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Abstract. Low complexity and high speed are the key
requirements of the digital filters. These filters can be re-
alized using allpass filters. In this paper, design and mini-
mum multiplier implementation of a fixed point lattice wave
digital filter (WDF) based on three port parallel adaptor all-
pass structure is proposed. Here, the second-order allpass
sections are implemented with three port parallel adaptor
allpass structures. A design-level area optimization is done
by converting constant multipliers into shifts and adds us-
ing canonical signed digit (CSD) techniques. The proposed
implementation reduces the latency of the critical loop by re-
ducing the number of components (adders and multipliers).
Three design examples are included to analyze the effective-
ness of the proposed approach. These are implemented in
verilog HDL language and mapped to a standard cell library
in a 0.18 µm CMOS process. The functionality of the imple-
mentations have been verified by applying number of different
input vectors. Results and simulations demonstrate that the
proposed design method leads to an efficient lattice WDF in
terms of maximum sampling frequency. The cost to pay is
small area overhead. The postlayout simulations have been
done by HSPICE with CMOS transistors

Keywords
VLSI implementation, lattice wave digital filters, three
port adaptor, canonical signed digit coefficient, fixed-
point arithmetic

1. Introduction
Wave digital filters constitute a wide class of infinite

impulse response (IIR) digital filters that transform an ana-
log network into a topological equivalent digital filter [1].
These filters find applications in a wide variety of areas such
as communication, control, biomedical engineering, audio
processing and others. A major advantage of WDFs over
most of other recursive filters is that they can inherit the fun-
damental properties such as low coefficient sensitivity and
stability under finite-arithmetic conditions [2]. Therefore,
these are very attractive for Very Large Scale Integration

(VLSI) implementation. In these filters, silicon area, com-
putational complexity, power consumption, and maximum
achievable sampling rate are highly dependent on coefficient
word length [3]. Therefore, the word length should be as
short as possible, but must be sufficient to satisfy the given
filter specifications [2]. Many researchers have investigated
WDFs that demand low power consumption and high speed,
etc., however the toughest challenge is the implementation.
The VLSI implementation of WDFs using symmetric two
port adaptor structure is represented in [3], [4]. In [5], the bit
level systolic array method is used to increase the sampling
rate to design unit element WDF and a lattice WDF using
the same specifications. The systolic hardware architecture
of the two filters is compared to the expected values of the
integrated circuit parameters. Another method which is used
to achieve significant increase in sampling rate of WDFs is
most significant bit first arithmetic [6]. However, all the
filters mentioned above are based on conventional two port
adaptor structures also known as Richards’ allpass structure.
Although M.S. Anderson et al. have compared two port and
three port series adaptor realizations of second-order allpass
section but VLSI implementation is not done [7]. In [8],
we have proposed the VLSI implementation of lattice WDF
using three port series adaptor allpass structure which pro-
vides improved maximum sampling frequency compared to
Richards’ allpass structure based WDFs.

In this paper, we have replaced conventional Richards’
allpass structures with three port parallel adaptor allpass
structures using bit parallel arithmetic to improve the max-
imum sampling rate. To increase maximum sampling fre-
quency, the latency can be reduced by using low-sensitivity
filters, resulting in short coefficients (low-latency multiplica-
tions) and by removing unnecessary operations in the critical
loop via numerical equivalent transformations [9]. However,
in this work, we have mainly concerned with minimizing the
critical loop latency. It is minimized by reducing the number
of logic components in the critical loop. Three port parallel
adaptor allpass structures can be realized with adders, de-
lays and multipliers [9], [10]. The adaptor coefficients are
quantized in fixed-point arithmetic. A general multiplier el-
ement is very costly in full-custom VLSI implementation.
To solve this problem, the multiplication of a data sample
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by a filter coefficient value is carried out by using a se-
quence of shifts and adds and/or subtracts. For low power
dissipation, the challenge is to implement the multiplier with
minimum number of adders. For this purpose, it is attrac-
tive to use the canonical signed digit (CSD) representation.
Therefore, using CSD coefficients, the hardware cost is re-
duced as well as speed is increased. The minimum number
of nonzero bits are observed in CSD coefficients compared
to other radix-2 representations. This reduces the number
of adders/subtractors [11]. Multiple constant multiplication
method is applied to implement CSD coefficients, which in
turn again reduces the number of adders [9], [12].

