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Abstract. This paper addresses interference issues in mul-
tiuser multiple-input multiple-output (MIMO) downlink het-
erogeneous networks in which multiple small cells are de-
ployed in macrocell coverage. With the higher priority to
access the frequency bands, the macro base station (MBS)
will exploit eigenmode transmission along with water-filling
based power allocation to maximize its data rate. To avoid
harmful interference to macro users, we propose structures
of the precoders at the small cell BSs (SBSs) as cascades of
two precoding matrices. In addition, to mitigate intra-tier
inference in small cells, the SBSs exploit the user scheduling
schemes for their associated users. We investigate two user
scheduling schemes using the minimum interference leakage
and maximum signal to noise ratio criteria. The sum rate of
the selected users can be further improved by power alloca-
tion. We develop an iterative algorithm using the difference of
convex functions (d.c.) programming to tackle the mathemat-
ical challenges of the nonconvex power allocation problem,
Numerical simulation results show that the proposed strat-
egy outperforms the conventional methods in terms of the
achievable sum rate.

Keywords
MU-MIMO interference channels, interference align-
ment, small cells, precoder design

1. Introduction
The small cell deployment in macrocell coverage has

attracted considerable attentions of both academia and in-
dustry due to its potential to cope with the increasing user
numbers and demand of the mobile traffic in wireless cellu-
lar networks [1–4]. The wireless networks in which small
cells such as picocells or femtocells are deployed at traffic de-
manding hotspots or at coverage holes are known as heteroge-
neous networks (HetNets). HetNets have been introduced in
Generation Partnership Project (3GPP) Long TermEvolution
(LTE) since they can offer great potential to offload the traf-
fic, enhance channel capacity and extend coverage in cellular
networks [3], [4]. Due to the scarcity of spectrum resources,

the small cells are typically designed to reuse the frequency
bands of the macrocells. Such an overlaid cell deployment
may lead to co-channel interference [4], [5]. Due to simul-
taneous transmission of multiple cells, HetNets may suffer
from interference caused by the cells in the same tier (co-tier
interference) and from the cells in different tiers (cross-tier
interference) [6]. Then, the system performance can be sig-
nificantly degraded if interference is not properly managed.
Therefore, interference mitigation in HetNets is a crucial is-
sue.

The present paper is concerned with the multiple-input
multiple-output (MIMO) downlink HetNets in which one
macro base station (MBS) coexists with multiple small cell
base stations (SBSs). It is worth noting that such a sys-
tem model is similar to that in [1], [6], however, the models
in [1], [6] are restricted to one user equipment (UE) per
cell. Herein, we consider the scenario that there are multiple
UEs per cell and the user scheduling is carried out at the
BSs. In addition, we introduce the hierarchical transmission
strategy for the MBS and SBSs to efficiently mitigate both
cros-tier and co-tier interference.

1.1 Related Works
There have been intensive research efforts devoted to in-

terference mitigation in HetNets. The conventional methods
are interference avoidance and resource partition in time, fre-
quency or space [1], [8]. Such transmission techniques can be
time division multiple access (TDMA), frequency division
multiple access (FDMA), or space division multiple access
(SDMA). These approaches cannot achieve channel capacity.
Recently, interference alignment (IA) has been recognized
as an efficient scheme to address interference issues and to
achieve the optimal degrees-of-freedom (DoFs) in interfer-
ence networks [7–10]. IA has been widely used to design the
transceivers for various wireless communications [11–14].
References [11–13] used the conventional IA schemes to
design the precoders and receive filters for K-user interfer-
ence channels. Specifically, references [11], [12] aimed at
improving the secrecy rate of K-user channels while [13]
focused on maximizing the energy efficiency of the secure
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communication systems. Recently, the authors in [14] have
considered the MIMO-OFDM HetNets in which single user
per cell was considered. They proposed the methods using
space-frequency block codes and IA to mitigate interference
in the HetNets with various levels of inter-system coordina-
tion. On the other hand, the authors in [15] investigated IA for
a two-cell network in which each user sends one data stream.
Different from the previous studies in [11–15], our paper fo-
cuses on the user scheduling schemes and power allocation
to mitigate interference in the HetNets.

