S(ω) · F(ω) · G(ω). (20)

This approach was used due to the reason that ana-
lytical convolution of S(ω) to s(r) is impossible, thus the
data analyzed by combined models are processed only in the
frequency domain, subsequently transformed into spatial do-
main and properly modified for amplitude A, x0 and y0 shifts
optimization.

Parameters of particular single models and their lower
and upper bounds can be found it Tabs. 1 and 2, respectively.

PSF model parameters
Gauss σ
Moffat σ, β
Interference Ω

Focusing ρ
Turbulence ψ, σ

Tab. 1. Parameters of basic PSFs.

model bound p1 p2 p3 p4 p5 p6

Gauss LB 1 1 1 1
UB 2 max(x(k, l) − d(k, l)) M N max(M, N )

Moffat LB 1 1 1 1 0.01
UB 2 max(x(k, l) − d(k, l)) M N max(M, N ) 50

Interference LB 1 1 1 0.01 0.0001 0.0001
UB 2 max(x(k, l) − d(k, l)) M N 10 10 10

Focusing LB 1 1 1 0.01 0.01
UB 2 max(x(k, l) − d(k, l)) M N 10 10

Turbulence LB 1 1 1 0.01 0.01
UB 2 max(x(k, l) − d(k, l)) M N 10 10

Tab. 2. Lower and upper bounds of single models parameters.

3. Objective Function

3.1 Objective Function Definition
Optimization of models introduced in Sec. 2.1 is based

on minimization of objective function. Its inference can be
performed using Least Square Method (LSM), but as men-
tioned in [5], data acquired by astronomical CCD camera are
Poisson distributed. Thus it is upon the place to use different
approach based on Maximum Likelihood Estimate (MLE),
see [14].

In statistics, MLE is a method of estimating the param-
eters of a statistical model (4). When it is applied to a data
set and given statistical model, MLE provides estimates for
the model’s parameters. For a fixed set of data and certain
statistical model, it produces a distribution that gives to the
measured data the greatest probability, i.e., estimated param-
eters maximize the likelihood function [22, 23].

Let us now consider astronomical image defined by (1),
noise model (2) and average dark frame
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d(k, l) =
1
m

m∑
i=1

ni (k, l). (21)

Model image with astronomical objects described by
PSF model can be derived from (1) by replacing expression
f(k, l) in the following way

x(k, l) = f(k, l, p) + n(k, l) (22)

where (k, l) ∈ DM×N , M and N are dimensions of the rect-
angle region of interest D and f(k, l, p) is PSF model of
astronomical object with vector of parameters p.

When it is supposed that the data x are Poisson dis-
tributed with number of occurrences λ

ϕ(x, λ) =
λx

x!
e−λ, (23)

then it is possible to write that

ln ϕ = −λ + x ln λ − ln x!. (24)

When the MLE is used to (24) and x is replaced by (22), then
the opposite likelihood function can be written as

φ = − lnL =
M∑
k=1

N∑
l=1
− ln ϕ

(
x(k, l), d(k, l) + · · ·

· · · + f(k, l, p)
)
+→ min

p
(25)

where x(k, l) is the analyzed light image, d(k, l) presents
appropriate average dark frame and f(k, l, p) is the diffusion
model, whereof parameters are estimated.

Combination of (24) and (25) leads to the final form of
function φ

φ = c +
M∑
k=1

N∑
l=1

(
− x(k, l) ln

(
d(k, l) + f(k, l, p)

)
+ · · ·

· · · + d(k, l) + f(k, l, p)
)
(26)

where c is some constant. The constant c is only data de-
pending and can be set to satisfy φ ≥ 0 and obtain

φ =

M∑
k=1

N∑
l=1

(
− x(k, l) ln

(
d(k, l) + f(k, l, p)

)
+ · · ·

· · · + f(k, l, p) + x(k, l) ln x(k, l) − x(k, l)
)
→ min

p
. (27)

For the purpose of PSF modeling, astronomical objects
were classified into three classes based on the bit depth of
analyzed image. Processed data were acquired in the 16 bit
depth, thus the maximum intensity is 65,535. Intervals of
intensity values were uniformly divided into three classes,
which can be written as follows:

• small object-maximum intensity in the analyzed area is
less than 21,845,
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Fig. 2. Analyzed objects: (a) Small, (b) Medium, (c) Large.

• medium object-maximum intensity in the analyzed area
is higher than 21,845 and less than 43,690,

• large object-maximum intensity in the analyzed area
exceeds 43,690 and the top is given by the system reso-
lution properties, thus 65,535.

Chosen objects that were used for an application of
proposed methods can be seen in Fig. 2.

3.2 Objective Function Optimization
For the purpose of objective function optimization, Har-

mony Search algorithm was used due to its good results re-
lated to estimated quality and variability of results based on
authors’ previous research [24].

