
RADIOENGINEERING, VOL. 25, NO. 4, DECEMBER 2016 763

A Novel Stochastic Learning Automata Based SON
Interference Mitigation Framework for 5G HetNets

Muhammad Nauman QURESHI 1, Moazzam Islam TIWANA 2

1 Dept. of Electrical Engineering, Air University, Sector E-9, Islamabad, Pakistan
2 Dept. of Electrical Engineering, COMSAT University, Chak Shahzad, Islamabad, Pakistan

muhammad.nauman2013@gmail.com, moazzam_islam@comsats.edu.pk

Manuscript received April 13, 2016

Abstract. Long Term Evolution Advanced (LTE-A) Het-
erogeneous Networks (HetNet) are an important aspect of
5th generation mobile communication systems. They con-
sists of high power macrocells along with low power cells
i.e. picocells and femtocells to fill up macrocell coverage
gaps. HetNet permit deployment of femtocells by users for
added flexibility, but then interference issues between neigh-
bouring cells have to be addressed as all femtocells use the
same frequency channels for transmission. To mitigate this
problem, LTE-A standard offers two new features, one is car-
rier aggregation in which Component Carriers (CC) form
the basic aggregate units shared among cells and the other
is enhanced Inter-Cell Interference Co-ordination (eICIC)
through X2 interface. The physical implementation of these
features is left open to research. This paper investigates
two distinct techniques for orthogonal CC selection through
Stochastic Cellular Learning Automata (SCLA) to improve
the QoS performance of a femtocell. The first technique uses
SCLA with user feedback, and the second technique uses
SCLA with a central publishing server where all cells upload
their past used CC vectors. SCLA methods are better suited
for Self Organizing Network (SON) as they do not require syn-
chronized cell coordination, have low complexity and have
good optimization characteristics. The simulation results
show that the techniques enhance the cell edge performance
considerably.

Keywords
Heterogeneous networks (HetNets), LTE-A, 3GPP,
stochastic cellular learning automata (SCLA), cellular
automata, self-optimization network (SON), femtocell,
component carrier (CC), carrier aggregation, cell pub-
lishing

1. Introduction
Recent years have seen a tremendous increase in data

traffic volume and demand. Just in 2016, it is expected that
more than 10 exabytes of traffic per month will be circu-

lating across cellular networks with more than 4 billion 4G
wireless subscriptions [1], [2]. Mobile networks are striving
hard to keep pace with this high traffic demand. As 4G gets
deployed, the work on the 5G has already started by 3GPP as
depicted by their 5G time line shown in Fig. 1. The most vi-
able way to enhance the network capacity in 4G and beyond,
is to increase the cell density as the radio link efficiency is
already approaching its theoretical limits [3]. Therefore in
Heterogeneous Networks (HetNet) small low powered cells
have been introduced, such as picocells, femtocells and relay
nodes [4] to enhance the macrocell capacity and Quality of
Service (QoS) of users. Thus, these small cells provide an
economical and flexible way to fill up gaps and boost network
coverage in existing operational areas.

HetNets have their own set of challenges and one of the
major issue is mitigation of inter-cell interference, as macro-
cell and small cells use the same frequency band [5]. The
problem is further aggravated by the fact that small cells like
the femtocells, will be deployed by users, making their ab-
sorption in the network more complex [6]. For large number
of femtocells being arbitrarily deployed there is a dire re-
quirement for an interference control strategy that should be
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fully distributed, self-configurable and self-optimizing [7].
Interference problem in a cellular network has been exten-
sively researched in literature as it has direct impact on the
QoS offered by a network operator. In Long Term Evo-
lution (LTE) and Long Term Evolution-Advanced (LTE-
A) standards, Inter-Cell Interference Co-ordination (ICIC)
and enhanced Inter-Cell Interference Co-ordination (eICIC)
schemes are available to address this problem, but the level of
precision and coordination involved between the cells makes
it less viable for practical implementations [1], [8]. The
best candidates for such scenarios are machine learning and
automation techniques which form the basis of Self Organiz-
ing Networks (SON) for mobile environment [9–11]. SON
makes planning, configuration, management, optimization
and healing of mobile radio access networks simpler and
faster and is a core component of 3GPP Release 8 and later
Releases [12].

Femtocells use the same physical layer technology
asmacrocells and support newCarrier Aggregation (CA) fea-
ture of LTE-A [1], [13]. CA is also an important area in 3GPP
Release 12 and the upcoming Release 13 [14]. CA involves
combining Component Carriers (CC) to have a wider band-
width of 100MHz for all the cells. To minimize interference
in the network, generally a power control strategy that max-
imizes frequency orthogonality among neighboring cells at
cell edges gives the best results. Thus, CC resources of a fem-
tocell need to be intelligently selected and power controlled in
such a way that they produce least interference and also meet
the QoS level set for edge users. For users close to the fem-
tocell the selection of carrier groups becomes less important
because a lower transmit power level can be allocated to them.
QoS improvement of edge users at each femtocell results in
overall edge users performance gain at the network level.
Authors in [15], concluded that the best way to achieve this
with minimum complexity and signalling overhead between
the network elements is through non-assisted self learning
and adjusting methods. One of the latest research on this
methodology has been done in [16] using stochastic learn-
ing algorithm, whereby femtocells independently learn and
select CCs that result in minimum interference to the net-
work. They point out the advantages of using the stochastic
learning approach (i) distributed, (ii) dynamic environment
interaction, (iii) energy saving, (iv) no inter-cell information
exchange, and (v) low complexity. The concept of Stochas-
tic Cellular Learning Automata (SCLA) stems from Cellular
Automata (CA), whereby cells act like points in a lattice
(Cellular) and follow a simple local rule (Automata) using
stochastic learning [17–20]. When stochastic learning is
combined with automata it is termed as Stochastic Learning
Automata (SLA).

