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Abstract. This paper presents a theoretical analysis of 
moving reference planes associated with unit cells of non-
reciprocal lossy periodic transmission-line structures 
(NRLSPTLSs) by the equivalent bi-characteristic-imped-
ance transmission line (BCITL) model. Applying the 
BCITL theory, only the equivalent BCITL parameters 
(characteristic impedances for waves propagating in for-
ward and reverse directions and associated complex prop-
agation constants) are of interest. An infinite NRLSPTLS is 
considered first by shifting a reference position of unit cells 
along TLs of interest. Then, a semi-infinite terminated 
NRLSPTLS is investigated in terms of associated load 
reflection coefficients. It is found that the equivalent BCITL 
characteristic impedances of the original and shifted unit 
cells are mathematically related by the bilinear transfor-
mation. In addition, the associated load reflection coeffi-
cients of both unit cells are mathematically related by the 
bilinear transformation. However, the equivalent BCITL 
complex propagation constants remain unchanged. Nu-
merical results are provided to show the validity of the 
proposed theoretical analysis.  

Keywords 
Unit cell, periodic transmission-line structure, bi-
characteristic-impedance transmission line (BCITL), 
bilinear transformation  

1. Introduction 
Reciprocal and nonreciprocal periodic structures of 

transmission lines (TLs) have several practical applications 
in microwave technology; e.g., microwave filters, slow 
wave components, traveling-wave amplifiers, phase shift-

ers and antennas [1–10]. In general, problems associated 
with these periodic structures have been analyzed based on 
the Floquet’s theorem [5]. For nonreciprocal periodic 
structures, there are several papers discussing about the 
analysis and their useful applications in the literature  
[6–10]. Recently, the equivalent model based on bi-char-
acteristic-impedance TLs (BCITLs) has been proposed to 
conveniently analyze terminated finite reciprocal lossy 
periodic TL structures [11]. However, only reciprocal 
BCITLs are presented in [11]. To extend the concept for 
a more general problem, nonreciprocal lossy periodic TL 
structures (NRLSPTLSs) are considered in this paper. In 
applying the BCITL model, only the equivalent quantities 
associated with each unit cell of NRLSPTLSs are em-
ployed; i.e., equivalent characteristic impedances and asso-
ciated complex propagation constants for waves propagat-
ing in forward and reverse directions. 

For the analysis of a unit cell of reciprocal periodic 
structures related to moving reference planes, published 
papers [12], [13] and book [5] discovered that the propa-
gation wavenumber of the structures is not a function of 
the position of the reference plane, and associated charac-
teristic impedances depend on the choice of the reference 
position of the unit cell. However, results in [12], [13] are 
derived based on Maxwell’s equations via the scattering-
matrix equation and the assumption of reciprocity, which is 
unnecessarily complicated. In addition, the finding in [5] is 
valid for a specific case only. Furthermore, it is not obvi-
ous, for nonreciprocal periodic structures, how to define 
a unit cell properly for convenience in analysis due to asso-
ciated nonreciprocity and possible asymmetry. Therefore, 
this paper aims to provide simple and generalized deriva-
tions for a nonreciprocal unit cell of NRLSPTLSs when 
a reference position of unit cells is shifted along TLs of 
interest, including the relationship between associated 
BCITL parameters of the original and shifted unit cells.  
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This paper is organized as follows. Section 2 presents 
an analysis of infinite NRLSPTLSs based on the equivalent 
BCITL model. Semi-infinite NRLSPTLSs are analyzed in 
Sec. 3. An example of NRLSPTLSs is shown in Sec. 4 to 
show the validity of the proposed solutions. Finally, Sec-
tion 5 provides conclusions. 

2. Analysis of Moving Reference 
Planes for Infinite NRLSPTLSs 
A finite NRLSPTLS of M nonreciprocal lossy unit 

cells can be effectively modeled as a BCITL of length Md 
as shown in Fig. 1, where d is the length of each unit cell 
[14]. Note that Vm and Im  are the phasor voltage and the 
phasor current at the terminal of the mth unit cell (where 
m = 1, 2, …, M), respectively. Generally, nonreciprocal 
BCITLs possess the complex propagation constants + and 
– with corresponding complex characteristic impedances 

0Z   and 0Z   for waves propagating in forward and reverse 

directions, respectively. In this section, an infinite 
NRLSPTLS is considered, which can be obtained from 
Fig. 1 by letting both ends approach infinity. 