To verify the results, VLSI implementation of lattice
WDF of different orders is illustrated in Sec. 6. These filters
are coded in verilog HDL language and mapped to a stan-
dard cell library in a 0.18 µm CMOS process. For the same
specifications, these filters are implemented using conven-
tional Richards’ allpass as well as three port parallel adaptor
allpass structures. This is enabled us to make a proper com-
parison between their corresponding hardware realizations.
The implemented filters are simulated and tested by applying
different input vectors. The comparison results show that the
latter design is more efficient than the conventional design in
terms of the maximum sampling rate at the cost of small area
overhead.

The rest of the paper is organized as follows. Section 2
describes the lattice wave digital filters. Realization of all-
pass structures is presented in Sec. 3. In Sec. 4 the fixed
point coefficient realization is explained. Section 5 explores
the VLSI implementation. Three design examples of fixed
point lattice wave digital filters using conventional Richards’
allpass and three port parallel adaptors allpass structures are
presented in Sec. 6. Comparative analysis of the different
approaches is also given in Sec. 6. Section 7 concludes the
paper.

2. Lattice Wave Digital Filters
An explicit class of wave digital filters are called lattice

wave digital filter. It is well known that the lattice WDF
structures have many attractive properties such as low co-
efficient sensitivity and consequently the low accuracy re-
quirements for the register word length, higher dynamic
range, higher overflow level, lower round-off noise, stabil-
ity and good nonlinear properties under finite-arithmetic
conditions where effects of rounding, truncation and over-
flow are present [2], [10], [13]. Lattice WDF struc-
tures find applications in lowpass-highpass filter, bandpass-
bandstop filter, Hilbert transformers and quadrature mirror
filters (QMF) realization [14], [15]. The resulting struc-
tures are found to have minimum hardware, highly modular
and less sensitive, making them suitable for signal proces-
sors and VLSI implementation. The lattice WDF is repre-
sented by two parallel branches, which realize allpass fil-
ters. These allpass filters can be realized by using first-
and/or second-order wave digital allpass sections. These

Fig. 1. Lattice wave digital filter realization of N order.

sections can be implemented using symmetric two port or
three port networks known as adaptors in lattice WDF ter-
minology and delay elements [16]. The signal flow graph of
adaptor consists of multipliers and adders. The multipliers
are the γ coefficients that characterize the lattice WDF. The
signal flow graph of an N th order lattice WDF is depicted in
Fig. 1, where block z−1 represents the unit delay. For any
order N there are N+1

2 stages and a maximum of N adaptors.
The transfer function of a lattice WDF can be written as the
sum of transfer function of two allpass branches

H (z) =
H0(z) + H1(z)

2
(1)

where H0(z) and H1(z) are the transfer functions of stable
allpass filters of orders M and N , respectively. In case of low
pass filters, M = N − 1 or M = N + 1 so that M + N order
of overall H (z) is odd. These filters can be realized in many
different ways [17].

In this work, we only consider the cascade realization
of the first- and second-order allpass sections. A first-order
allpass section can be realized using Richards’ structure,
where a symmetric two port adaptor and a delay element
are used [9]. The second-order allpass section can be re-
alized using a cascade of two first-order Richards’ allpass
structures. A second-order allpass section is also realized us-
ing a three port parallel adaptor and two delay elements [1].
The detailed discussion of the first- and second-order all-
pass sections is given in Sec. 3. These allpass sections are
recursive structures. Generally, recursive structures require
a smaller number of arithmetic operations per sample than
their nonrecursive counterparts. One limitation of the re-
cursive structure is the maximum sampling frequency fmax
at which a filter can operate [1]. The maximum sampling
frequency for a recursive algorithm, described by a fully
specified signal flow graph is [18]
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fmax =
1

Tmin
= min

{
Ni

Ttot

}
(2)

where Tmin is the minimum sampling time, Ttot is the total
latency of the arithmetic operations and Ni is the number
of delay elements in the directed loop i [18]. The loop(s)
that determines the maximum sampling frequency is called
the critical loop(s). The digital filters with high maximum
sampling frequency are suitable candidates of low power and
high speed applications. The reason is that if required sam-
pling rate is less than the maximum sampling rate, the excess
speed can be utilized to reduce the power consumption via
power supply voltage scaling techniques [17], [18]. The area
can be minimized by clever hardware design [19]. From (2),
we observe two factors that are affecting the maximum sam-
pling rate. The first factor is the number of delay elements in
the critical loop and second is the total latency in the critical
loop. The maximum sampling frequency can be increased
by increasing the number of delay elements in the critical
loop or by minimizing the critical loop latency. In this work,
we have mainly concerned with minimizing the critical loop
latency. It is minimized by reducing the number of logic
components in the critical loop. It is further minimized by
reducing the critical delay at logic level.

