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Abstract. For a cognitive radio network (CRN) in which
a set of secondary users (SUs) competes for a limited number
of channels (spectrum resources) belonging to primary users
(PUs), the channel allocation is a challenge and dominates
the throughput and congestion of the network. In this pa-
per, the channel allocation problem is first formulated as the
0-1 integer programming optimization, with considering the
overall utility both of primary system and secondary system.
Inspired by matching theory, a many-to-one matching game
is used to remodel the channel allocation problem, and the
corresponding PU proposing deferred acceptance (PPDA)
algorithm is also proposed to yield a stable matching. We
compare the performance and computation complexity be-
tween these two solutions. Numerical results demonstrate
the efficiency and obtain the communication overhead of the
proposed scheme.
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1. Introduction
The rapid proliferation of smartphones, tablets, mobile

applications, and other smart devices enable the convenience
of our current lifestyle, while spectrum scarcity has become
a critical challenge in wireless networks [1]. Cognitive ra-
dio (CR) was introduced by Mitola in 1998 as a promising
approach to alleviate this status and improve the spectrum
utilization efficiency. It allows the unlicensed or secondary
users (SUs) to dynamically access the vacant licensed spec-
trum of primary users (PUs) without the authorization of
operators/administrations [2]. To realize cognitive radio net-
works (CRNs), channel allocation should be adapted accord-
ing to the varying channel states and requirements, predefined
quality of service (QoS) or quality of experience (QoE) [3] of
users and other criterion [4–6]. The main purpose of channel
allocation is assigning the usable channels or time-frequency
chunks to SUs.

The channel allocation problem is difficult because it is
a combinatorial integer programming problem of matching
SUs to channels. Even in its simplest case, i.e., assign one
channel to SUs, it cannot be solved easily or in closed form.
This complexity can rapidly increase when the size of the
networks growing. At the same time, the global network in-
formation and centralized control are required, thus yielding
significant additional overhead and complexity.

As one of the distributed channel allocation approach,
game theory is utilized to model and analyse the behavior and
interactions of users. Considering the inherent selfishness of
users, the non-cooperative game supposes that each player is
self-interested and wants to maximize its own utility func-
tion. The Nash equilibrium of the game is often regarded
as the optimal solution. However, formulating the channel
allocation problem as a non-cooperative game needs some
special constraints and prior knowledges, such as the convex-
ity of the objective functions and the actions of other players,
which may not always be satisfied in practice.

Recently, matching theory [8] has emerged as a promis-
ing technique for allocation problem, which can overcome
some limitations of the existing method [9], [10]. Matching
theory is a Nobel Prize winning framework, which is suit-
able approach to model the interactions between agents in
two distinct sets. Most references, such as [11], [12], focus
on matching theory in microeconomics. Similarly, the asso-
ciation of channels and SUs can be described by matching
theory, one of the firstworks is presented in [13]. In thiswork,
the channel allocation problem is formulated as a one-to-one
matching problem. The transmission rate is considered as
the utility function of both SUs and channels. In [14], this
theory is applied in CRNs, small cell based networks and
device-to-device (D2D) communication these three different
areas to demonstrate the usefulness. In [15], matching theory
is utilized to tackle the content-cache allocation problem in
cache system. Moreover, the cooperative spectrum sharing
problem between one PU and SUs is modeled as one-to-one
matching game, which optimization is maximizing the util-
ity of secondary network [16]. Apparently, few references
concentrate on modelling problem as many-to-one matching.
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In this paper, we focus on the channel allocation mecha-
nism design aiming at maximizing the overall utility or social
welfare [17]. The main contributions of this paper are briefly
summarized as follows.

1)Wemodel the channel allocation problem as a 0-1 in-
teger programming problem. Differs from the previous work,
multiple channels are assigned per SU, and the overall utility
function of network considers both secondary system and pri-
mary system. Considering the status of primary channel, the
secondary system concentrates on the achievable throughput
of all SUs, while the primary system focuses on the fee paid
by SUs and the achievable throughput of all PUs.

2) We remodel the channel allocation problem as
a many-to-one matching [8]. We assume that each primary
channel can be assigned to one SU while one SU can be
assigned to multiple channels. The maximum number of
channels that a SU can access is restricted to its quota. We
solve this matching problem by the proposed PU proposing
deferred acceptance (PPDA) algorithm, which is a distributed
algorithm with lower computation complexity and is optimal
to the PUs.

3) Finally, we compare the proposed algorithm with
three types of maximal utility mechanisms (including over-
all utility, PUs utility and SUs utility) and random matching
mechanism. The computation complexity analysis is also
given. Moreover, we estimate the additional communication
overhead under stable matching game scheme according to
the number of PU proposals.