The general solutions for IA schemes must be found by
iterative algorithms. However, the conventional IA schemes
require a large amount of computation and extensive CSI of
all links and, therefore, make them difficult to apply in cel-
lular networks [10]. Alternatively, opportunistic IA (OIA)
techniques have been recently studied in the literature; see,
for example [16], [17]. The key idea of OIA is that at each
time slot only the user which has the best performance met-
ric can access the spectrum. As compared to conventional
IA, OIA is more simple for implementation since it requires
only local CSI and can align interference without iterative
computation. Authors in [18] studied OIA techniques for
uplink MIMO multi-cells in homogeneous networks. A user
scheduling strategy for multi-cell uplink networks was in-
vestigated in [9]. However, the BS transmits only one data
stream to its scheduled user, and homogeneous wireless net-
works are assumed. For HetNets, the authors in [5], [8]
designed the precoders for a hierarchial IA scheme for Het-
Nets. The closed form expressions are found for the systems
in which a macrocell with two users coexists with two pico-
cells having one user per cell. The method in therein cannot
be extended to the scenarios with the arbitrary number of
small cells.

1.2 Contributions of This Work
Our goal is to design the transmission strategies of the

MBS and SBSs to efficiently mitigate interference and to
maximize the sum rate of the network. We propose a hierar-
chical transmission strategy inwhich theMBS is given higher
priority to access the spectrum than the SBSs. Our strategy
is that the MBS employs eigenmode transmission and adopts
the water-filling scheme for power allocation to maximize its
rate. To prevent interference from the SBSs to the macro-
cell UE (MUE), the SBSs will align their transmitted signals
into unused spatial dimensions at the MUE [1], [19]. Thus,
we design the SBS precoders as a cascade of two precoders.
One precoder is used to cancel interference from the SBSs
to the MUE while the other unitary precoder is generated
according to the isotropic distribution [9]. Since SBSs use
space-division multiple access, apart from cross-tier inter-
ference, co-tier interference will adversely affect the system
performance if multiple small cell UEs (SUEs) in the same
cell transmit at the same time. Therefore, to cope with inter-
user interference, the SBSs will invoke the opportunistic user
selection. We propose to use two scheduling metrics for the

user scheduling. First, the SBS will select the user that can
best align interference from all other BSs. Second, the max-
imum signal to noise ratio (SNR) metric is used to select
the user. It is important to remark that although close in
notation to the conventional IA schemes [11–13], the cur-
rent paper distinguishes itself in the following aspects. First,
conventional IA would be inefficient to the user scheduling
scheme since it requires the global CSI of all users in the
networks and performs an exhaustive search of all possible
selected users. For each possible set of the selected users, the
conventional IA schemes require to conduct iterative algo-
rithms to find the precoding and postcoding matrices, which
may result in a prohibitive computational complexity. In con-
trast, to select the users and mitigate interference, our scheme
based on OIA requires solely the local CSI and non-iterative
procedures [20]. In addition, if there is a coordination be-
tween SBSs, the sum rate of the network can be improved
by appropriate power allocation at each SBS. Thus, with the
assumption of coordinated SBSs sharing CSI of the selected
users, we further optimize the sum rate of the scheduled
users. We seek the optimal power allocation (OPA) strate-
gies to maximize the sum rate of the SUEs subject to the
power constraint per SBS. The power allocation problem is
mathematically challenging due to its non-convexity nature.
We develop an iterative algorithm by expressing the objective
function as a difference of two convex functions (d.c.) and,
then introduce an iterative d.c. algorithm with the conver-
gence guaranteed. The simulation results will be provided to
demonstrate the effectiveness of the proposed method.

The rest of the paper is organized as follows. Section 2
describes the small cell wireless networks considered in the
paper. In Sec. 3, we introduce the transmission strategies of
theMBSandSBSs. Then, optimal power allocation to further
improve the sum-rate of small cells using d.c. programming
is derived. Simulation results are provided in Sec. 4. Finally,
Sec. 5 concludes the paper.

Notations: Matrices and column vectors are represented
by boldface capital and lowercase letters, respectively. XXXT

and XXXH are the transposition and conjugate transposition of
matrix XXX , respectively. | |xxx | |2 denotes the Euclidean norm
while | |XXX | |F is the Frobenius norm. III and 000 stand for iden-
tity and zero matrices with the appropriate dimensions. 〈.〉,
|.| and E(.) are the trace, determinant and expectation op-
erators, respectively. colk` (XXX ) is a matrix whose columns
are the `-th column to k-th column of matrix XXX . We de-
fine 〈XXX,YYY 〉 = Real(〈XXXHYYY 〉). A complex Gaussian random
vector with mean x̄xx and covariance RRRxxx is represented by
xxx ∼ CN (x̄xx, RRRxxx ).