Harmony Search (HS) [25, 26] is inspired by musician
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improvisation process. It imitates the natural phenomenon
of musicians’ behavior when they cooperate the pitches of
their instruments together to achieve a fantastic harmony as
measured by aesthetic standards. This musicians’ prolonged
and intense process led them to the perfect state. It is a very
successful metaheuristic algorithm, which can explore the
search space of a given data in parallel optimization environ-
ment, where each solution (harmony) vector is generated by
intelligently exploring and exploiting a search space.

4. Results
Tabs. 3- 8 summarize results of single and combined

models optimization, where there are mentioned minimum,
maximum, average values of φ values and standard devia-
tion. There are also mentioned parameters of best object
model estimate gained by HS algorithm used in this article.

Figs. 3 and 5 shows graphical representation of φmin for
small, medium, and large objects. The best three basic mod-

els are highlighted in Tabs. 3 – 5. As can be observed, tradi-
tional Gaussian andMoffat PSFmodels were over-performed
by interference model in all cases. But in the case of large
object, the focusing model is better than the interference one.
As seen in the case of basic models, the phenomenon of inter-
ference in the telescope dominated. The best three combined
models are highlighted in Tabs. 6 – 8. The bests of them
were better in PSF fitting than the best individual filters in
all cases, which is the main argument for the mixed model
application. The best models were GI, IF, and GIF but in var-
ious order which depended on the object size. Therefore, the
combination of the interference with Gaussian model and/or
focusing offered the best results.

The other characteristics (φmax, φavg, φstd) included in
Tabs. 3 – 8 are rather useful for the evaluation of optimization
process complexity and reliability than for optimum model
selection. From φstd point of view, the models consisting of
Gaussian, Moffat or Turbulence sub-model are easy to fit via
several runs of Harmony search. The evaluation of φmax, φavg
comes to the same result.

method function values optimum parameters
φmin φmax φaverage φstd p1 p2 p3 p4 p5

G 6.18 × 103 2.14 × 104 9.90 × 103 3.01 × 103 1.79 × 104 11.47 14.46 1.39 N/A
M 6.14 × 103 1.55 × 104 6.95 × 103 1.40 × 103 1.83 × 104 11.47 14.46 4.66 12.41
I 6.07 × 103 2.60 × 104 9.07 × 103 6.34 × 103 1.90 × 104 14.46 11.41 1.78 N/A
F 6.80 × 103 2.44 × 104 8.84 × 103 4.28 × 103 2.12 × 104 14.44 11.42 1.34 N/A
T 1.06 × 104 1.06 × 104 1.06 × 104 4.47 × 10−2 2.37 × 104 14.43 11.41 2.07 × 10−5 7.59 × 10−5

Tab. 3. Application of single models to small object.

method function values optimum parameters
φmin φmax φaverage φstd p1 p2 p3 p4 p5

G 1.10 × 104 1.10 × 104 1.10 × 104 0.69 2.75 × 104 26.94 33.44 1.69 N/A
M 1.11 × 104 1.11 × 104 1.11 × 104 5.90 2.79 × 104 26.94 33.44 10.00 36.39
I 1.01 × 104 1.08 × 104 1.01 × 104 1.03 × 102 2.34 × 104 33.44 26.97 1.31 N/A
F 1.29 × 104 6.46 × 104 2.18 × 104 1.70 × 104 2.10 × 104 33.45 26.92 1.96 N/A
T 2.34 × 104 2.34 × 104 2.34 × 104 3.08 3.58 × 104 33.47 26.87 0.26 1.00

Tab. 4. Application of single models to medium object.

method function values optimum parameters
φmin φmax φaverage φstd p1 p2 p3 p4 p5

G 5.63 × 104 5.63 × 104 5.63 × 104 8.81 6.79 × 104 31.71 23.52 1.98 N/A
M 5.73 × 104 5.83 × 104 5.75 × 104 1.79 × 102 6.95 × 104 31.71 23.51 10.00 26.79
I 5.07 × 104 5.36 × 104 5.08 × 104 3.77 × 102 6.79 × 104 23.55 31.72 1.18 N/A
F 4.05 × 104 1.38 × 105 4.62 × 104 1.91 × 104 6.79 × 104 23.55 31.73 2.21 N/A
T 1.40 × 105 1.40 × 105 1.40 × 105 4.11 6.79 × 104 22.79 31.59 0.42 1.00

Tab. 5. Application of single models to large object.

method function values optimum parameters
φmin φmax φaverage φstd p1 p2 p3 p4 p5 p6 p7