2. System Model
We consider a cognitive radio network with a set

S = {S1, . . . , SK } of SUs pairs and a set of orthogonal chan-
nels C = {C1, . . . ,CL } licensed to PUs. The total number
of SUs K = |S|, where |S| is the cardinality of the set S,
similarly, the number of channels L = |C|. The PUs are
the spectrum resource owners and have the thresholds of
QoS requirements in their allocated frequency bands. Each
PU’s channel is allowed for one SU to share, while one SU
can access several channels simultaneously. We assume that
the maximum number of channels that a user Sk can ac-
cess is qk , which is determined by the performance of SUs’
transceiver and economic budget. The system model is illus-
trated in Fig. 1.

We assume that the transmission frame is divided into
several portions, and the CRN has dedicated control chan-
nels. During the signaling period, the channel state infor-
mation (CSI) is obtained perfectly, which also keep constant
within a frame.

As we mentioned above, SUs can take use of the li-
censed channels within the power restriction. They must
vacate the channels when their transmission power exceeds
the maximal value of each channel.

First, we define the channel allocation matrix AL×K to
describe the matching relationship of SUs and channels with
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Fig. 1. System model.

the (l, k)th element xlk ∈ {0, 1}, where l ∈ {1, ...., L} and
k ∈ {1, ...., K }. If the lth channel is allocated to the kth SU,
xlk = 1, otherwise xlk = 0. Due to the fact that each channel
can be only allocated to one SU, then we obtain the constrain
that ∑

k, Sk ∈S

xlk ≤ 1. (1)

In addition, since user Sk can access at most qk channels
simultaneously, we have another constrain, i.e.,∑

l, Cl ∈C

xlk ≤ qk . (2)

2.1 Utility Function of the Secondary System
To enhance the flexibility of spectrum access, we in-

troduce the underlay and overlay schemes [5]. Considering
these two spectrum access strategies, the average achievable
throughput in bit/s/Hz of user Sk on channel Cl can be for-
mulated as [7]

uSk
(Cl) = PCl

0 log2

(
1 +

PSk
���hSk

���
2

σ2

)
+(1 − PCl

0 )log2

(
1 +

PSk
���hSk

���
2

σ2+PCl
���hCl Sk

���
2

) (3)

where the first term in the above summation is the through-
put when the channel Cl is vacant and the second term is
the throughput when the channel is occupied, i.e., SU trans-
mission with the PU simultaneously under a tolerable power.
PSk

and PCl
are the transmission power of SU Sk and the

one of PU working on the channel Cl , respectively. hCl

Sk
is

the channel gain between secondary transmitter and its cor-
responding receiver on channel Cl , hClSk

is the channel gain
between primary transmitter and secondary receiver of Sk ,σ2

is the noise variance, and PCl

0 is the probability that the chan-
nel is vacant, which is expressed in (4). We assume the status
of channels follow a Markov process, which change between
vacant and occupied. Let αCl

and βCl
be the probability of

transferring from vacant to occupied and transferring from
occupied to vacant of channel Cl , respectively. Then the
probability that this channel is vacant can be formulated as

PCl

0 =
βCl

αCl
+ βCl

. (4)
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We assume user Sk occupies the channel subset Bk =

{Cl : xlk = 1} ⊆ C. Hence, his utility function in this CRN
can be represented by the total throughput, i.e.,

USk
(Bk ) =

∑
l, Cl ∈C

xlkuSk
(Cl) (5)

where xlk is the element of matrix A which satisfies the con-
straints (1) and (2), and uSk

(Cl) is defined previously in (3).
We utilize uSk

(∅) = 0 to denote user Sk does not access any
channel.

2.2 Utility Function of the Primary System
Apparently, the channel Cl prefers user Sk which will

pay higher fee for using, and the achievable throughput of PU
on this channel decreases in interference power PSk

|hSkCl
|2,

where hSkCl
is the channel gain between secondary trans-

mitter Sk and the primary receiver on Cl . Accordingly, the
utility function of channel Cl can be formulated as

UCl
(Sk ) = ρSk

xlk log2
*
,
1 +

PCl
��hCl

��2

σ2 + xlkPSk
��hSkCl

��2
+
-

(6)

where ρSk
xlk ≥ 1 is the fee paid by user Sk , and ρSk

xlk = 1
iff there is no SU active on this channel.