2. System Model
Consider the downlink of two-tier cellular wireless net-

works in which L SBSs coexist to share the common fre-
quency resource in the coverage of an MBS, as illustrated in
Fig. 1. The MBS, namely BS 0, is equipped with N0 while
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Fig. 1. The system model of the downlink MIMO HetNets.

the SBS denoted by BS `, ` ∈ L = {1, 2, ..., L}, is equipped
with N` transmit antennas. Assume that each BS is providing
services for multiple UEs. Let F` be a set of users served by
BS `. Consider the scenario of interference coordination in
which each user is served by only one BS, i.e., Fi ∩ Fj = ∅
if i , j. The number of UEs served by BS ` is |F` | = F` .
UE k in cell ` is referred to as UE`,k . UE`,k is equipped with
M`,k antennas. At each time slot, each BS selects one UE in
its coverage range for transmission [21].

Let xxx`,k ∈ Cd`,k×1 be d`,k independent data streams to
be transmitted from the `-th BS to the k-th user in cell `, with
d`,k ≤ min{N`, M`,k } ∀k, `. Define the covariance matrix of
the transmitted signals as E[xxx`,kxxxH

`,k
] = QQQ`,k . Note that the

covariance matrix QQQ`,k is not necessarily diagonal [7]. The
`-th BS, ` = 0, 1, ...L, uses the precoder VVV `,k ∈ C

N`×d`,k to
map signal xxx`,k into the N`-dimensional signal to be trans-
mitted over N` antennas. Assume that theMIMO channels of
the links are block fading, i.e., the channel coefficients remain
constant in a time slot and independently vary from one slot
to the other. The MIMO channel matrix from the i-th BS to
the k-th user in the `-th cell is denoted by HHH`,k,i ∈ C

M`,k×Ni .
All local CSI at all BSs can be obtained by using the feedback
from the users to its associated BS [19], [22].

At each time slot, one user per cell is selected to com-
municate with its associated BS 1. We denote the selected
user in cell ` by π(`). The received signal yyy`,π (`) ∈ C

M`,k×1

at selected user π(`) in cell ` is given by

yyy`,π (`) = HHH`,π (`),`VVV `,π (`)xxx`,π (`)

+

L∑
i=0,i,`

HHH`,π (`),iVVV i,π (i)xxxi,π (i) + zzz`,π (`)
(1)

where zzz`,k ∈ CM`,k×1 is additive white Gaussian noise at
the k-th user in the `-th cell with zzz`,k ∼ CN (0, σ2

`,k
IIIM`,k

).
In (1), the first term is the desired signal of the π(`)-th
user in the `-th cell, the second term is inter-cell interfer-
ence from other cells and the last term is noise. Consider
that the k-th user in cell ` uses the postprocessing matrix
UUU`,k ∈ C

M`,k×d`,k to extract its desired signal transmitted by
the corresponding BS `. After linear processing, the received
signal at the admitted user in cell ` is given by
rrr`,π (`) = UUUH

`,π (`)yyy`,π (`) =UUUH
`,π (`)HHH`,π (`),`VVV `,π (`)xxx`,π (`)

+

L∑
i=0,i,`

UUUH
`,π (`)HHH`,π (`),iVVV i,π (i)xxxi,π (i) +UUUH

`,π (`)zzz`,π (`) .

(2)

Assuming that Gaussian signalling is employed and inter-
ference from other cells is treated as noise, the rate of the
π(`)-th user in the `-th cell is computed by
R`,π (`) = log2

���IIId`,π (` ) +UUUH
`,π (`)HHH`,π (`),`VVV `,π (`)

×QQQ`,π (`)VVVH
`,π (`)HHH

H
`,π(`),`UUU`,π (`)RRR−1

`,π (`)
���

(3)

where
RRR`,π (`) = σ

2
`,π (`)IIId`,π (` )

+

L∑
i=0,i,`

(
UUUH
`,π (`)HHH`,π (`),iVVV i,π (i)QQQi,π (i)VVVH

i,π (i)HHH
H
`,π (`),iUUU`,π(`)

)
is the covariance matrix of the interference-plus-noise at user
π(`) in cell `.