In this paper we adopt two unique SCLA approaches
for each femtocell to enhance the QoE of edge users in the
network. First, we apply SCLA with SINR feedback from
users to help femtocells self-learn their interference environ-
ment and then adjust their CC selection vectors such that they
are at maximum orthogonality with neighboring cells. In the

second approach, all femtocells publish their current CC se-
lection information to a central server from where any cell
can retrieve past CC selection information of its neighbors
and then learn their CC selection patterns. A femtocell can
then make an intelligent probabilistic estimate on future CC
selection vector of its neighboring cells and select its own CC
vector so that it is orthogonal to the neighborhood selection
resulting in maximum SINR for its own users. Both these
techniques do not require any inter-cell communication. The
first technique, applies to individual cells and no exchange of
information with other cells or the core network takes place.
The second technique, however requires signalling between
cells and the central publishing server accessible through the
core network but not among the cells. As the link between
cells and the core network is generally over a reliable and
fast media, the impact of this additional signalling will be
minimal. We have applied both of these approaches inde-
pendently and in combination in the paper.

Our SCLA approach differs from existing stochastic
methods [16] by presenting a generic method to select or-
thogonal CC vector by using orthogonal matrices. The di-
mension of the orthogonal matrix is based on the number of
available CC resources an operator can spare for its edge user
cases. The publishing approach is also different, in the sense
that cells can learn from the past history of neighboring cell’s
CC vector selection instead of improving on inter cell coordi-
nation to select a CC vector that results in minimum neighbor
interference. This method is based on the assumption that
the future CC selection of neighbors is not unpredictable but
rather it is some function of past selections. This assumption
holds true in HetNet considering that most of the users do not
change their position radically in a few network time steps.
The neighborhood cells are selected based on a predefined
inter-cell distance that is set by operator to minimize com-
plexity in selecting neighbors. Finally, users experiencing
worst SINR are given channel resources that are orthogonal,
whereas rest of the users are given resources from channels
that are power limited to a ratio of the maximum power to
further reduce channel interference. Simulation scenario is
taken from [13] so that results can be as practical as possi-
ble.

The paper is organized as follows; Sec. 1, introduction,
Sec. 2 gives the system model and problem statement, Sec. 3
and Sec. 4 discusses theory behind the stochastic cellular
automata and proposed approach, Sec. 5 presents the results
achieved whereas Sec. 6 concludes the paper.

2. System Model

2.1 Design Overview
A full urban LTE-A environment has been considered

with a macrocell, several femtocells and mobile User Equip-
ments (UE) as shown in Fig. 2. The macrocell transmission
is considered uniform over the whole frequency bandwidth
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Fig. 2. HetNet environment model with deployed femtocells and
a central server for femtocell CC vector publishing.

at maximum power. Femtocells use CC selection to transmit
over whole or part of the total bandwidth depending on user
throughput requirement and density. To achieve CC orthog-
onality between cells a generalized approach is applied using
orthogonal matrices. The rows of the matrix give the orthog-
onal vector whereas the number of columns of the matrix is
equal to the number of CCs reserved for orthogonal vector
selection. We transmit at maximum power on the selected
channel or channels in the orthogonal vector and at reduced
power on other channels. A unity matrix will have maximum
orthogonal vector choices but only one CC to offer in each
vector, whereas any other orthogonal matrix will have one
or more than one CC channels to offer per orthogonal row
vector selected. Stochastic Learning Automata SLA learns
and selects the best orthogonal vector that records minimum
interference from neighboring cells.

In order to achieve better performance for the edge users,
the orthogonal CCs are allocated to the users having worst
SINR. The rest of the users are then given resources from
the remaining available CC channels by assigning next CC
channel with highest measured SINR to the next worst case
user. In our system model the data rate observed by a user
is taken as an indicator of QoS criteria. We calculate and
adjust the CC power based on target user data rates as set for
a particular simulation case. A sample power selection of
a cell is shown in Fig. 3.

In the second approach, all femtocells publish their GPS
location and CC selection vectors for every time step on
a server. New cells quickly identify their neighboring cells
from this central server based on predefined distance criteria
set by operator. This neighborhood cell selection criteria,
based on only distance is not optimal as in reality it depends
on the actual radio environment [12] but reduces the com-
plexity of identifying neighboring cells in a large network.
Femtocells can then retrieve information from the publishing
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Fig. 3. Femtocell orthogonal CC selection with power distribu-
tion for all its users.

server on past CC vectors selections of their neighbors and
use it to further learn and refine their own orthogonal CC vec-
tor selection. In our system model, the CC vector publishing
server is positioned at the macrocell as shown in Fig. 2, but
it can be placed anywhere in the network as deemed feasible.
With this publishing approach precise inter-cell coordina-
tion is not required as the selected CC vector information of
neighboring cells is not for the next LTE frame structure but
for past ones.

2.2 Mathematical Modeling
Consider B as the bandwidth allocated to each

femtocell. B is subdivided into L common aggre-
gate channels CC such that a selection vector X j

t =[
x j
t (1), x j

t (2), x j
t (3), . . . , x j

t (L)
]
defines the current selection

of aggregate channels for femtocell j in time t. The value of
each element in the vector can either be 1 or 0 i.e. selected or
not selected. Thus the complete set of vector selection “X”
for any femtocell has cardinality of 2L − 1. At least one CC
channel is to be selected even if there are no mobiles in its
coverage area.

Out of the set X , a subset vector space Y = {Y ⊆
X |#Y = M, M ≤ L, M , 0} is defined such that its ele-
ments are used to construct an orthogonal matrix of dimen-
sion (M×M). A unitymatrix providesmaximum orthogonal
vectors i.e. M . Any other orthogonal matrix will provide less
than M orthogonal vectors and will have at least one orthog-
onal vector with more than one CC. For a specific value of
M there can be different combinations of CC selection given
by

(
L
M

)
= LCM =

L!
M!(L−M )! . In this paper we have limited

our focus on only the number of orthogonal CCs selected
and not on their different combinations. The selection of Y
for M = 3 and corresponding orthogonal matrix is shown
in Fig. 4. So the overall selection vector X becomes

X j
t = [x j

t (1), x j
t (2), x j

t (3), . . . ,

x j
t (M), x j

t (M + 1), x j
t (M + 2), . . . ,

x j
t (L − M)].
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Fig. 4. Orthogonal vectors and pattern.