Using the transmission (ABCD) matrix technique and 
eigenanalysis, it can be shown rigorously that + and – of 
nonreciprocal BCITLs possess two possible solutions each, 
as follows [14]: 
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where the subscript “1, 2” indicates the choice of + and – 
signs in the solutions, respectively. Note that the total 
ABCD parameters of each nonreciprocal unit cell possess 
the property of AD – BC  1 [1]. Since, + and – each 
possess two possible solutions, it seems that there are four 
possible combined solutions for waves propagating along 
the infinite NRLSPTLS for the (forward, reverse) wave. 
However, only two valid solutions (1

+, 2
–) and (2

+, 1
–) 

must be chosen for the (forward, reverse) wave [14]. In 

addition, 0Z   of nonreciprocal BCITLs can be expressed in 

terms of the total ABCD parameters of each nonreciprocal 
unit cell as follows [14]:  
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To be consistent with the two valid solutions for + 
and – (i.e., (1
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Fig. 1. A finite NRLSPTLS of M unit cells and its equivalent 

BCITL model. 
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Fig. 2. A nonreciprocal unit cell of an infinite NRLSPTLS 

obtained by shifting a reference position s along TLs. 

solutions are valid; i.e., ( 0,1 0,2,Z Z  ) and ( 0,2 0,1,Z Z  ). Thus, 

two sets of valid solutions of nonreciprocal BCITL param-
eters are given as follows: 

(i) ( 0,1 1,Z   ) and ( 0,2 2,Z   ) for forward and reverse waves 

respectively, 

(ii) ( 0,2 2,Z   ) and ( 0,1 1,Z   ) for forward and reverse 

waves, respectively. 

To analyze NRLSPTLSs in the context of moving 
reference planes of unit cells, an original nonreciprocal unit 
cell of length d is initially considered as shown in Fig. 2 
(on the left end). In Fig. 2, an infinite NRLSPTLS consists 
of two distinct TLs, with the unloaded propagation con-
stants k0 and k1 and the corresponding characteristic im-
pedances Z0 and Z1, loaded with a nonreciprocal lossy 
lumped two-port network at the center. It should be pointed 
out that the two-port network is dimensionless. The refer-
ence position (s) of the unit cell is shifted along TLs of 
interest, where 0  s  d. Since the structure of NRLSPTLS 
for both original and shifted cases are identical, + and – 
are expected to remain unchanged. To clarify this, let us 
consider Fig. 2, where the original unit cell can be consid-
ered as being composed of a cascade of two two-port net-
works possessing the transmission matrices [T1] and [T2]. 
In addition, a shifted unit cell is composed of a cascade of 
two two-port networks possessing the transmission matri-
ces [T2] and [T1], where 
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for i = 1 and 2. In (5), Ai, Bi, Ci, and Di are the ABCD 
parameters associated with [Ti]. Note that the total 
transmission matrix of the original (when s = 0 and s = d) 
and shifted unit cells can be written explicitly as (6) and 
(7), respectively: 
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where the subscripts o and s in this paper are associated 
with the original and shifted unit cells, respectively. From 
(6) and (7), it can be shown that both cases provide the 
same + and –, computed using (1) and (2), as  
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However, it can be shown using (3), (4), (6) and (7) 
that the equivalent characteristic impedances of the original 
and shifted unit cells are different ( 0,(1,2), 0,(1,2),o sZ Z  ) de-

pending on the reference position, where 0,(1,2),oZ   and 

0,(1,2),sZ   are equivalent characteristic impedances of the 
original and shifted unit cells, respectively. In addition, it is 
found that 0,(1,2),oZ   and 0,(1,2),sZ  , as well as 0,(1,2),oZ   and 

0,(1,2),sZ   are mathematically related by the following bi-
linear transformation [15]: 
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with 0 0ad bc   and 1 1 1 1 0a d b c   in general, where      

b = b1 = 0 and 
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In (10) and (11), it should be pointed out that the equi-
valent  characteristic  impedances  of  the original  unit cell 
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Fig. 3. A nonreciprocal unit cell of a semi-infinite 

NRLSPTLS terminated in a load impedance. 

0,(1,2),oZ   remain unchanged when moving reference planes 

due to the cascading property of the transmission matrix. 