3. Realization of Allpass Structures
A lattice WDF, is realized by the two parallel allpass

branches whose output are summed to produce the filter out-
put. These allpass filters are replaced by the cascaded first-
and second-order allpass sections implemented using either
symmetric two port or three port parallel adaptor structures
and delay elements. A first-order two port adaptor has a co-
efficient value (γ) which controls the response of the allpass
section. This adaptor requires a single multiplication and
three additions each. Lattice WDFs use four types of sym-
metric two port adaptors as its building blocks depending on
the value of γ coefficient. The signal flow graphs of four sin-
gle multiplier symmetric two port configurations are shown
in Fig. 2. These adaptor coefficients γ may be guaranteed
to fall into the interval −1 < γ < 1 [13]. Methods to cal-
culate these coefficients from the design specifications have
been discussed in [13]. The different adaptor structure can
be chosen depending on the value of γ coefficient as given
in Tab. 1.

In these adaptor structures, the coefficient value of the
actual multiplier (α) to be implemented is always positive
and less than or equal to half, that is, 0 ≤ α ≤ 1

2 . To de-
sign allpass section from these adaptor structures, one port
is terminated with the delay element. Generally, the transfer
function of a first-order allpass section is given by

H (z) =
t0 + z−1

1 + t0z−1 (3)

and for a second-order allpass section

H (z) =
t2 + t1z−1 + z−2

1 + t1z−1 + t2z−2 (4)

Adaptor type γ range α/γ conversion
Type I 1

2 < γ < 1 α = 1 − γ
Type II 0 < γ ≤ 1

2 α = γ

Type III − 1
2 ≤ γ < 0 α = −γ

Type IV −1 < γ < − 1
2 α = 1 + γ

Tab. 1. Adaptor types.

Fig. 2. Signal flow graph of four symmetric two-port adaptor.

where t0 = −γ0, t1 = (γ1 − 1)γ2 and t2 = −γ1 [13]. The
first- and the second-order allpass sections realized using
symmetric two port adaptors are called as Richards’ allpass
structure. Different symmetric two port adaptor structures
can be chosen depending on the value of γ coefficient as
given in Tab. 1. The second-order allpass sections are also
realized using three port parallel adaptor and delays, called
as three port parallel adaptor allpass structure.

3.1 Richards’ Structures
First-order Richards’ allpass structure is composed of

the symmetric two-port adaptor and a delay element, as
shown in Fig. 3. The signal flow graph of the conventional
symmetric two-port adaptor forming the first-order Richards’
allpass structure is described by the following equations

b1 = α(a2 − a1) + a2, (5)
b2 = α(a2 − a1) + a1 (6)

where a1 and a2 are the inputs and b1 and b2 are the outputs.
The critical loop is shown by thick lines in Fig. 3. Since this
critical loop has one multiplier, two adders and one delay
element, the total latency Ttot is equal to Tm,α + 2Ta, where
Tm,α is the time delay for the multiplier and Ta is the adder
delay [9], [19] and Ni = 1. Using (2), themaximum sampling
frequency fmax of this structure is given by

fmax =
1

Tm,α + 2Ta
. (7)

Similarly, the second-order Richards’ allpass structure
is cascade of the two first-order allpass structures and is
shown in Fig. 4. Since this critical loop has two multi-
pliers, four adders and one delay element, Ttot is equal to
Tm,α1 + Tm,α2 + 4Ta, where, Tm,α1 and Tm,α2 are the time de-
lays for the two multipliers and Ta is the adder delay [9] and
Ni = 1. The fmax of this structure is given by
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fmax =
1

Tm,α1 + Tm,α2 + 4Ta
. (8)

3.2 Three Port Parallel Adaptor Allpass Struc-
ture
A second-order three port parallel adaptor allpass struc-

ture is shown in Fig. 5. The transfer function of this section
is given by [18]