The purpose of defining the vectors Y and X is to give
the users having low SINR CC resources with full power
(pmax) from Y and for rest of the users with CC resources
limited to the maximum power of (αpmax) available from X .
α can have any value between 0 and 1 but for this paper we
have fixed it to α = 0.7. In special case, where a femtocell
has no users or only one user then it will transmit at maximum
power on randomly selected one CC fromY to act as the pilot
channel. After the CC channels from Y have been consumed
for low SINR users, the rest of the users will be given CC
resources such that the user with highest interference level is
assigned the CC channel with lowest observed interference.
Thus the total power transmitted by a femtocell at any time t
is given by the following equation, depending on how many
CC channels it is transmitting on

P j
t =

L∑
l=1

x j
t (l) × αlpmax (1)

where x j
t (l) = 1 if the CC element is selected, otherwise

it is 0; αl = α if the CC is not the selected orthogonal
channel, otherwise it is 1.

Let the distance of UE k in a Closed Subscriber Group
(CSG) group of K users from its associated femtocell j at
time t be denoted as d j

t,k
. Let Rk be the lowest data constraint

for any user in the model to satisfy a predefined QoS require-
ment by the operator. We can then define an association vec-
tor for a femtocell j as a j

t = {a
j
t (1), a j

t (2), a j
t (3), ..., a j

t (K )},
where a j

t (k) ⇒ j means the UE k associated with femtocell
j at time t. Consider that a user k can be served with one or
more than one CC l by its associated femtocell j, depending
on resources available and user QoS requirement. In order to
estimate the data throughput observed by the UE k by all the
allocated CCswe first consider the SINR on one CC l given as

SINRl
t,k =

P
a
j
t (k) × G

k,a
j
t (k)

Qt,k,l + N0
(2)

where Qt,k,l is the aggregate interference observed by UE
k on CC l at time t, G

k,a
j
t (k) is the gain of the femtocell

j directed towards this user k dependent on the path loss
component and d j

t,k
, N0 is the thermal noise power.

For simplicitywe are not considering handover cases for
the users. The total interference Qt,k,l for a user k at time t
is the aggregate interference received from other cells i.e.
macrocells and other femtocells, and is given as

Qt,k,l =

J∑
j=1, j;a

j
t (k)

Pt, j × Gt,k, j × x j
t (l) (3)

where Gt,k, j is the gain of any femtocell j towards the user k
at time t.

We now define the utility function U of UE k on CC
l based on modified Shanon capacity as given in the equa-
tion below. The value of BWeff (Bandwidth Efficiency) and
SINReff (SINR efficiency) are set to 0.56 and 2 respectively
for LTE environment [21].

U l
t,k = B × BWeff × log2(1 +

SINRl
t,k

SINRe f f
). (4)

Thus the utility function of user k over all allocated l CC
channels is

Ut,k =

L∑
l=1

U l
t,k . (5)

Note that the utility function gives us an estimate of the
data rate received by any user k. Our optimization objective
here is to maximize overall utility Ut for all edge users while
meeting the minimum data rate Rk requirement for all net-
work users. We define a variable 0.7 < ρ ≤ 1.0, such that
users having their distance from their associated femtocell j
as ρD j

max < d j
t,k
≤ D j

max are classified as edge users, where
Dmax is the maximum coverage range of the femtocell j.
For this paper we assume that only one type of femtocells
are deployed having same coverage area. Thus the problem
statement can be framed as follows

Problem Statement. To maximize the mean of the utility
function for the edge users while meeting the desired data
rate QoS for rest of the users.

max *.
,

∑K
k=1 Ut,k |

(
ρD j

max < d j
t,k
≤ D j

max
)

Total edge users
+/
-

such that ∑K
k=1 Ut,k |

(
d j
t,k
≤ ρD j

max

)
Total non edge users

≥ Rk . (6)

3. Application of Stochastic Cellular
Learning Automata to HetNet

3.1 Cellular Learning Automata
Cellular Automatas (CAs) are mathematical models for

systems consisting of large numbers of simple identical com-
ponents with local interactions. The simple components act
together to produce complex emergent global behavior. ACA
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is called cellular, because it is made up of cells like points in
the lattice, and called automata as they follow a simple local
rule [17]. On the other hand, Learning Automata (LAs) are
by design, “simple agents for doing simple things”. In [18],
CA and LA are combined, and a new model, which is called
Cellular LA (CLA) is presented. This model is superior to
simple CA because of its ability to learn and is superior to
single LA as it can learn from a collection of LAs which can
interact with each other. CLAs are particularly suitable for
modeling natural systems that can be described as massive
collections of simple objects interacting locally with each
other. Thus CLAs are also applicable to the case of femto-
cells in Self Optimizing Network (SON) environment [20].
CLAs can be classified into two groups synchronous CLA
and asynchronous CLA (ACLA) [19] depending upon how
the cells update their states either synchronously from one
global clock or independently. In HetNet, femtocells can
update their states from finite set of states, synchronously or
asynchronously according to a local rule. This paper uses
synchronous CLA model.