Thus, once 0,(1,2),oZ   are known, only simple parameters in 

(12)-(14) are computed as moving reference planes. This is 

an advantages of using (10) and (11) in computing 0,(1,2),sZ   

instead of (3) and (4) when studying effects of moving 
reference planes. 

3. Analysis of Moving Reference 
Planes for Semi-Infinite Terminated 
NRLSPTLSs 
Consider a semi-infinite NRLSPTLS, terminated in 

a load impedance ZL, as shown in Fig. 3, where M ap-
proaches infinity. At the terminal of a nonreciprocal unit 
cell in Fig. 3, the load reflection coefficients of the original 
and shifted unit cells are mathematically defined in terms 
of associated load impedances as (15) and (16), respec-
tively [14]: 
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where ZL,o and ZL,s are the load impedances seen at the end 
terminal of the original and shifted unit cells, respectively. 
In Fig. 3, ZL,o is equal to ZL. Using the transmission matrix 
technique, it can be shown that ZL,o and ZL,s are also math-
ematically related by the bilinear transformation as follows: 
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with A2D2 – B2C2  0 in general. It can be shown that 

,(1,2),L o  and ,(1,2),L s  are finally related by the bilinear 

transformation due to the bilinear transformation relation-
ships between ,(1,2),L o  and ZL,o, ,(1,2),L s  and ZL,s, as well as 

ZL,o and ZL,s, as follows: 
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with a2d2 – b2c2  0 in general, where 
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In (18), it should be pointed out that the load reflection 
coefficient of the original unit cell L,(1,2),o also remains 
unchanged when moving reference planes because Z

0,(1,2),o 
and ZL,o in (15) remain unchanged as discussed at the end 
of Sec. 2.  

4. An Example of NRLSPTLSs 
Consider an example of NRLSPTLSs implemented by 

a standard TL periodically loaded by a nonreciprocal mi-
crowave transistor as shown in Fig. 3. For this example, the 
bipolar junction transistor (BJT), Motorola MRF962 is 
selected to replace the nonreciprocal lossy lumped two-port 
network in Fig. 3. Only the operating frequency of 
1.5 GHz is considered in this paper, where the circuit pa-
rameters of the transistor are given as follows [16]: the 
collector-emitter voltage VCE = 10 V, the collector current 
Ic = 10 mA and the S parameters in the Z0 system with 
S11 = 0.77168°, S12 = 0.08531°, S21 = 1.7255° and 
S22 = 0.31–104°. The transistor is periodically loaded on 
the identical standard TL with the propagation constant k 
(k0 = k1 = k). It is assumed that the phase velocity of wave 
propagating along the standard TL is equal to 3  108 m/s. 
The length of TL d of the unit cell is 6 cm, and its charac-
teristic impedance is 50 . This NRLSPTLS is terminated 
in a 50 -load impedance. In the example, it is assumed 
that each nonreciprocal unit cell is linear for the range of 
input voltages and currents of interest. 

Using the standard formulas (3), (4) and the proposed 
bilinear-transformation formulas of (10)–(14), the equiva-
lent BCITL characteristic impedances can be readily com-
puted. Figure 4 shows the plot of the magnitude and the 
argument of Z

0,(1,2) versus s/d. Note that +
1,2 and –

1,2  are 
the arguments of Z+

0,(1,2) and Z–
0,(1,2), respectively. It is 

found that Z
0,(1,2) are different when varying s/d as ex-

pected. The magnitudes of Z
0,(1,2) can be varied signifi-

cantly when moving reference planes as shown in Fig. 4(a) 
and (b). In addition, the arguments of Z

0,(1,2) are different 
as expected since the considered unit cell is unsymmetrical 
as  shown  in  Fig. 4(c)  and  (d).  It  is  also  observed  that 
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  and 2
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(d) 2

  and 1
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Z
0,(1,2) are discontinuous at s/d = 0.5 due to the presence of 

the transistor. When s/d = 0 and s/d = 1, all considered 
parameters are identical as expected because the shifted 
unit cell becomes the original unit cell again. Using either 
standard or proposed formulas, they provide the identical 
equivalent BCITL characteristic impedances. However, the 
proposed formulas provide more useful information of the 
relationship between equivalent BCITL characteristic 
impedances of the original and shifted unit cells. 

Note that two sets of valid solutions of the equivalent 
BCITL complex propagation constants of unit cells of the 
example ((1

+, 2
–) and (2

+, 1
–)) remain unchanged as 

moving reference planes as expected, specifically 
1

+ = (5.94 + j16.62) m–1, 2
– = (44.19 + j23.61) m–1, 

2
+ = (44.19  j23.61) m–1, and 1

– = (5.94  j16.62) m–1.  