The major concern in deploying small cell networks is
to deal with interference such that the total sum rate of the
network is maximized. It is well-known that the design prob-
lem of the sum rate maximization is difficult to solve since
the achievable rates of the users are interdependent and the
associated optimization problem is nonconvex [25]. In next
section, we will present transmission strategies to address
interference and to maximize the sum rate.

3. Design Strategies
Our approach aims at first deriving the MBS transmis-

sion strategy and then designing the small cell transmission
strategies to efficiently mitigate cross-tier and co-tier inter-
ference. Finally, the power allocation algorithm based on d.c.
programming is developed to further improve the sum-rate.

3.1 Macrocell Transmission Strategy
Provided that the MBS has higher priority to utilize the

spectrum [1], [19], the MBS selfishly designs its transmis-
sion strategy to maximize its own rate without awareness of
the small cell strategies. Since our proposed strategy is to
guarantee no cross-tier interference to theMUE and, thus, the
MBS can use the channel gain as the scheduling metric [26].
The selected user is computed by

π(0) = arg max
k∈F0

〈HHH0,k,0HHHH
0,k,0〉. (4)

1Note that each BS can serve multiple users at each time slot by allocating orthogonal resources (e.g., OFDMA) to different users [23], [24]
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Concerning cross-tier interference, the signal transmission
of the small cells must not cause interference to the MUEs.
From (2), the constraints of zero cross-tier interference to
UE0,π (0) are imposed by

UUUH
0,π (0)HHH0,π (0),`VVV `,π (`) = 000, ` ∈ L. (5)

The elimination of cross-tier interference leads to the received
signal at UE0,π (0) given by

rrrrrrrrr0,π (0) =UUUH
0,π (0)HHH0,π (0),0VVV 0,π (0)xxx0,π (0) +UUUH

0,π (0)zzz0,π (0) .

(6)

Then, the precoding matrixVVV 0,π (0) at the MBS and the post-
processing matrixUUU0,π (0) at the MUE are designed to maxi-
mize its rate. From (6), the link between the MBS and MUE
is equivalent to a MIMO single user channel and, therefore,
the MBS can apply eigenmode transmission [27]. The singu-
lar value decomposition (SVD) of channel matrix HHH0,π (0),0
is given by

HHH0,π (0),0 = ΨΨΨ0,π (0)ΣΣΣ0,π (0)ΥΥΥ
H
0,π (0) (7)

where ΨΨΨ0,π (0) and ΥΥΥ0,π (0) are respectively the left and right
singular vector matrices of HHH0,π (0),0 while ΣΣΣ0,π (0) is a di-
agonal matrix whose diagonal elements are the decreasing
ordered singular values. Accordingly, the precoding matrix
at the MBS and the postprocessing matrix at the MUE are
respectively chosen by

VVV 0,π (0) = cold0, π (0)
1 (ΥΥΥ0,π (0)) ∈ CN0×d0, π (0) (8)

UUU0,π (0) = cold0, π (0)
1 (ΨΨΨ0,π (0)) ∈ CM0, π (0)×d0, π (0) . (9)

The optimal covariance matrix QQQ0,π (0) must be diagonal,
i.e., QQQ0,π (0) = diag(q0,π (0),1, q0,π (0),2, ..., q0,π (0),d0, π (0) ) where
q0,π (0),i ≥ 0 denotes the transmit power allocated to the i-th
data stream at UE0,π (0) [27]. Then, the achievable rate of the
MBS link from (6) is computed by

R0,π (0) =

d0, π (0)∑
i=1

log2(1 +
q0,π (0),iΣΣΣ

2
0,π (0) (i, i)

σ2
0,π (0)

). (10)

The optimally allocated power is found tomaximize the chan-
nel capacity as follows

max
QQQ0, π (0)≥0

d0, π (0)∑
i=1

log2(1 +
q0,π (0),iΣΣΣ

2
0,π (0) (i, i)

σ2
0,π (0)

) (11a)

s.t.
d0, π (0)∑
i=1

q0,π (0),i ≤ Pmax
0 (11b)

where Pmax
0 is the maximum transmit power at the MBS. The

optimal power allocation to problem (11) can be found by the
water-filling algorithm given by [27]

q0,π (0),i =


µ −

σ2
0,π (0)

ΣΣΣ2
0,π (0) (i, i)



+

(12)

where the water level µ is chosen to satisfy the power con-
straint (11b). The design steps of the macrocell transmission
are summarized in Algorithm 1.