Mathematically, a r-dimensional synchronous CLA
environment with J femtocells is a structure Ω =

(Zr,Φ, A, N, F). In the structure, Zr indicates a lattice of
r-tuples of integer numbers. For our 2D synchronous CLA
system model, the value of r = 2. Φ is a finite set of states.
A is the set of LAs, each of which is assigned to one femtocell
of the CLA environment. N = {c1, c2, c3, . . . , cn} is a finite
subset of Zr called neighborhood vector. F = Φn → β is
the local rule of the CLA, where action the combined neigh-
borhood action Φn results in reinforcement signal β [20].
The femtocell local rule computes the reinforcement signal
for each LA based on the performance indicators feedback.
Our performance indicator are the bit rate measured by in-
dividual UEs and the recorded femtocell’s own throughput,
which is just the aggregate of data rates achieved by individ-
ual UEs in its coverage. β is computed as a binary indicator,
having status as either optimum or not-optimum. β is consid-
ered optimum when the feedback got from the environment
is in favour of our learning decision, and taken not-optimum
otherwise.

The state of all femtocells in the CLA environment
is described by a configuration. The rule and initial con-
figuration of the CLA specify the evolution of CLA that
tells how each configuration is changed in every step. The
configuration of the complete CLA model at any time
step t is denoted by pt = (p

′

t (1), p
′

t (2), . . . , p
′

t (J))
′ , where

pt ( j) = (p
′

t ( j1), p
′

t ( j2), . . . , p
′

t ( jn))
′ is the action probabil-

ity vector of LA Aj . A configuration p is deterministic if the
action probability vector of each LA is a unit vector, other-
wise it is probabilistic. Hence, the set of all deterministic
configurations K∗ and the set of all probabilistic configura-
tions K in CLA are K∗ = p|p( j, y) ∈ {0, 1} ∀y, j and K =
p|p( j, y) ∈ [0, 1]∀y, j, respectively, where

∑
y p( j, y) = 1 for

all j.
The operation of the CLA takes place as follows on ev-

ery time step t. At iteration t, each LA Aj chooses one action

from its set of actions ϕ j . Let the cardinality of ϕ j be n j . The
application of the local rule to every cell allows transitioning
the CLA configuration to a new one. Then based on the
feedback of action taken, every Ai receives a reinforcement
signal bi ∈ β based on the set performance indicators. If the
bi ∈ β is optimum then the chosen action Ai receives positive
reward.

Steady State Condition for Cellular Learning Automata.
The following two theorems state the steady-state behavior
of CLA when each cell uses linear reward inaction algo-
rithms or LR−I algorithms. Proofs of these theorems can be
found in [22].

Theorem 3.1 Suppose that there is a bounded differential
function defining the action mapping of all LAs Aj in all
cells forming a CLA A as D : R(n1+n2+· · ·+nn ) → R such that
for some constant c > 0, ( ∂D

∂p jv
)(p) = cµ jv (p) for all j and v,

where p is the generic configuration of CLA, pjv is the config-
uration in which a configuration having reward v for LA Aj

has been selected and µ jv (p) is the average reward for LA Aj .
Then, CLA for any initial configuration in K − K∗ and with
sufficiently small value of learning parameter (max{τ} → 0)
always converges to a configuration that is stable and com-
patible, where τj is the learning parameter of LA Aj .

Theorem 3.2 A synchronous CLA, which uses uniform and
commutative rule, starting from p(0) ∈ K −K∗ and with suf-
ficiently small value of learning parameter (max{τ} → 0),
always converges to a deterministic configuration that is sta-
ble and compatible.

If the CLA satisfies the sufficiency conditions needed
for Theorem 1 and 2, then the CLA will converge to a com-
patible configuration; otherwise the convergence of CLA to
a compatible configuration cannot be guaranteed, and it may
exhibit a limit cycle behavior [23]. The compatibility of
a configuration implies that no LA in CLA has any reason to
change its action.

3.2 Advantage of Stochastic Learning in CA
Stochastic learning automata (SLA) is a finite state ma-

chine and can learn from both stationary and non-stationary
environment to achieve a better performance [24]. Modern
urban environment is overly crowded and is characterized by
many sky scrapers and underground buildings. This conges-
tion results in a number of blind spots and low coverage areas.
Femtocells, help alleviate this problem by filling in these cov-
erage gaps and allowing users to deploy as per their require-
ment. Thus, femtocells will be able to enhance the end user
satisfaction but at network level their would be a requirement
to coordinate their transmissions so that inter-cell interfer-
ence can be brought to minimum. Structuring a model where
interference is controlled through coordination between fem-
tocells, can become complex and inefficient as cell density
increase and metropolis grow. Using Stochastic Learning
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in CLA or Stochastic Cellular Learning Automata (SCLA),
femtocells can self-learn the changing radio environment and
adapt tominimize interference. SLA learns bymeans of feed-
back from the environment and improve on its selection. As
there is no predetermined relationships between SLA actions
and the responses, so there is no requirement for a closed
form system model. Also, as SLA operates at each femtocell
level the overall SCLA design is fully distributed and dy-
namic. Thus SLA is appropriate in our HetNet system model
where cell deployment is user defined and not under oper-
ator control. The learning process is done iteratively until
SLA reaches a stable condition. We adjust the probabilities
of states stochastically in any K − K∗ CLA configuration,
such that

∑
y pj,y = 1, and keep the learning rate of the al-

gorithm of the order of 10−3 for every femtocell j. With
these conditions satisfied, Theorems 1 and 2 guarantee that
the SCLA configuration will converge to a stable condition
for the network.

4. Proposed SCLA Approach
In this section we present the proposed approach based

on SCLA. The system model based on this approach is dis-
tributed, real time and allows dynamically interaction with
its environment. The design exhibits characteristics of emer-
gent behavior as it has the capability to self-learn through
the feedback received from users and neighboring femto-
cells and adapt accordingly. SCLA picks out one CC from
M orthogonal vectors in Y according to a probability vec-
tor q j

t =
[
q j
t (1), q j

t (2), . . . , q j
t (M)

]
for femtocell j at time

t. All UEs in a femtocell are then sorted according to their
SINR values and the UE experiencingmaximum interference
is allocated this orthogonal CC at maximum power P. For
the rest of the UEs in the femtocell, the next worst case UE
is allocated a CC from the remaining available CCs having
minimum recorded aggregate interference. For these UEs,
the CC transmit power is calculated based on target user data
rate Rk using (4) and is limited to a maximum of αP as
highlighted in Sec. 2. The target value of Rk corresponds to
a predefined QoS level set by operator to be met for any user
k in the network. This process is repeated until all UEs have
been satisfied.