H (z) =
(1 − β1 − β2) + (β1 − β2)z−1 − z−2

−1 + (β1 − β2)z−1 + (1 − β1 − β2)z−2 (9)

where β1 and β2 are the adaptor coefficients. Comparing
with (4) we get the relationship between the adaptor coeffi-
cients to [18]

β1 =
(1 − γ1)(1 + γ2)

2
, β2 =

(γ1 − 1)(γ2 − 1)
2

. (10)

It is observed from Fig. 5 that one of the two loops can
be the critical loop. Assuming same number of fractional
bits of β1 and β2, loop 1 has one multiplier, three adders and
one delay element. While, loop 2 has one multiplier, four
adders and one delay element. Since loop 2 contains more
components, therefore, it is considered as the critical loop.
The maximum sampling frequency of this structure is given
by

fmax =
1

Tm + 4Ta
. (11)

We observe that the critical loop of the Richard’s
second-order allpass structure contains two multipliers and
four adders as shown in Fig. 4. However, a three port par-
allel adaptor allpass structure contains only one multiplier
and four adders. For the latter realization, the price to pay
is somewhat longer coefficient wordlength to meet the filter
specifications. However, it is found that the three port adaptor
coefficients typically require one extra bit to match the per-
formance of the two port realization for a given coefficient
wordlength [7].

Fig. 3. First-order Richards’ allpass structure with critical loop.

Fig. 4. Second-order Richards’ allpass structure with critical
loop.

Fig. 5. A three port parallel adaptor allpass structure.

4. Fixed-Point Coefficients
In this work, we concentrate on coefficient quantization

in fixed point arithmetic. The goal of a fixed-point arith-
metic is to maximize the filter performance and minimize
finite-word-length effects [20–24]. It is desired that the coef-
ficient values γk for k = 0, 1, 2, . . . , (M+N−1) are expressed
as the following fixed-point binary numbers [10]

−x0 +

T∑
r=1

xr2−r (12)
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where xr for r = 0, 1, . . . , B is either 0 or 1. Here x0 is
the sign bit. For negative numbers sign bit is equal to one,
whereas for non-negative numbers it is equal to zero. The
goal is to express all the filter coefficient values in the above
form with the minimum number of fractional bits B. For
efficient multiplier implementation in full-custom VLSI im-
plementation, the multiplication of a data sample by a filter
coefficient value is carried out by using a sequence of shifts
and adds and/or subtracts. In this case, it is desired to express
the coefficient values in the following form

R∑
r=1

xr2−Pr (13)

where each xr is either 1 or −1 and the PR’s are nonnegative
integers in the increasing order. The goal is to find all the
coefficient values with minimum number of R, the number of
power-of-two terms and the maximum number of shifts PR

is made as small as possible [10]. For this purpose, it is at-
tractive to use the canonic-signed-digit (CSD) representation.
This representation has three digits, −1, 0 and +1 as opposed
to the two’s-complement representation which has only two
digits, 0 and +1 [10]. The number of adders and/ or subtrac-
tors required to realize a CSD coefficient is one less than the
number of nonzero digits in this coefficient representation
form [25].

5. VLSI Implementation
In this section, VLSI implementation of lattice WDF is

presented. These filter structures are realized using adders,
multipliers and delay elements. The multiplication of a data
sample with each filter coefficient value is performed using
a sequence of shift and add and/or subtract operations which
is called as multiplierless implementation. Hence, the fil-
ters are implemented only with the adders and/or subtractors
and delay elements. For minimum adder implementation
the coefficients are realized in CSD representation. Steps
followed for the implementation are given in Fig. 6 [26].
Mentor Graphics ASIC Design Kit (ADK) tools are used for
IC flow, synthesis to standard cells and IC physical design
and simulation.

6. Design Examples
To show the design process three examples of the lattice

wave digital structure and theirmultiplierless implementation
are presented. In these implementations Richards’ and three
port parallel adaptor allpass structures are used. The input
samples wordlength is chosen as 8-bits. The coefficients
wordlength is 9-bits and 10-bits for Richards’ and three port
parallel adaptor allpass sections, respectively. The perfor-
mance of the two implementations are compared in terms of
maximum sampling frequency and area.

Fig. 6. Flow Diagram of VLSI Implementation.