Algorithm 1: Macrocell transmission strategy
Data: M0, N0, d0,π (0) , CSI, Pmax

0 .
Result: VVV 0,π (0) ,UUU0,π (0) and R0,π (0) .

1 Compute VVV 0,π (0) andUUU0,π (0) from (8) and (9) ;
2 Applying the water-filling algorithm from (12) to

obtain the optimally allocated power q0,π (0),i for
i = (1, 2, ..., d0,π (0)) ;

3 Evaluate the rate R0,π (0) in (10).

Note that the MBS only uses its local CSI from the
MBS to the MUE in order to maximize its rate. Therefore,
there is no requirement of CSI exchange from the SBSs to
the MBS.

3.2 Small Cell Transmission Strategies
As mentioned earlier that the SBSs can operate in the

frequency owned by the MBS if they do not cause harmful
interference to the MUE [1], [19]. This means that the SBSs
should deal with cross-tier interference to the MUE. To com-
pletely cancel interference to UE0,π (0) in the macrocell, we
design the precoder matrices of the SBSs as the cascade of
two precoding matrices

VVV `,k = AAA`,kBBB`,k . (13)

Here, AAA`,k ∈ CN`×N`−d0, π (0) is used to suppress cross-tier
interference to the MUE. From (5), matrix AAA`,k is chosen
as

AAA`,k = N
[
UUUH

0,π (0)HHH0,π (0),`
]

(14)

where N [XXX] is an orthogonal basis for the null space of XXX .
Note that in order to find AAA`,k the SBSs use their local CSI,
i.e., CSI associated with the SBSs. In addition, in HetNets,
the MBS and SBS can share CSI via a low-latency back-
haul [4], [6]. Thus, information UUU0,π (0) is assumed to be
available at the SBSs. Additionally, the SBSs can generate
the random matrices BBB`,k ∈ CN`−d0, π (0)×d`,k and broadcast
them to their users. Alternatively, the pre-defined pseudo-
random matrices can be used and are known to all users in
the network [9], [16]. On the other hand, to mitigate co-tier
interference at the SUEs, the `-th SBS will opportunistically
select a user among its associated F` users to communicate
with. To reduce overhead exchange information between the
SBSs and SUEs, we assume that only local CSI is available
at the SUEs. In addition, during the user selection, equal
power allocation (EPA) to data streams is assumed, i.e.,

QQQ`,π (`) =
Pmax
`

d`,π (`)
IIId`,π (` ), ` ∈ L. (15)

In what follows, we present two scheduling schemes.
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3.2.1Minimum Interference Leakage Based User Selec-
tion (MILUS)
In the MILUS scheme, the SUE receiver in which inter-

ference from other cells can be most aligned will be selected.
From (2), interference leakage from the i-th BS to user k in
cell ` with (i , `) is given by

ΓΓΓ`,k,i (UUU`,k ) = 〈
Pmax
i

di,π (i)
UUUH
`,kHHH`,k,iVVV i,π (i)VVVH

i,π (i)HHH
H
`,k,iUUU`,k〉.

(16)

Accordingly, the total of interference leakage at the k-th user
in cell ` is

ΓΓΓ`,k (UUU`,k ) =
L∑

i=0,i,`
ΓΓΓ`,k,i (UUU`,k ) = 〈UUUH

`,kΨΨΨ`,kUUU`,k〉 (17)

whereΨΨΨ`,k =
L∑

i=0,i,`

Pmax
i

di,π (i)
HHH`,k,iVVV i,π (i)VVVH

i,π (i)HHH
H
`,k,i is the in-

terference covariance matrix at the k-th user in the `-th small
cell. As shown in [28], each user can estimate the associated
interference covariance matrix. The minimum interference
leakage is used as a metric to select a user. Then, each SUE
computes the minimum interference leakage by solving the
following problem:

min
UUUH
`,k

UUU`,k=IIId`,k

ΓΓΓ`,k (UUU`,k ) (18)

which results in UUU`,k = ν
d`,k
min

(
ΨΨΨ`,k

)
, where νd`,kmin (XXX ) is a

matrix whose columns are the d`,k eigenvectors correspond-
ing to the d`,k smallest eigenvalues of XXX [29]. Note that to
calculate the interference leakage ΓΓΓ`,k , the SUE receiver only
requires local channel information, i.e., the channels from the
BSs to its receiver. Then, it reports this metric to its associ-
ated SBS. The `-th SBS will choose the π(`)-th user which
has the smallest interference leakage, i.e.,