Once the CC states have been selected for the femto-
cells, we update the probability vector by using pursuit algo-
rithm [25]. We use Discrete Pursuit Reward Inaction (DPRI)
pursuit algorithm in this work. The previous work has shown
that DPRI pursuit algorithm has good convergence proper-
ties. SCLA learns on the basis of two types of feedbacks
from the environment, the combined interference plus noise
observed per CC by all users, named as Scheme ’A’ and the
neighboring cells orthogonal vector selection available from
the publishing server, named as Scheme ’B’. In Scheme A,
a positive or negative reinforcement signal β is generated if
the observed data rate on theworst user increases or decreases
than the previous time slot. Whereas, in Scheme B, a pos-
itive or negative reinforcement signal β is generated if the

observed cell throughput increases or decreases with respect
to the previous time slot. The equation for β for Scheme A at
any time slot t is given in (7), where k is the worst case UE.

βt =



optimum i f Uk (t) ≥ Uk (t − 1),
not-optimum Uk (t) < Uk (t − 1)

(7)

where k = worst case UE.

The equation for β for Scheme B at any time slot t is
given in (8)

βt =



optimum if
∑K

k=1 Uk (t) ≥
∑K

k=1 Uk (t − 1),
not-optimum

∑K
k=1 Uk (t) <

∑K
k=1 Uk (t − 1).

(8)

Algorithm 1 Femtocell Stochastic Automata Orthogonal
Component Carrier Selection
Initialization: qt (m) = 1

M∀m ∈ {1, ..., M }, y(m) ∈
Y, x(l) ∈ X∀l ∈ {1, ..., L},Y ⊆ X,CCPower (l) = 0,Ql =

0,Uk = 0,Ureq = Rk, l ∈ {1, ..., L}, k ∈ {1, ..., K }, β, time t =
0
repeat

if t > 0
for all L CCs
Compute Qk,l for each k user using (3)
Ql =

∑K
k=1 Qk,l

end for
Select CC y(m) from Y satisfying (10)

trialState ← y(m)
Arrange cell UEs as per increasing SINR levels

worstCaseUE ← UESINR(1)
Assign orthogonal CC and power to worst case UE

Channel (worstCaseUE) ← y(m)
CCPower (y(k)) ← pmax

i ← 1
for rest (K-1) UEs in femtocell

i ← i + 1
nextWorstCaseUE ← UESINR(i)
find next available x(l) with lowest Ql

Channel (nextWorstCaseUE) ← x(l)
Compute power req to satisfy Ureq from (4)
if power Req > αpmax

CCPower (x(l)) = αpmax
else

Power (x(l)) = power Req
endif

end for
t ← t + 1
Get feedback and update qt vector
if Scheme A is valid
β = (UworstCaseUE(t) ≥ UworstCaseUE(t − 1))?
update qt using (9)with 4A

if Scheme B is valid
β = (

∑K
k=1 Uk (t) ≥

∑K
k=1 Uk (t − 1))?

update qt using (9)with 4B
until t = End Simulation
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Thus the CC probability vector is updated according to
the following equations in both the cases.

qi
t+1( j) =




qi
t ( j) + (L − 1) × 4A,B if βt = optimum,

qi
t ( j) − 4A,B otherwise

(9)

where ∆A,B is the either the learning rate for SCLA Scheme
A or B respectively. As both the SCLA schemes are inde-
pendent of each other, the system model can use the schemes
separately or apply them in unison. In case the schemes are
combined, a single CC probability vector is used for orthog-
onal CC selection.

As the simulation time step t progresses each femto-
cells will continue to learn and improve on its orthogonal CC
selections and reach an optimal level where the probability
of the best CC vector will almost reach unity. Reaching this
condition is desirable if the neighbor cells do not change their
orthogonal CC vector selections. When such a network state
has been reached then the system can be considered as stable.
However, the model still retains its dynamic nature as it can
respond to any new change in the environment.

In order to give enough time to the system to explore
the environmentwe initialize the probability vector uniformly
and allow each state to get at least one chance in E trials with
a confidence level ofCL. This can be achieved if the condition
of E given in the following equation is satisfied.

1 −
(
M
1

) (
M − 1

M

)E
≥ CL. (10)

Thus, we choose an appropriate value of E to satisfy
the above condition. The pseudo-code of our system is given
in Algorithm 1.

5. Results
Simulation Environment. A downlink LTE-A scenario was
simulated in Matlab as shown in Fig. 5. Simulation parame-
ters used in this paper are given in Tab. 1. These parameters
have been referred from [13]. Omnidirectional antennas are
assumed for all cells. A full buffer traffic model with infi-
nite data packets in the queue of each femtocell is applied.
Femtocells users are configured in closed subscriber group
(CSG) mode, that is only those users included in the CSG
access control list of a femtocell are given CC resources.

Learning Rate. SCLA Scheme A with user feedback was
taken as reference to select one learning rate for the simu-
lated environment. Rk was set to 40Mbps. Performance
of edge users was observed while varying the SCLA learn-
ing rate 4A from 0.0001 to 0.05. The results are presented
in Fig. 6.