Example 1:

Specifications of the Chebyshev low-pass lattice WDF are as
follows [16, p. 12]: Sampling frequency F = 16 kHz, Pass-
band edge frequency fp = 3.4 kHz, Stopband edge frequency
fs = 4.5 kHz, Passband ripple Ap= 0.5 dB, Stopband attenu-
ation As=50 dB and Filter order N= 9. We see from Fig. 1
that 9th order lattice WDF is composed of one first- and four
second-order allpass sections [9]. Its transfer function is
given by

H (z) =
1
2

[ (
−0.66771 + z−1

1 − 0.66771z−1

) (
0.61883 − 0.87844z−1 + z−2

1 − 0.87844z−1 + 0.61883z−2

)
(

0.91914 − 0.41780739z−1 + z−2

1 − 0.41780739z−1 + 0.91914z−2

)
+

(
0.49630 − 1.19393z−1 + z−2

1 − 1.19393z−1 + 0.49630z−2

)
(

0.76628 − 0.57968z−1 + z−2

1 − 0.57968z−1 + 0.76628z−2

) ]
.

(14)

For multiplierless implementation of the lattice WDF,
γ coefficients, adaptor type, α coefficients (for Richards’ im-
plementation), β coefficients (for three port parallel adaptor
implementation) and their CSD representations are given in
Tab. 2. For Richards’ implementation, blocks of first- and
second-order allpass sections are replaced with their equiva-
lent signal flow graphs depicted in Fig. 3 and 4, respectively.
The minimum sampling periods Tmin of individual allpass
sections are as follows

Tminα0 = Tm + 2Ta,

Tminα1α2 = 2Tm + 5Ta,

Tminα3α4 = 2Tm + 5Ta,

Tminα5α6 = 2Tm + 5Ta,

and Tminα7α8 = 2Tm + 4Ta.

(15)

The minimum sampling period Tmin of the overall filter, is
given by

Tmin = max
{
Tminα0,Tminα1,α2,Tminα3,α4,Tminα5,α6,Tminα7,α8

}

= 2Tm + 5Ta. (16)
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γi, 0 ≤ i ≤ 8 Adaptor αj, 0 ≤ j ≤ 8 αCSD βk, 1 ≤ k ≤ 8 βCSD

type
0.667713527 1 0.33228647 0.01010101 − −
−0.49630558 3 0.49630558 0.10000001 1.34511717 1.010100000
0.797917736 1 0.202082263 0.01010100 0.1511885 0.001010010
−0.618835168 4 0.381164832 0.10100010 1.24864118 1.0100000010
0.542641521 1 0.457358479 0.10010101 0.370194 0.101000010
˘0.766286584 4 0.233713416 0.01000100 1.17298493 1.010101000
0.328193215 2 0.328193215 0.01010100 0.5933016 0.101010000
−0.919144204 4 0.080855796 0.00010101 1.1684758 1.010101010
0.217705053 2 0.217705053 0.01001000 0.7506684 1.010000000

Tab. 2. Low-pass filter coefficients (Example 1).

The maximum sampling frequency fmax is given by

fmax =
1

Tmin
=

1
2Tm + 5Ta

. (17)

For multiplierless implementation, fmax is given by the
following equation

fmax = min
{ 1
2Ta + 2Ta

,
1

3Ta + 5Ta
,

1
4Ta + 5Ta

,
1

3Ta + 5Ta
,

1
3Ta + 4Ta

}
=
1
9Ta
. (18)

To implement a low-pass lattice WDF using three port
parallel adaptors, blocks of second-order allpass sections are
replaced with three port parallel adaptor allpass structures,
shown in Fig. 5. Although, (α0) is implemented with the
Richards’ first-order allpass structure. The fmax of the overall
filter is determined by one of the critical loops of this allpass
section. The fmax in terms of Tm and Ta for each of these
allpass sections is same as given in (11). The multipliers are
implemented with a network of shift and add and/or subtract
operations using CSD coefficients. β coefficients and their
CSD equivalents are given in Tab. 2. For the multiplierless
implementation, fmax is given by

fmax = min
{

fmaxα0, fmaxβ1β2, fmaxβ3β4, fmaxβ5β6, fmaxβ7β8
}

= min
{
1
6Ta
,
1
6Ta
,
1
5Ta
,
1
6Ta

}
=
1
6Ta
. (19)