Similarly, using the standard formula (16) and the 
proposed bilinear-transformation formulas of (18)–(22), 
the load reflection coefficient of the shifted unit cell can be 
readily computed. It is found that both approaches provide 
identical results, but the proposed formulas provide the 
relationship between the load reflection coefficients of the 
original and shifted unit cells. 

5. Conclusions 
Moving reference planes of nonreciprocal unit cells of 

NRLSPTLSs are analyzed in this paper using the equiva-
lent BCITL model. In the analysis, both standard and pro-
posed formulas are used. It is found that both approaches 
provide identical results. However, the proposed formulas 
provide more insight about the relationship between asso-
ciated BCITL parameters of the original and shifted unit 
cells. Interestingly, the equivalent BCITL characteristic 
impedances of the original and shifted unit cells are math-
ematically related by the bilinear transformation, as well as 
the associated load reflection coefficients of the original 
and shifted unit cells. In addition, the equivalent BCITL 
complex propagation constants remain unchanged for both 
unit cells as expected. 

Acknowledgments 

This work has been supported by the Thailand 
Research Fund under the TRF Senior Research Scholar 
Program with the contract number RTA5780010. 

References 
[1] POZAR, D. M. Microwave Engineering. 2nd ed., John Wiley & 

Sons, 1998. ISBN:9780471170969 

[2] CALOZ, C., ITOH, T. Electromagnetic Metamaterials 
Transmission Line and Theory and Microwave Applications. 
Wiley-IEEE Press, 2005. ISBN: 9780471669852 

[3] LEE, M., KRAMER, B. A., CHEN, C., et al. Distributed lumped 
loads and lossy transmission line model for wideband spiral 

antenna miniaturization and characterization. IEEE Transactions 
on Antennas and Propagation, 2007, vol. 55, no. 10, p. 1671 to 
1678. ISSN: 0018-926X. DOI: 10.1109/TAP.2007.905823 

[4] YANG, B., SKAFIDAS, E., EVANS, R. J. Slow-wave slot 
microstrip transmission line and bandpass filter for compact 
millimetre-wave integrated circuits on bulk complementary metal 
oxide semiconductor. IET Transaction on Microwaves, Antennas 
& Propagation, 2012, vol. 6, no. 14, p. 1548–1555. ISSN: 
17518725. DOI: 10.1049/iet-map.2012.0336 

[5] COLLIN, R. E. Foundations for Microwave Engineering. 2nd ed. 
Hoboken (NJ): Wiley/IEEE, 2001. ISBN: 0780360311 

[6] SPAULDING, W. G. The application of periodic loading to 
a ferrite phase shifter design. IEEE Transactions on Microwave 
Theory and Techniques, 1971, vol. 19, no. 12, p. 922–928. DOI: 
10.1109/TMTT.1971.6373342 

[7] KHARADLY, M. M. Z. Periodically loaded nonreciprocal 
transmission lines for phase-shifter applications. IEEE 
Transactions on Microwave Theory and Techniques, 1974, vol. 22, 
no. 6, p. 635–640. DOI: 10.1109/TMTT.1974.1128305 

[8] ENEGREN; T. A., KHARADLY, M. M. Z. An investigation of 
nonreciprocal periodic structures. IEEE Transactions on Micro-
wave Theory and Techniques. 1980, vol. 28, no. 8, p. 905–914. 
DOI: 10.1109/TMTT.1980.1130190 

[9] ENEGREN, T. A., KHARADLY, M. M. Z. Higher order mode 
interaction in nonreciprocal periodic structures. IEEE Transactions 
on Microwave Theory and Techniques, 1982, vol. 30, no. 5, 
p. 809–812. DOI: 10.1109/TMTT.1982.1131142 

[10] THEOFANOPOULOS, P. C., LAVRANOS, C. S., ZOIROS, K., et 
al. FDFD eigenanalysis of non-reciprocal periodic structures. In 
Antennas & Propagation Conference (LAPC). Loughborough 
(UK), 2015, p. 1-5. DOI: 10.1109/LAPC.2015.7366019 