Figure 6 shows that the learning rate of 4A = 0.005
gives the best performance overall with highest observed av-
erage edge user data rate of 28.91Mbps. The average data
rate achieved for all users at this learning rate is also highest,
around 37Mbps. Above and below this value the SCLA
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Fig. 5. Simulated environment - a sample scenario.

performance is not optimum. For very low learning rates the
system performance deteriorates considerably, as the fem-
tocells are unable to cope up with the changes in the envi-
ronment model. Higher learning rates (above 0.05) were not
tested as they lead to unstable behavior as pointed out in The-
orems 1 and 2. Thus, 0.005 was selected as the learning rate
for both SCLA schemes A and B for rest of the simulations.
In the case where both A and B SCLA schemes have been
combined, the learning rate of 0.002 has been used so that
the combined effect can be compared to the case where only
one of the SCLA schemes is applied.

Parameter Std Value [13] This Paper
Environment Area 500m × 500m 500m × 500m
Penetration Loss 20 dB 20 dB
Noise Temperature 300K 300K
Shadowing Effect Log Normal,

σ = 10 dB
Log Normal,
σ = 10 dB

Macrocell Power 43 dBm 43 dBm
Density of
Femtocells

0.0001 per m2 0.0001~0.0008
per m2

UE Speed max. 3 km/h max. 3 km/h
UE Data Rate min. 10Mbps min. 25Mbps,

max. 40Mbps
Femtocell Range 3m~30m 3m~30m
Separation b/w

User and Macrocell
min. 35m min. 20m

Cell Separation min. 75m min. 45m
Antennas Omni-directional Omni-directional

RF Attenuation free space model free space model
Femtocell UEs max. 10 max. 10

Carrier Frequency 2000MHz 2000MHz
Bandwidth 100MHz 100MHz

UE Antenna Gain 5 dB 5 dB
Femtocell Edge - 21m~30m
Femtocell Power max. 30 dBm 11 dBm~30 dBm

Scheduler - 1 CC per UE
Simulation Time - 300 to 350 steps

Tab. 1. Simulated environment parameters.
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Fig. 6. User performance with different learning rates for SCLA
with user feedback.

Cardinality of Orthogonal CC Set. The average data rate
achieved for edge users and all users as a whole with dif-
ferent sizes M of orthogonal set Y is shown in Fig. 7. The
results show that reserving less number of CCs for orthogo-
nal set Y give better performance for edge users as compared
to higher numbers, i.e. around 3 to 5. The best performance
is achieved when M = 4. It can also be seen that the value of
M , that gives best result with edge users also gives best re-
sults for all users. This is because lower level of interference
in the environment improves SINR for all users.

Variable Target User Data Rate R. The simulation results
with different target user data rate, Rk is shown in Fig. 8 and
Fig. 9 for edge users and all users respectively. The figures
give a comparison of network performance for four cases; (1)
Non-learning case, (2) SCLA with user feedback, (3) SCLA
with cell publishing and (4) Combination of SCLA with
user feedback and cell publishing. Four distinct regions of
achieved user data rate vis-a-vis given target data rate can be
identified in both the graphs for the above, one non-learning
and three SCLA learning cases. The first region, labelled as
A corresponds to the data range where the measured average
data rate of users is more than the required target data rate in
all four cases. Thus, in this region though the three SCLA
learning cases perform better to non-learning case but as the
required target data rate is met we can claim that all cases
have acceptable performance. The second region, labelled as
B corresponds to the region where non-learning case is not
able to meet the required target data rate but the three SCLA
learning cases perform better than the target value or are able
to achieve it. The third region, labelled as C corresponds to
the region where all four cases fail to meet the target data
rate but the three SCLA learning cases perform much better
than non-learning case. The fourth region labelled as D, is
a region where all the four cases do not meet the target data
rate and have almost equal performance. This is due to the
fact that in order to satisfy the high target data rate value all
femtocells have to give their users, CC resources at maxi-
mum power possible and so overall the interference level in
the network environment becomes so high that learning does
not give any significant advantage.

Fig. 7. User data rate averages with different number of orthog-
onal channels.

Comparing the two figures i.e. Fig. 8 and Fig. 9, it can
be seen that as the average data rate observed for all users
in Fig. 9 continue to increase and match the target values
whereas the graph of edge users starts to fall around the mid.
This dip in the performance of cells for edge users is because
of the rising interference level in the environment as all fem-
tocells start to operate at maximum capacity to match the
target user data rate. This observation is similar to [26], [27],
where performance degrades as traffic density and user de-
mands increases. However, a combination of new disrup-
tive technologies for 5G like directional antennas, massive
MIMO and millimetre spectrum wave can provide us with
more frequency bandwidth and data rates while at the same
time reducing the interference as pointed out in [28]. Hence,
we may see important improvement in performance at the
higher data rates by the application of our SCLA techniques.
It can also be seen that the region B is more wide for the
edge users as compared to all users, which shows that the
SCLA learning benefits the edge users more as compared to
all users.

Comparing the three SCLA learning cases in Fig. 8 and
Fig. 9, it can be seen that the SCLA learning case based only
on user feedback in general, performs better for edge users as
compared to SCLA with cell feedback and combined SCLA
cases. This is because in this case, the learning is based
solely on the performance of worst users who happen to be
at the extreme edges. The case of SCLA with cell feedback
lags behind the other two cases in both the figures as it does
not take into account the actual interference situation in the
coverage area and learns only from the published CC vectors
of neighboring cells defined by a simple distance parameter
and femtocells’s own throughput. However, the combined
SCLA case in the two figures show that combining the SINR
feedback from users to the published CC feedback of neigh-
boring cells gives a better performance as compared to the
individual SCLA cases for all users (Fig. 9). This shows that
enhancing the edge user performance benefits all users in the
network due to refined orthogonal CC selection.
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Fig. 8. Performance with variable data rate for edge users.

Fig. 9. Performance with variable data rate for all users.

Fig. 10. Edge user performance versus femtocell density.

Fig. 11. General user performance versus femtocell density.

Fig. 12. Empirical CDF graph for edge users.