2.3 Centralized Optimal Solution
The overall utility of this network is the weighted sum-

mation of all SUs’ and PUs’ utilities, which describes the
interest of a network operator/ administration. In economics,
this function is also called social welfare [17], and can be
represented by

W = λ
∑

k, Sk ∈S

USk
(Bk ) + (1 − λ)

∑
l, Cl ∈C

UCl
(Sk ) (7)

where λ is a weighted coefficient which can be utilized
to increase the priority of one objective to the other, and
λ ∈ [0, 1]. If λ is close to zero, the network pays more
attention to primary system performance, while if λ is close
to one, the secondary system performance is prioritized. In
this way, the overall utility will not be dominated by the util-
ity of either side of the users. Hence, the channel allocation
problem is considered to maximize the overall utility, which
is formulated as

P1: max
A

λ
∑
Sk ∈S

USk
(Bk ) + (1 − λ)

∑
Cl ∈C

UCl
(Sk ), (8)

s.t. xlk ∈ {0, 1} , l ≤ |C| , k ≤ |S| , (C1)∑
Sk ∈S

xlk ≤ 1, ∀l ∈ C, (C2)∑
Cl ∈C

xlk ≤ qk, ∀k ∈ S. (C3)

There are three constraints in the above optimization
problem. Constraint (C1) ensures that the status of channels
only includes two cases: vacant and occupied. Constraint
(C2) guarantees per channel can be allocated to one SU.
Constraint (C3) means a SU Sk can access multiple channels
and the maximum number is qk .

We note that P1 is a 0-1 integer programming prob-
lem with exponential computation complexity, which is N-P
hard, and the complexity will increase with the network size.
The classical Hungarian algorithm can be applied to solve
this problem in centralized manner [18], however, a coor-
dinator is needed to perform the calculation and dictate the
channel assignment. Furthermore, some novel programs,
such as MATLAB optimization tool or CPLEX developed
by IBM [19] also can be utilized to solve this problem auto-
matically. However, we will propose a distributed solution
which can achieve a similar performance with lower com-
plexity in next section.

The results, which are actually a centralized solution,
will be used to compare with the stable matching algorithm
in Sec. 4.

3. Problem Formulation
To solve the proposed channel allocation problem, we

propose a novel approach based on matching theory. Match-
ing theory originally stems from economics, which is a suit-
able mathematical framework to analyze and optimize the
allocation problem among users and spectrum resources [9].
The merit of matching theory lies in it can provide a dis-
tributed solution with tractable computation complexity.

In essence, a matching game is a two-sided assignment
problem between two disjoint sets of agents, in which each
individual of a set has pre f erences over the individuals of
the opposite set [8]. An individual’s preferences represent
how a player would choose among different alternatives, if
one player was faced with a choice. Economists customarily
assume the individual preference is complete ordering and
transitive, and using �m as the preference relation of player
m. For example, b�ma denotes that player m prefers b to
a. In our application context, preferences associate with the
values of utility function.

3.1 Channel Allocation as a Matching Game
We first present the fundamental definitions by ex-

tending some notations and definitions from previous works
in [20], [21], which are applicable to channel allocation in
CRN.

Definition 1. A many-to-one matching µ is a mapping
from the set S ∪ C into the set of all subsets of S ∪ C such
that for every Sk ∈ S and Cl ∈ C:

1) |µ(Cl) | = 1 for every channel Cl and µ(Cl) = Cl if
µ(Cl) < S;
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2) |µ(Sk ) | = qk for every SU Sk , and if the number of
channels in µ(Sk ), say r , is less than qk , then µ(Sk ) contains
qk − r copies of Sk ;

3) µ(Cl) = Sk if and only if Cl ∈ µ(Sk ).

In our scenario, the channel allocation problem is de-
noted by the tuple

(
S, C, P, {qk }Sk ∈S

)
, which consists of

the set of SUs S, the set of channel resources C, the set of
preference lists P =

{
{USk

}Sk ∈S
, {UCl

}Cl ∈C

}
which is gen-

erated according to the utilities of the SUs and PUs given
in (5) and (6). The quotas {qk }Sk ∈S are associated with
SUs. The above definitions imply that the outcome matches
the individuals on one side to those on the other side. The
propositions 1) and 2) satisfy the constraints (C2) and (C3),
respectively.

As we mentioned above, the solution of matching game
is stability concept instead of optimality. Next we will intro-
duce related definition of stability.

Definition 2. A matching µ is individually rational if there
exists neither the channel resource is unacceptable to the SU
nor the SU is unacceptable to the spectrum resource.

Such a matching is also said to be un-blocked by any unhappy
agent.