Comparing equations (18) and (19), we observe that
fmax is improved by approximately 49% by reducing critical
delay. The filters are implemented in CMOS VLSI design
and results are summarized in Tab. 3. Here, fmax for three
port adaptors allpass based lattice WDF is improved by 15%
compared to Richards’ allpass based filter. However, the area
is increased by 24%.

fmax Area (mm2) Number of
gates

Richards’ allpass 58.5 MHz 2.952 2304
Three port adaptor 67.6 MHZ 3.669 2887

allpass

Tab. 4. Comparison of fmax and area of low-pass lattice WDF
based on Richards’ and three port parallel adaptor struc-
tures (Example1).

Example 2:

Consider an elliptic low-pass lattice WDF with the following
specifications [13]. F = 16 kHz, fp = 3 kHz, fs = 5 kHz, Ap

= 1.0 dB , As = 40 dB, Filter type = Chebyshev, and N=5.
From Fig. 1, we observe that 5th order lattice WDF consists
of one first- and two second-order allpass sections. For the
above specifications, transfer function is given by

H (z) =
1
2

[ (−0.6338 + z−1
1 − 0.6338z−1

) (
0.8260 − 0.68566z−1 + z−2
1 − 0.68566z−1 + 0.8260z−2

)

+

(
0.5372 − 1.01532z−1 + z−2
1 − 1.0153z−1 + 0.5372z−2

) ]
.

(20)

For multiplierless implementation of the lattice WDF,
γ coefficients, adaptor type, α coefficients (for Richards’
implementation), β coefficients (for three port parallel adap-
tor implementation) and their CSD representations are given
in Tab. 4. For Richards’ structure implementation, fmax is
given by

fmax = min
{

1
2Ta + 2Ta

,
1

4Ta + 5Ta
,

1
3Ta + 4Ta

}

= min
{
1
4Ta
,
1
9Ta
,
1
7Ta

}
=
1
9Ta
. (21)

To implement the low-pass latticeWDF using three port
parallel adaptors, the fmax in terms of Tm and Ta for each of
these allpass sections, is same as given in (11). The β coeffi-
cients and their CSD equivalents are given in Tab. 4. For the
multiplierless implementation, fmax is given as follows

fmax = min
{

fmaxα0, fmaxβ1β2, fmaxβ3β4
}

= min
{
1
4Ta
,
1
7Ta
,
1
6Ta

}
=
1
7Ta
. (22)

Comparing equations (21) and (22) shows that fmax is
improved by approximately 28.5% by reducing critical loop
delay. The filters are implemented in CMOS VLSI design to
verify the results and are summarized inTab. 5. Here, fmax for
three port adaptors allpass based lattice WDF is improved by
approximately 16.5% compared to Richards’ allpass based
filter. However, the area is increased by 18%.

−
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γi, 0 ≤ i ≤ 4 Adaptor αj, 0 ≤ j ≤ 4 αCSD βk, 1 ≤ k ≤ 4 βCSD

type
0.6338 1 0.3662 0.10100010 − −

−0.5372 4 0.4628 0.1000101 1.2762603 1.010010101
0.6605 1 0.3395 0.10101001 0.26093 0.010001010
−0.8360 4 0.1740 0.01010101 1.262709 1.010001001
0.3755 1 0.3755 0.10100000 0.573291 0.10010101

Tab. 3. Coefficients of low-pass WDF filter (Example 2).

Fig. 7. Magnitude response (a), phase response (b), input signal (c), filtered output (d).

fmax Area (mm2) Number of
gates

Richards’ allpass 70.0 MHz 1.934 1476
Three port adaptor 81.6 MHZ 2.285 1698

allpass

Tab. 6. Comparison of fmax and area of low-pass lattice WDF
(Example 2).

Example 3:

Consider an elliptic low-pass lattice WDF with the following
specifications [13]. F=16 kHz, fp = 3.4 kHz, fs = 4.6 kHz,
Ap= 0.2 dB, As=65 dB, Filter type= Cauer, and Filter order
N= 7. From Fig. 1, we observed that the 7th order lattice
WDF requires one first- and three second-order allpass sec-
tions. For given filter specifications, the transfer function is
obtained as

fmax Area (mm2) Number of
gates

Richards’ allpass 63.1 MHz 2.472 1865
Three port adaptor 71.3 MHz 2.966 2595

allpass

Tab. 7. Comparison of fmax and area of low-pass lattice WDF
(Example 3).