π(`) = arg min
k∈F`

ΓΓΓ`,k, ` ∈ L. (19)

3.2.2Maximum SNR Based User Selection (MSNRUS)
In contrast to the MILUS method, in the MSNRUS

scheme the SUE will be selected by using the maximum sig-
nal to noise ratio (SNR) criteria. In light of (2), the SNR at
receiver k in cell ` is defined by

γ`,k (UUU`,k ) =
〈UUUH

`,k
ΩΩΩ`,kUUU`,k〉

〈σ2
`,k

UUUH
`,k

UUU`,k〉
, ` ∈ L, and k ∈ F` (20)

where ΩΩΩ`,k =
Pmax
`

d`,π (` )
HHH`,k,`VVV `,kVVVH

`,k
HHHH
`,k,`

is the covariance
matrix of the desired signal at the k-th user in the `-th small
cell. The UE receiver calculates its maximum SNR by

max
UUUH
`,k

UUU`,k=IIId`,k

γ`,k (UUU`,k ) (21)

which results inUUU`,k = ν
d`,k
max

(
ΩΩΩ`,k

)
where νd`,kmax (XXX ) is a ma-

trix whose columns are the d`,k eigenvectors corresponding
to the d`k largest eigenvalues of XXX [29]. Each SUE feeds its
SNR γ`,k back its corresponding SBS and, then, the SBS will
select the SUE with the highest SNR, i.e.

π(`) = arg max
k∈F`

γ`,k ` ∈ L. (22)

3.3 Optimal Power Allocation Scheme at SBSs
It should be noted that since it is difficult for all UEs

to obtain global CSI of all links, the above user selection
schemes only exploit local CSI associated with each UE. In
practice, the SBSs can be connected to a central unit (CU) via
a backhaul network, and, thus, the SBSs can exchange CSI of
the selected users associated to them [1], [4]. Given CSI of
the selected links, the SBSs can cooperate to jointly optimize
the power allocation in order to improve the sum rate of the
small cells2. The problem of interest is to find the transmit-
ted signal covariance matrices at the SBSs to maximize the
total sum rate of L small cells. Thus, the optimal design of
transmitted signal covariance matrices can be written as

max
QQQ

R (QQQ) =
L∑
`=1
R`,π (`) (QQQ) (23a)

s.t. 〈QQQ`,π (`)〉 ≤ Pmax
` , ` ∈ L (23b)

where we have definedQQQ = {QQQ`,π (`) }
L
`=1 for simplicity of no-

tation. Constraints (23b) are imposed on the transmit power
per SBS where Pmax

`
is the maximum transmit power at SBS

`. It can be verified that the power constraints of (23b)
are convex while the objective function (23a) is nonconcave.
Thus, problem (23) is nonconvex which renders the mathe-
matical challenges to find the optimal solutions of (23). As
shown in [25], [30], the rate expression (3) can be naturally
presented as a difference of two convex functions. Thus, we
aim to reformulate the optimization problem (23) as d.c. op-
timization and, then, develop an iterative d.c. programming
to find the transmit signal covariance matrices. To this end,
we decompose the rate in (23a) as

R`,π (`) (QQQ) = −log2
��RRR`,π (`) ��+log2

����R
RR`,π (`) + H̃HH`,`QQQ`,π (`)H̃HH

H
`,`

����
(24)

where H̃HH`,i =UUUH
`,π (`)HHH`,π (`),iVVV i,π (i) and

RRR`,π (`) = σ
2
`,π (`)IIId`,π (` ) +

L∑
i=0,i,`

H̃HH`,iQQQi,π (i)H̃HH
H
`,i .

For simplicity of exposition, we define

f` (QQQ) = −log2
��RRR`,π (`) �� (25)

g` (QQQ) = −log2
����R
RR`,π (`) + H̃HH`,`QQQ`,π (`)H̃HH

H
`,`

���� . (26)

2It should be noted that the sum-rate of the network can be improved if the user selection and power allocation is jointly designed. However, such a design
problem is intractable and requires the global CSI of all users in the network resulting in high demanding information exchange.
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It is obvious that f` (QQQ) and g` (QQQ) are convex func-
tions [32]. In light of equations (24), (25) and (26), the sum
rate R (QQQ) in (23a) can be rewritten as

R (QQQ) = −
[
g(QQQ) − f (QQQ)

]
(27)

where g(QQQ) =
L∑
`=1

g` (QQQ) and f (QQQ) =
L∑
`=1

f` (QQQ) is a pos-

itive sum of convex functions and, therefore, they are also
convex [32]. Then, the optimization problem (23) can be
equivalently transformed into

min
QQQ

g(QQQ) − f (QQQ)

s.t.〈QQQ`,π (`)〉 ≤ Pmax
` , ` ∈ L.