Definition 3. A matching µ is blocked by the SU-channel
pair (Sk, Cl) if µ(Cl) , Sk and Sk�Cl

µ(Cl) and Cl�Sk
δ for

some δ in µ(Cl).

In a nutshell, the pair will be said together to block a match-
ing µ if they are not matched to one another at µ, but would
both prefer to be matched to one another than to (one of) their
present assignments.

Definition 4. A matching µ is stable if it is not blocked by
any individual agent or any SU-channel pair.

So far, the basic notations and definitions of matching
theory have already introduced, in the next subsection we
propose an efficient algorithm to solve the matching game,
which can obtain stable results.

3.2 Proposed Algorithm
In this subsection, we modify the firm proposing de-

ferred acceptance algorithm in [22] to solve the channel allo-
cation problem, which can be extended from the one-to-one
stable matching situation. The firm proposing deferred ac-
ceptance algorithm was proposed by Gale and Shapley in
1962 and has solved many problems such as National Res-
ident/ Hospital program, college admission [23], roommate
market and so on [11]. The weak-optimal channel allocation
mechanism that can maximize the overall utility with lower
computation complexity is obtained by this algorithm.

In original firm proposing deferred acceptance algo-
rithm, firms first propose to their best choice workers accord-
ing to the preferences and quotas. Then each worker rejects
any unacceptable proposals and "holds" the most preferred
if more than one acceptable proposal is received. If no pro-

posals are rejected, match each worker to the firm whose
proposal he is "holding" and terminate the procedure. The
proposing goes on until all workers got accepted or all firms
are full.

Algorithm 1: PU proposing deferred acceptance algorithm

 1:  Construct the preference lists P according to (5) and (6);

 2:  Construct the set of unmatched channels unmatch% ;

 3:  Construct the allocation matrix A, set elements to 0; 

 4:  while unmatch% do

 5:      PUs proposing: 

 6:      for each l unmatchC % do

 7:  Proposes to its best choice SU in preference list, 

set corresponding allocation elements in A equal 

to 1; 

 8:  Remove this SU from its preference list; 

 9:      end for 

10:      SUs make decisions:

11:      for each kS +do

12:  If
, l

lk k

l C

x q
�

then 

13:  Keeps the most preferred kq  channels and 

rejects the rest, and set corresponding allocation 

elements in A equal to 0;

14:  Remove the matched channels from unmatch% ;

15:  else

16:  continue; 

17:  end if

18:    end for 

19:  end while 

Similarly, we map the orthogonal channels to be the
workers, and the SUs to be the firms, since each channel is
allocated to one SU while each SU can hold multiple chan-
nels. The PPDA algorithm described in Algorithm 1 can be
applied to solve P1 considering the characteristics of chan-
nel allocation. We assume the CRN focuses much more
attention on the performance of the primary system, i.e., λ
in (7) is small than 0.5. And we mentioned above that the
deferred acceptance algorithm is weak optimal for the pro-
posers, hence, PUs need act as the proposers in our scenario.
Firstly, CRN executes the initialization of Algorithm 1 (Line
1 to 3), including constructs the needed matrixes and pref-
erence lists. Moreover, all SUs must have the knowledge
of channels’ activities and the interference PCl

��hClSk
��2, and

all PUs require the knowledge of the fee paid by SUs and
the interference PSk

|hSkCl
|2, the interference values can be

calculated during channel estimation period. Secondly, PUs
propose to most preferred channels according to their pref-
erence lists (Line 5 to 9). Then SUs decide whether accept
these proposals based on their preferences and quotas (Line
10 to 18), then feed back the results to corresponding PUs.
Finally, thematching process ends when all primary channels
are allocated, and this status is a PU-optimal stable matching
which is weak Pareto optimal. Furthermore, while the status
of network changes, Algorithm 1 will be implemented once
more.
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4. Simulation Results and Analysis
Considering a CRN in a 300m × 300m square area to

numerically evaluate the proposed algorithm, the number of
orthogonal channels L = 10 and the number of SUs K ranges
from 1 to 6. Each SU’s access ability, i.e. the quotas qk is
assumed equal to 2. The distribution of users is shown in
Fig. 2, which is generated randomly, with solid dots donating
transmitters, hollow dots representing receivers. The PU’s
transceivers are in red color, while the SU’s transceivers are
in blue color. We simply assume the transmission power
of PUs is set to 5W, and the distance between each PU’s
transmitter and relative PU’s receiver is identical for all as
100m. Similarly, the transmission power of SUs is set to
1W, and the distance is equal to 80 m. The wireless fading
channels are independent identically distributed (i.i.d.) and
Rayleigh distribution with the coefficient λ0 = 1, the path-
loss fading component κ = 4. The setting of rest parameters
are provided in Tab. 1.