IF 5.87 × 103 3.61 × 104 1.31 × 104 9.41 × 103 2.04 × 104 14.53 11.47 2.02 1.10 N/A N/A
IT 9.77 × 103 3.41 × 104 1.29 × 104 4.85 × 103 1.71 × 104 14.49 11.43 2.51 0.73 1.19 × 10−3 N/A
GI 5.82 × 103 2.79 × 104 7.16 × 103 4.54 × 103 2.05 × 104 14.45 11.42 0.55 1.98 N/A N/A
GT 1.06 × 104 1.06 × 104 1.06 × 104 0.53 2.32 × 104 14.43 11.41 0.10 1.37 × 10−4 3.53 × 10−3 N/A
FT 1.06 × 104 1.08 × 104 1.06 × 104 30.43 2.36 × 104 14.43 11.41 0.10 2.16 × 10−6 0.23 N/A
GIF 5.88 × 103 2.85 × 104 7.88 × 103 5.14 × 103 2.19 × 104 14.45 11.41 0.61 2.15 0.32 N/A
IFT 9.72 × 103 1.04 × 104 9.77 × 103 97.97 1.65 × 104 14.40 11.36 2.45 0.10 7.96 × 10−5 7.94 × 10−2

Tab. 6. Application of mixed models to small object.

method function values optimum parameters
φmin φmax φaverage φstd p1 p2 p3 p4 p5 p6 p7

IF 9.23 × 103 6.84 × 104 1.57 × 104 1.59 × 104 2.68 × 104 33.44 26.98 1.69 1.83 N/A N/A
IT 1.32 × 104 1.44 × 104 1.33 × 104 1.72 × 102 2.45 × 104 33.45 27.00 1.95 2.16 × 10−6 0.62 N/A
GI 8.89 × 103 1.02 × 104 9.06 × 103 1.65 × 102 2.70 × 104 33.44 26.98 1.02 1.69 N/A N/A
GT 2.27 × 104 2.28 × 104 2.28 × 104 15.90 3.12 × 104 33.47 26.94 0.45 7.16 × 10−3 0.16 N/A
FT 2.22 × 104 2.25 × 104 2.23 × 104 84.90 2.74 × 104 33.46 27.00 1.00 6.95 × 10−5 6.46 × 10−2 N/A
GIF 9.02 × 103 1.34 × 104 9.31 × 103 6.47 × 102 2.69 × 104 33.42 27.00 0.76 1.70 1.30 N/A
IFT 1.33 × 104 1.36 × 104 1.33 × 104 41.28 2.45 × 104 33.45 27.00 1.95 0.10 1.36 × 10−2 1.15 × 10−3

Tab. 7. Application of mixed models to medium object.
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method function values optimum parameters
φmin φmax φaverage φstd p1 p2 p3 p4 p5 p6 p7

IF 3.87 × 104 1.69 × 105 4.67 × 104 2.69 × 104 6.07 × 104 23.55 31.71 2.55 2.19 N/A N/A
IT 9.97 × 104 1.03 × 105 9.98 × 104 4.51 × 102 5.08 × 104 23.46 31.86 1.53 3.89 × 10−6 6.64 × 10−2 N/A
GI 4.78 × 104 4.90 × 104 4.82 × 104 1.74 × 102 6.79 × 104 23.53 31.76 1.01 1.35 N/A N/A
GT 1.38 × 105 1.39 × 105 1.38 × 105 2.67 × 102 6.79 × 104 22.84 31.60 0.52 0.02 0.14 N/A
FT 1.37 × 105 1.37 × 105 1.37 × 105 1.83 × 102 4.65 × 104 23.16 31.68 1.40 4.60 × 10−5 7.88 × 10−2 N/A
GIF 3.86 × 104 4.83 × 104 4.19 × 104 3.12 × 103 6.78 × 104 23.55 31.72 0.23 2.52 2.11 N/A
IFT 9.98 × 104 1.00 × 105 9.99 × 104 84.53 5.07 × 104 23.46 31.86 1.53 0.10 4.16 × 10−2 5.68 × 10−6

Tab. 8. Application of mixed models to large object.
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Fig. 3. Estimated quality for small object: (a) Single models, (b) Combined models.
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Fig. 4. Estimated quality for medium object: (a) Single models, (b) Combined models.
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Fig. 5. Estimated quality for large object: (a) Single models, (b) Combined models.
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5. Conclusion
From the real perspective, it is obvious that applica-

tion of combined models is better than use of single models.
They include multiple influences on real information passing
through atmosphere and optical system of used astronomical
equipment.

We found that IF, GI and GIF are the most suitable mod-
els. If we look on models, where there was used turbulence
of atmosphere, those were always worse than the three afore-
mentionedmodels. Turbulence itself reachedworse results in
case of simple models application thus from modeling point
of view it seems inappropriate to use it.

Therefore, any PSF model consisting interference phe-
nomenon is recommended for the fitting of astronomical ob-
jects but repeated application of optimization heuristics is
necessary for reliable fit. In contrast, Gaussian, Moffat and
turbulence models are very easy to fit.
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