(28)

That is, the optimization problem (28) is in form of d.c. pro-
gramming. The basic idea to tackle d.c. optimization is to
convexify f (QQQ) to obtain the convex objective function. We
can approximate the nonconvex part of the objective function
by using its convex majorant [25], [30], [31]. Given QQQ(κ) at
the κ-th iteration, one has

f (QQQ) ≈ f (QQQ(κ)) +
L∑
`=1

L∑
i=1,i,`

〈ΠΠΠ`,i,QQQi,π (i) −QQQ(κ)
i,π (i)〉 (29)

where ΠΠΠ`,i is the partial derivative of f` (QQQ) with respect to
QQQi,π (i) evaluated at QQQ(κ) , defined by

ΠΠΠ`,i =
∂ f` (QQQ)
∂QQQiπ (i)

�����QQQ=QQQ(κ )

= H̃HHH
`,i (RRR

(κ)
`,π (`))

−1H̃HH`,i . (30)

Accordingly, the optimization problem (28) can be recast as

min
QQQ

g(QQQ) − f (QQQ(κ)) −
L∑
`=1

L∑
i=1,i,`

〈ΠΠΠ`,i,QQQi,π (i) −QQQ(κ)
i,π (i)〉

s.t. 〈QQQ`,π (`)〉 ≤ Pmax
` , ` ∈ L.

(31)
It is obvious that problem (31) is convex optimization since it
minimizes the convex objective function over the convex con-
straints. It is well-known that convex optimization problem
can be efficiently solved by available convex programming
solvers. As a result, to obtain the optimal solution to the d.c.
programming (28), we solve a sequence of the convex opti-
mization problem (31). In summary, the iterative procedure
to solve problem (23) is described in Algorithm 2 where ε is
an acceptable accuracy.

Algorithm 2:OPAalgorithm for sum ratemaximiza-
tion of small cells

Data: L, K , N` , M`,k , d`,k , VVV `,k ,UUU`,k , CSI, Pmax
`

.
Result: QQQ, R (QQQ)

1 Initialization: Set κ = 0, choose {QQQ(0) }, and
calculate R (QQQ(0)) ;

2 repeat
3 κ-th iteration: Solve the convex optimization

problem (31) to obtain the solution QQQ(∗)
`,π (`) ;

4 Set κ = κ + 1, QQQ(κ)
`,π (`) = QQQ(∗)

`,π (`) and calculate
R (QQQ(κ)).

5 until ���R (QQQ(κ)) − R (QQQ(κ−1))��� ≤ ε ;

Since the original optimization problem (23) is noncon-
vex, it is important to show the convergence of the iterative
algorithm. Since fff ` (Q) is convex, it implies that [32]

f (QQQ) ≥ f (QQQ(κ)) +
L∑
`=1

L∑
i=1,i,`

〈ΠΠΠ`,i,QQQi,π (i) −QQQ(κ)
i,π (i)〉. (32)

Denote the objective function of problem (31) by −R̃ (QQQ).
Then, we have R (QQQ) ≥ R̃ (QQQ), ∀QQQ, which results in

R (QQQ(κ+1)) ≥ R̃ (QQQ(κ+1)). (33)

On the other hand, at the κ-th iteration in which QQQ(κ+1) is
an optimal solution to (31), one has

R̃ (QQQ(κ+1)) ≥ R̃ (QQQ(κ)) = R (QQQ(κ)). (34)

Combining (33) and (34) yields R (QQQ(κ+1)) ≥ R (QQQ(κ)). This
means that the total sum rate of the small cells is monoton-
ically nondecreasing over iteration. Furthermore, given the
power constraints, the system sum rate is upper bounded.
Thus, the convergence of the d.c. programming in Algo-
rithm 2 is guaranteed.