In simulations, we fix the number of channels and com-
pare stable matching algorithm with the maximal social wel-
fare, maximal SUs utility and maximal PUs utility. These
three allocation mechanisms are under different number of
SUs, which the optimization objective is to maximize the
overall utility, SUs utility and PUs utility respectively. In ad-
dition, we use the randommatching mechanism as the bench-
mark to compare with the above mechanism. In the random
allocation mechanisms, we assign channels randomly to SUs
under the constraints on qk , and the simulation results are the
average of 106 times.

Figure 3 shows the social welfare of the network while
the number of SUs ranges from 1 to 6. Apparently, the stable
matchingmechanism andmaximal utilitymechanism achieve
higher value of social welfare than random matching mecha-
nism. In our scenario, the PUs utility occupies a predominant
position in overall utility function. Hence, the maximal PUs
utility mechanism almost achieves the same value of maxi-
mal social welfare. The stablematchingmechanismperforms
slightly worse than the maximal social welfare, for example,
when the number of SUs K = 3, the social welfare are equal
to 2.93 and 2.66, respectively (roughly 9.2% worse than the
maximal social welfare method). Moreover, we observe that
as the number of SUs increasing, the gap between these two
methods decreases. However, the first three mechanisms be-
long to 0-1 integer programming optimization, which have
higher computation complexity and increase exponentially
over the network size. While the complexity of stable match-
ing algorithm is O(K × L), where K × L is the number of
possible SU-channel pairs.

Parameter Value
λ 0.4
ρSk

2
α 1/3
β 1/2

Tab. 1. The setting of parameters.
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Figure 4 shows the utility of PUs while the number of
SUs varies. The curves in this figure are similar to Fig. 3 due
to the significant situation of PUs utility in (7). With the in-
creasing of the SUs number, stable matching mechanism can
achieve better utility level, even is equivalent to the maximal
social utility.
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In Fig. 5, the first four mechanisms achieve less differ-
ence in SUs utility. Especially, the values of stable matching
and maximal PUs utility are almost the same since the PPDA
algorithm is PU-optimal, which means the PUs will benefit
much more from matching.

Figure 6 shows the number of proposals per channel
under stable matching game scheme for increasing number
of SUs. Obviously, while the number of SUs is much smaller
than the available channels, i.e. K ≤ 3, each channel can get
the matched SU by proposing only one or two times. How-
ever, as the number of SUs increases, channels must raise
more proposals to achieve stable because finding a preferred
SU becomes more competitive. It can be observed that chan-
nel C3 and C8 propose only once all the time due to the
distinctive preferences of these two channels. By calculating
the preferences of this matching game, we obtain that the first
choice of channel C3 and C8 is SU S3, and the preference of
SU S3 is {C8,C3, . . .}. Hence, we can conclude that SU S3
will engage the first proposals from channel C3 and C8.

Figure 7 plots the average number of PU proposals for
increasing number of SUs. The average number of proposals

increases for larger K . For
K∑
k=1

qk > L, i.e. K ≥ 6 in our
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simulation setting, where channel resources are unable to sat-
isfy the SUs’ requirements, the average number of proposals
decreases. Note that there exist some SUs only matched with
one channel, and channels have more SUs to choose in such
case. Hence, a few average number of PU proposals is needed
for our PPDA algorithm. Furthermore, we can estimate the
additional communication overhead according to Fig. 6 and
Fig. 7 due to the adoption of stable matching scheme. It
is reasonable to assume that PU Cl proposes through M bit
message to its preferred SU, and the preferred SU responds
this proposal via N bit message. Hence the communication
overhead can be calculated as

(M + N ) × L × avg. number of proposals per channel. (9)

Figure 8 shows the circulation times of PPDA algo-
rithm, and we consider line 5 to 18 as one time. The sim-
ulation results are similar to Fig. 7 since the lower average
number of PU proposals, the fewer circulation times should
be implemented.
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5. Conclusion
In this paper, the matching theory is applied to model

and address the channel allocation problem. The overall
utility considers the utility of both secondary system and
primary system. The 0-1 integer linear programming al-
gorithms optimize the channel allocation problem of three
different goals. Then we model this problem as a stable
matching game once more, in addition, the corresponding
PPDA algorithm is proposed to reach the stable states with
lower computation complexity. Simulation results verify the
efficiency of this mechanism and present the possible com-
munication overhead.
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