Performance Versus Femtocell Density. The average target
data rate achieved by edge users and all users with increasing
femtocell density for the four cases of non-learning, SCLA
with user feedback, SCLAwith cell publishing and combined
SCLA is shown in Fig. 10 and Fig. 11 respectively. The re-
sults in both the figures, show that as cell density increase the
performance of non-learning and learning SCLA cases fall
and converge. This is because with increasing cell density the
number of network users also increase resulting in an overall
rise in the transmission and interference in the network. The
point of convergence is around 0.001 cells/m2 in both the
figures. Comparing the three SCLA cases, it can be seen
that SCLA with user feedback performs better for edge users
as compared to the other two cases, whereas the combined
SCLA case has better results for overall all users. These ob-
servations here are similar to the previous observations for
variable target user data rate, because in both the situations
the effect on the network is similar i.e. more traffic demand
requires more network resources thereby resulting in more
CC transmissions and rise in network interference.

Empirical CDF Plots For Edge Users. The CDF plots for
edge users at the distance of 5m from cell edges, with a tar-
get user data rate of 25Mbps and cell deployment density of
0.0003 cells/m2 is shown in Fig. 12. The graph clearly shows
the advantage of combined SCLA learning case (SCLA
scheme A + B) over no learning case. For almost all the
observed edge user’s data rates the probabilities of combined
SCLA are higher as compared to the case where learning is
not employed. For no learning case, the users beyond the
target data rate of 25Mbps is almost negligible whereas in
the learning cases there are some users with data rates that
are higher than the given target. This is mainly due to the
reduction in the interference levels among neighboring cells
because of SCLA.

6. Conclusions
The simulation results clearly show that (1) Stochastic

learning algorithms benefit edge users as compared to non
learning cases when user target data rates are not high and
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the femtocell deployment density is not intense. (2) Fewer
number of orthogonal channels perform better as compared
to a scheme where all CC channels are used for orthogonal
vector selection. (3) The new cell publishing scheme can
be combined with user feedback using stochastic automata
to further boost the cell performance for generic users but
the selection of neighborhood area needs to be appropriately
defined. (4) Either of the two stochastic automata schemes
using user feedback and/or cell publishing can be used indi-
vidually or in unison to benefit the performance of the cell.

Acknowledgments
We would like to show our gratitude to Majed HAD-

DAD, Assistant Professor at University of Avignon, France
for sharing his ideaswith us during the course of our research.
We would also like to thank our “anonymous” reviewers for
their valuable insights and comments to improve the quality
of the paper.

References

[1] AKYILDIZ, I. F., GUTIERREZ-ESTEVEZ, D. M., BALAKRISH-
NAN, R., et al. LTE-Advanced and the evolution to beyond 4G
(B4G) systems. Physical Communication, 2014, vol. 10, p. 31–60.
ISSN: 1874-4907. DOI: 10.1016/j.phycom.2013.11.009

[2] GONCALVES, L. C., SEBASTIAO, P., SOUTO, N., et al. On the im-
pact of user segmentation and behavior analysis over traffic generation
in beyond 4G networks. Transactions on Emerging Telecommunica-
tions Technologies, 2015. DOI: 10.1002/ett.2933

[3] DAMNJANOVIC, A., MONTOJO, J., WEI, Y., et al. A survey
on 3GPP heterogeneous networks. IEEE Wireless Communications,
2011, vol. 18, p. 10–21. DOI: 10.1109/MWC.2011.5876496

[4] KIM, J., JEON, W. S. Fractional frequency reuse-based resource
sharing strategy in two-tier femtocell networks. In Proceedings of
the IEEE Consumer Communications and Networking Conference
(CCNC). 2012, p. 696–698. DOI: 10.1109/CCNC.2012.6181148

[5] KAWSER, M. T., ISLAM, M. R., AHMED, K. I., et al. Efficient
resource allocation and sectorization for fractional frequency reuse
(FFR) in LTE femtocell systems. Radioengineering, 2015, vol. 24,
no. 4, p. 940–947. DOI: 10.13164/re.2015.0940

[6] JIN, F., ZHANG, R., HANZO, L. Fractional Frequency Reuse Aided
Twin-Layer Femtocell Networks: Analysis, Design and Optimiza-
tion. IEEE Transactions on Communications, 2013, vol. 61, no. 5,
p. 2074–2085. DOI: 10.1109/TCOMM.2013.022713.120340

[7] COSTA, G. W. O., CATTONI, A. F., KOVACS, I. Z., et al. A
fully distributed method for dynamic spectrum sharing in femto-
cells. In Proceedings of the IEEE Wireless Communications and
Networking Conference Workshops (WCNCW). 2012, p. 87–92.
DOI: 10.1109/WCNCW.2012.6215547

[8] DEB, S., MONOGIOUDIS, P., MIERNIK, J., et al. Algorithms for
Enhanced Inter-Cell Interference Coordination (eICIC) in LTE Het-
Nets. IEEE/ACM Transactions on Networking, Feb. 2014, vol. 22,
no. 1, p. 137–150. DOI: 10.1109/TNET.2013.2246820

[9] OSTERBO, O., GRONDALEN, O. Benefits of Self-Organizing Net-
works (SON) for Mobile Operators. Journal of Computer Networks
and Communications, 2012, vol. 2012. DOI: 10.1155/2012/862527

[10] KHAN, Y., SAYRAC, B., MOULINES, E. Centralized self-
optimization of eICIC with varying traffic in LTE-A. In Proceed-
ings of the European Wireless Conference. May. 2014, p. 1–6.
ISBN: 978-3-8007-3621-8

[11] TIWANA, M. I. Self organizing networks: A reinforce-
ment learning approach for self-optimization of LTE mobil-
ity parameters. Automatika, 2014, vol. 55, no. 4, p. 504–513.
DOI: 10.7305/automatika.2014.12.502

[12] ALIU, O. G., IMRAN, A., IMRAN, M. A., et al. A Survey
of self organisation in future cellular networks. IEEE Communi-
cations Survey and Tutorials, 2013, vol. 15, no. 1, p. 336–361.
DOI: 10.1109/SURV.2012.021312.00116

[13] 3GPP TECHNICAL SPECIFICATION GROUP RADIO ACCESS
NETWORK. TR 36.814: Evolved Universal Terrestrial Radio Ac-
cess (E-UTRA); Further advancements for E-UTRA Physical Layer
Aspects. Jun. 2010.