4. Illustrative Results
In this section, we provide numerical simulation re-

sults to verify the effectiveness of the proposed method in
terms of the sum rate. The simulation parameters are shown
in Tab. 1 [23]. There are two small cells deployed in the
hotspot area of the macrocell. The small cells are uniformly
distributed in the circle of the radius 333m from the MBS.
The channel coefficients are generated as the products of
two components: the first components account for the path
loss and shadowing effect given in Tab. 1 and the second
components represent the Rayleigh small-scale fading gen-
erated from i.i.d. complex Gaussian distribution variables
with CN (0, 1). All results are averaged over user locations
and channel realizations. Consider that the MBS and SBSs
are equipped with 8 and 4 antennas, respectively while each
UE has 2 antennas. Each BS transmits one data stream to its
associated users. The acceptable accuracy for the iterative
algorithm is set ε = 10−9.

Parameter Value
Macro cell radius 500 m
Small cell radius 40m

Path loss from MBS to UE 128.1 + 37.6 log10(d) d in km
Path loss from SBS to UE 140.7.1 + 36.7 log10(d) d in km

System bandwidth 10 MHz
Noise power density −174 dBm/Hz

Noise figure 9 dB
Shadowing standard deviation 8 dB

Tab. 1. Simulation parameters.
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First, we examine the sum rate performance of the pro-
posed schemes with MILUS and MSNRUS in the cases of
EPA and OPA. We set L = 2, F0 = 4, F` = 2, ` ∈ L and
Pmax
`
= Pmax = 0.5Pmax

0 . The average sum-rates are shown
in Fig. 2. It is worth noting that both user selection schemes
guarantee zero cross-tier interference to the MUE. Thus, the
rate of themacrocell increases with the transmit power. It can
be seen from Fig. 2 that as compared with the EPA methods,
the OPA schemes can improve the sum rate of the small cells
for both user selection schemes With regard to user selection
strategies, as observed from Fig. 2 that the MSNRUS outper-
forms the MILUS at the low transmit power region while the
former is inferior to the latter at the high transmit power. The
reason is that the MILUS focuses on mitigating interference
while MSNRUS aims at maximizing SNR. At high SNR the
system is interference limited, and, thus, the sum-rate of the
MSNRUS is lower than that of the MILUS.

Now, we study on the achievable sum rate of the sys-
tem for different number of UEs per small cell. We consider
{1, 2, 4} users per small cell. Figures 3 and 4 respectively
show the sum rate of the small cells for the MILUS and
MSNRUS with different number of users. For the sake of
comparison, the sum rate performance of the transmission
strategies with EPA is also shown. We can see that when
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Fig. 3. Average achieved sum rate of the small cells for MLIUS.

the number of users increases the sum rate is improved. The
reason is that it is more likely to select the best user among
the higher number of users. In addition, the user scheduling
schemes with OPA outperform those of EPA. It reveals that
the optimal power allocation is of importance in interference
channels.

We compare the sum rate performance of our pro-
posedmethod with two baselines, namely the TDMA scheme
[8], [23] and the selfish approach [33]. In the TDMA scheme,
each cell transmission is accomplished into different time
slots and, thus, there is no inter-cell interference [8], [23].
Each BS will select its severing user by using the channel
strength (cf. (4)), and exploit the water-filling power alloca-
tion to eigmode transmission. In the selfish approach, each
BS only considers maximizing its own data rate [33]. Thus,
in the selfish approach, the BSwill use theMSNRUS to select
the user and apply the water-filling algorithm to maximize its
own data rate. For fair comparison, we compare these two
baselines with our proposedMSNRUS-OPAmethod. As can
be observed from Fig. 5, our proposed method and the self-
ish approach outperform the TDMA scheme. However, the
selfish approach provides a lower rate of the macrocell than
our proposed method. This is because the selfish approach
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does not handle interference to the MUE while our proposed
method guarantees zero-interference to the MUE. Accord-
ingly, the total sum rate of our performance is superior to
that of the selfish approach.

5. Conclusion
This paper has presented the transmission strategies for

the downlink of multicell multiuser MIMO HetNets. The
transmission strategy of the macrocell is to exploit the eigen-
mode transmission while the small cells opportunistically
select their corresponding users subject to no cross-tier inter-
ference to the MUE. To handle the cross-tier interference, we
have imposed the structure on the precoders at the SBSs. We
have also investigated two OIA schemes by using the min-
imum interference leakage and maximum SNR scheduling
metrics. In addition, given the limited coordination of the
BSs, we have also developed the d.c. iterative algorithm for
OPA. The simulation results are shown that the proposed ap-
proaches outperform the TDMA and selfishmethods in terms
of the sum rate and that the OPA algorithms can improve the
sum rate as compared to the EPA schemes.
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