[11] LAMULTREE, S., TORRUNGRUENG, D., AKKARAEKTHA-
LIN, P. Analysis of reciprocal lossy periodic transmission-line 
structures using bi-characteristic-impedance transmission lines and 
Meta-Smith charts. In Proceedings of the 2015 12th International 
Conference on Electrical Engineering/Electronics, Computer, Tel-
ecommunications and Information Technology. Hua-Hin (Thai-
land), 2015. DOI: 10.1109/ECTICon.2015.7207026 

[12] PISSOORT, D., OLYSLAGER, F. Study of eigenmodes in 
periodic waveguides using the Lorentz reciprocity theorem. IEEE 
Transactions on Microwave Theory and Techniques, 2004, vol. 52, 
no. 2, p. 542–553. DOI: 10.1109/TMTT.2003.821906 

[13] YAGHJIAN, A. D. Bidirectionality of reciprocal, lossy or lossless, 
uniform or periodic waveguides. IEEE Microwave and Wireless 
Components Letters, 2007, vol. 17, no. 7, p. 480–482. DOI: 
10.1109/LMWC.2007.899294 

[14] LERTSIRIMIT, C., TORRUNGRUENG, D. Analysis of active 
loaded transmission line using an equivalent BCITL model. In 
Proceeding of the 2007 Asian-Pacific Microwave Conference. 
Bangkok (Thailand). 2007, vol. 4, p. 2353–2356.  

[15] ABLOWITZ, M. J., FOKAS, A. S. Complex Variables. New York: 
Cambridge University Press, 2003. ISBN: 9780521534291 

[16] SILAPUNT, R., TORRUNGRUENG, D. Theoretical study of mi-
crowave transistor amplifier design in the conjugately characteris-
tic-impedance transmission line (CCITL) system using a bilinear 
transformation approach. Progress in Electromagnetics Research, 
2011, vol. 120, p. 309–326. DOI:10.2528/PIER11080504 

About the Authors … 
Suthasinee LAMULTREE (corresponding author) was 
born in Thailand. She received the B.Eng and M.Eng in 



96 S. LAMULTREE, P. AKKARAEKTHALIN, D. TORRUNGRUENG, THEORETICAL ANALYSIS OF MOVING REFERENCE PLANES … 

Telecommunication Engineering from King Mongkut's 
Institute of Technology Ladkrabang, Thailand, in 2000 and 
2003, respectively. In 2009, she received D.Eng in Electri-
cal Engineering from the same institute. She joined the 
Electrical and Electronic Engineering Department in the 
Faculty of Engineering and Technology at Asian Univer-
sity, Thailand, in 2006. In 2016, she moved to join the 
Department of Electronics and Telecommunication Engi-
neering, Faculty of Engineering, Rajamangala University 
of Technology Isan Khonkaen Campus, Khonkaen, Thai-
land. Her research interests are antennas, electromagnetics 
and microwave engineering. 

Prayoot AKKARAEKTHALIN received the B.Eng. and 
M.Eng. degrees in Electrical Engineering from King 
Mongkut's University of Technology North Bangkok, 
Thailand, in 1986 and 1990, respectively, and the Ph.D. 
degree from the University of Delaware, Newark, USA, in 
1998. From 1986 to 1988, he worked in the Microtek 
Laboratory, Thailand. In 1988, he joined the Department of 
Electrical Engineering, KMUTNB. His current research 
interests include passive and active microwave circuits, 

wideband and multiband antennas, and telecommunication 
systems. He was the Chairman for the IEEE MTT/AP/ED 
Thailand Joint Chapter during 2007 and 2008, and the 
president for ECTI Association, Thailand from 2014 to 
2015. He is now working on the Senior Research Scholar 
Project for Thailand Research Fund (2015-2017). 

Danai TORRUNGRUENG received his B.Eng. degree in 
Electrical Engineering from Chulalongkorn University, 
Bangkok, Thailand, in 1993. He obtained his M.S. and 
Ph.D. degrees in Electrical Engineering from The Ohio 
State University in 1996 and 2000, respectively. Prior to 
joining Asian University, he worked as a senior engineer in 
the USA, involved in research and development of the 
urban propagation modeling project. At present, he is a full 
professor in the Electrical and Electronic Engineering 
Department in the Faculty of Engineering and Technology 
at Asian University, Thailand. His research interests are in 
the areas of fast computational electromagnetics, rough 
surface scattering, propagation modeling, electromagnetic 
wave theory, microwave theory and techniques, antennas 
and sensors. 

 