[14] HOLMA, H., TOSKALA, A., REUNANEN, J. LTE Small Cell Op-
timization 1st ed. Chichester (UK): John Wiley & Sons Ltd, 2015.
(3GPP Evolution to Release 13) ISBN: 9781118912577

[15] SAAD, S. A., ISMAIL, M., NORDIN, R. A survey on power control
techniques in femtocell networks. Journal of Communications, 2013,
vol. 8, no. 12, p. 845–854. DOI: 10.12720/jcm.8.12.845-854

[16] CHEN, Z., LIN, T. Stochastic learning automata based resource allo-
cation for LTE-Advanced heterogeneous networks. In Proceedings of
the 24th IEEE International Symposium on Personal, Indoor andMo-
bile Radio Communications: Mobile and Wireless Networks. 2013,
p. 1952–1956. DOI: 10.1109/PIMRC.2013.6666463

[17] FREDKIN, E. Digital machine: An informational process based
on reversible universal cellular automata. Physica D: Nonlin-
ear Phenomena, Sep. 1990, vol. 45, no. 1–3, p. 254–270.
DOI: 10.1016/0167-2789(90)90186-S

[18] NAVID, A. H. F., AGHABABA, A. B. Emerging Applications of
Cellular Automata. InTech, 2013. (Cellular learning automata and its
applications.) DOI: 10.5772/52953

[19] BEIGY, H., MEYBODI, M. R. Asynchronous cellular learning au-
tomata and its applications. Automatica, May. 2008, vol. 44, no. 5,
p. 1350–1357. DOI: 10.1016/j.automatica.2007.09.018

[20] BEIGY, H., MEYBODI, M. R. Cellular learning automata with mul-
tiple learning automata in each cell and its applications. IEEE Trans-
actions on Systems, MAN, and Cybernetics - Part B: Cybernetics,
2010, vol. 40, no. 1, p. 54–65. DOI: 10.1109/TSMCB.2009.2030786

[21] MOGENSEN, P., NA, W., KOVACS, I., et al. LTE capacity com-
pared to the Shannon bound. In Proceedings of the 65th IEEE
Vehicular Technology Conference - Spring. 2007, p. 1234–1238.
DOI: 10.1109/VETECS.2007.260

[22] BEIGY, H., MEYBODI, M. R. A mathematical framework for cel-
lular learning automata. Advances in Complex Systems, 2004, vol. 7,
no. 3, p. 295–319. DOI: 10.1142/S0219525904000202

[23] NARENDRA, K. S., ANNASWARMY, A. M. Stable Adaptive Sys-
tems. 1st ed. NewYork (US): Prentice-Hall, 1989. ISBN: 0486442268

[24] KAELBING, L. P., LITTMAN, M. L., MOORE, A. W. Reinforce-
ment learning: A survey. Journal on Artificial Intelligence Research,
1996, vol. 4, p. 237–285. DOI: 10.1613/jair.301

[25] PAPADIMITRIOU, G. I. A new approach to the design of reinforce-
ment schemes for learning automata: Stochastic estimator learning
algorithms. IEEE Transactions on Knowledge and Data Engineering,
Aug. 1994, vol. 6, p. 649–654. DOI: 10.1109/69.298183

[26] TIWANA, M. I., NAWAZ, S. J., IKRAM, A. A., et al. Self-
organizing networks: A packet scheduling approach for coverage/
capacity optimization in 4G networks using reinforcement learn-
ing. Elektronika ir Elektrotechnika, 2014, vol. 20, no. 9, p. 59–64.
DOI: 10.5755/j01.eee.20.9.4786



RADIOENGINEERING, VOL. 25, NO. 4, DECEMBER 2016 773

[27] NASRI, R., ALTMAN, Z. Handover adaption for dynamic load bal-
ancing in 3GPP Long term evolution systems. In Proseedings of
the 5th International Conference on Advances in Mobile Computing
& Multimedia (MoMM2007). Jan 2007, HAL-ID: hal-00918897.

[28] BOCCARDI, F., HEATH, W., LOZANO, A., et al. Five
disruptive technology directions for 5G. IEEE Communica-
tions Magazine, Feb. 2014, vol. 52, no. 2, p. 74–80.
DOI: 10.1109/MCOM.2014.6736746

About the Authors . . .

Muhammad Nauman QURESHIwas born in Sahiwal, Pak-
istan. He received his B.E. degree from College of Aeronau-
tical Engineering, National University of Science & Tech-
nology, Pakistan in 1997 and M.S. in Information Security
from Sichuan University Chengdu China in 2007. Currently,

he is a Ph.D. candidate in Wireless Networking and Com-
munications at the Department of Electrical Engineering,
COMSATS Institute of Information Technology, Park Road,
Chak Shahzad, Islamabad, Pakistan. His research interests
include Self Optimized Networks for 5G and HetNets, Wire-
less Sensor Networks Security and Bring Your Own Devices
(BYOD) Security.

Dr. Moazzam Islam TIWANA received a B.Sc. degree in
Electrical and Electronics Engineering from the University
of Engineering and Technology, Taxilla, Pakistan, in 2001,
and a M.Sc. degree in Digital Telecommunication Systems
from ENST, Paris, France in 2007 and a Ph.D. degree in Mo-
bile Communications from Telecom SudParis Paris, France,
in 2010. His Ph.D. was with the R&DGroup of Orange Labs
of France Telecom. He has more than nine years of indus-
trial and academic experience with research publications in
the reputed international journals.