H (z) =
1
2

[ (
−0.5190 + z−1

1 − 0.5190z−1

) (
0.66872 − 0.557752z−1 + z−2

1 − 0.55772z−1 + 0.66872z−2

)
+

(
0.40441 − 0.853474z−1 + z−2

1 − 0.853474z−1 + 0.40441z−2

) (
0.89613 − 0.39193z−1 + z−2

1 − 0.39193z−1 + 0.89613z−2

) ]
.

(23)

The magnitude and phase response of the designed fil-
ter are depicted in Fig. 7(a) and 7(b). When an input signal
x(t) = sin(80πt) + sin(12000πt) is applied to the filter, its

γi, 0 ≤ i ≤ 6 Adaptor αj, 0 ≤ j ≤ 6 αCSD βk, 1 ≤ k ≤ 6 βCSD

type
0.51290 1 0.4871 0.10000101 − −

−0.40441 3 0.40441 0.10101000 0.8337626 1.001010101
0.60271 1 0.3922 0.10100100 0.2618522 0.010001010
−0.66872 4 0.3313 0.1010101 1.113236 1.001001010
0.33424 2 0.33424 0.10101010 0.5554835 0.100100100
−0.89613 4 0.1038 0.00100101 1.14402056 1.001001010
0.20669 2 0.2067 0.01010101 0.69502645 1.0101001

Tab. 5. Low-pass filter coefficients Example 3.
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output is y(t) = sin(80πt). Both x(t) and y(t) are shown
in Fig. 7(c) and 7(d). The responses shown in Fig. 7 are
illustrated using MATLAB tool.

For multiplierless implementation of the lattice WDF,
γ coefficients, adaptor type, α coefficients (for Richards’ im-
plementation), β coefficients (for three port parallel adaptor
based implementation) and their CSD representations are
given in Tab. 6. For Richards’ implementation, fmax is given
by

fmax = min
{

1
2Ta + 2Ta

,
1

4Ta + 5Ta
,

1
4Ta + 4Ta

,
1

4Ta + 4Ta

}

= min
{
1
4Ta
,
1
9Ta
,
1
8Ta
,
1
8Ta

}
=
1
9Ta
. (24)

To implement a low-pass lattice WDF using three port
parallel adaptors, the fmax in terms of Tm and Ta for each of
these allpass sections, is same as given in (11). β coefficients
and their CSD equivalents are given in Tab. 6. For multipli-
erless implementation, minimum fmax of the overall filter is
given by

fmax = min
{

fmaxα0, fmaxβ1β2, fmaxβ3β4, fmaxβ5β6
}

= min
{
1
4Ta
,
1
7Ta
,
1
6Ta
,
1
6Ta

}
=
1
7Ta
. (25)

Comparing of equations (24) and (25), fmax is improved
by approximately 28.5% by reducing critical loop delay. The
filters are implemented in CMOSVLSI design and results are
summarized in Tab. 7. CMOS layout diagram of theWDFus-
ing three port adaptor allpass structure is depicted in Fig. 8.
The fmax for three port adaptors based lattice WDF is im-
proved by 13% compared to Richards’ structure based filter.
However, the area is increased by 20%.

7. Conclusion
In this paper, novel approach to design a fixed-point

lattice WDF for increased maximum sampling frequency is
presented. It is increased by reducing the number of logic
components in the critical loop resulting reduced critical de-
lay of the logic components. Second-order three port parallel
adaptor allpass section has smaller number of logic compo-
nents in their critical loop than Richards’ allpass section.
For the given examples the maximum sampling frequency
is improved by using three port parallel adaptor allpass than
the conventional Richards’ allpass structures. Three design
examples are included here of different order lattice WDF.
Three port parallel adaptor and Richards’ allpass structures
based latticeWDFmeeting the same filter specificationswere
designed and implemented using logic synthesis from Ver-
ilog HDL description. Lattice WDF structures were evalu-
ated with respect to throughput and arithmetic complexity.
The efficient implementation of lattice WDF is presented
using 0.18 μm CMOS process in a standard cell library.

Fig. 8. Layout Diagram of lattice WDF implemented with three
port adaptor allpass structure.
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