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Abstract. Based on Dechirping algorithm and uniform 
circle array (UCA), a new 2-D direction of arrival (DOA) 
estimation algorithm of linear frequency modulation 
(LFM) signals is proposed in this paper. The algorithm 
uses the thought of Dechirping and regards the signal to be 
estimated which is received by the reference sensor as the 
reference signal and proceeds the difference frequency 
treatment with the signal received by each sensor. So the 
signal to be estimated becomes a single-frequency signal in 
each sensor. Then we transform the single-frequency sig-
nal to an isolated impulse through Fourier transform 
(FFT) and construct a new array data model based on the 
prominent parts of the impulse. Finally, we respectively use 
multiple signal classification (MUSIC) algorithm and rota-
tional invariance technique (ESPRIT) algorithm to realize 
2-D DOA estimation of LFM signals. The simulation re-
sults verify the effectiveness of the algorithm proposed.  
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1. Introduction 
Because of the advantages of UCA such as fewer 

array elements, the ability of 2-D DOA estimation, non-
oriented fuzzy (uniform circular array is non-oriented 
fuzzy when the elements is an odd number greater than 5 
or an even number greater than 8 [1]) etc., it has been 
widely used [2–7]. LFM signals have been widely used in 
sonar, radar and other detection equipments [8–12]. Espe-
cially for the development of imaging technology, LFM 
signals have become the main choice of the radar. So the 
DOA estimation of LFM signals based on UCA becomes 
an important issue. However, as the LFM signal belongs to 
a typical non-stationary signal, the traditional subspace 
algorithms which are based on the stationary signals cannot 
be applied to such condition. With the development of 
signal processing technology, people have developed 

a series of DOA estimation algorithms suitable for wide-
band signals [13–19]. In [13], the author uses a triangular 
array to realize DOA estimation of broadband LFM sig-
nals. There is no need for such algorithm to estimate the 
signal parameters and solve the signal spectrum. In [14], 
the author uses a space-time extended MUSIC estimation 
algorithm to realize DOA estimation of wideband signals. 
The algorithm shows a good ability to estimate a number of 
sources that exceed the number of sensors in the array. In 
[15–19], people use the sparse matrix theory to realize 
DOA estimation of wideband signals. Since Amin intro-
duces the time-frequency analysis tool to DOA estimation 
field in 1999 [20], [21], people also have developed a se-
ries of DOA estimation algorithms based on the time-fre-
quency analysis tool. In [22–24], the authors proceed DOA 
estimation by using Wigner-Ville distribution (WVD). But 
the calculation of WVD is very complex and the cross-
terms seriously affect the estimation accuracy in the case of 
multiple signals. In [25], [26], the authors study the DOA 
estimation algorithm based on short-time Fourier transform 
(STFT). These kinds of algorithms avoid cross terms inter-
ference of WVD, but it is difficult to select an appropriate 
time-frequency point. Especially, the irreconcilable con-
flicts between the STFT window length (the calculation 
complexity of the algorithm) and the estimate accuracy 
limit further development of such algorithm. In [27–32], 
the authors study DOA estimation of LFM signals based on 
fractional Fourier transform (FRFT). They construct 
a novel array data mode in the fractional Fourier transform 
domain (FRFD) based on a fact that LFM signals have the 
energy concentrated performance in the FRFD and then 
use MUSIC algorithm to obtain the 2-D DOA estimation of 
multiple LFM sources. But in their papers, they just discuss 
the linear and rectangular array model. It is necessary to 
increase the number of array elements to achieve high 
accuracy, which is difficult to realize. Also, FRFT is diffi-
cult to understand and project implementation. So these 
kinds of algorithms have not been widely used. 

This paper studies 2-D DOA estimation algorithm of 
LFM signals based on Dechirping algorithm and UCA. 
Firstly, we use the Dechirping algorithm to process LFM 
signals received by each array element and transform sig-
nals from time domain to frequency domain using Fourier 
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transform (FFT). Then, we construct a new array data 
model through extracting the prominent parts of the im-
pulse in the frequency domain. Finally, we realize 2-D 
DOA estimation of LFM signals using MUSIC algorithm 
and ESPRIT algorithm respectively. For the LFM signals, 
the time-frequency analysis tools are very suitable to pro-
cess them [33]. So the main DOA estimation algorithms of 
LFM signals are based on the time-frequency analysis 
tools. Dechirping algorithm can reduce the quantity of data 
[34], so we choose it to estimate DOA of LFM signals in 
this paper. Also in the method proposed in this paper the 
cross-term interference does not exist which exists in the 
DOA algorithms based on WVD. It also does not have the 
puzzle of selecting the appropriate window function com-
pared to the DOA algorithms based on STFT. The algo-
rithm also does not require selecting the correct time fre-
quency points compared to the DOA algorithms based on 
WVD and STFT. Unlike the existing methods which are 
based on more computationally expensive approach, the 
proposed one is significantly more efficient in terms of 
computational complexity. The algorithm also uses the 
relatively simple FFT operator and has the capability of 
estimating DOA of multiple LFM signals simultaneously 
with a high precision which are superior to the DOA algo-
rithm based on FRFT. So the proposed algorithm is prone 
to be easily realized in engineering. The simulation results 
showed the good performance of the algorithm proposed 
by this paper.  

The paper is organized as follows. In Sec. 2, we intro-
duce the new array data model of LFM signals based on 
Dechirping algorithm and we proceed detailed derivation 
in this part. In Sec. 3, we realize 2-D DOA estimation of 
LFM signals using MUSIC algorithm and ESPRIT algo-
rithm respectively. For ESPRIT algorithm, we also study 
the mode-space algorithm. In Sec. 4, we proceed the 
numerical simulation on the algorithm proposed by this 
paper. Finally, Section 5 concludes the paper. 

2. The Novel UCA Data Model of LFM 
Signals Based on Dechirping 
Algorithm 
The UCA model with N sensors is shown in Fig. 1. 

The UCA radius is r  and A1, A2,…,AN are elements of the 
UCA separately. Without loss of generality, we can set the 
angle between A1 and X axis to be w0 and the angle 
between the array elements is w, so w = 2/N. The angle 
between the far-field incident wave and Z axis is , which 
is called the elevation angle. The angle between the projec-
tion of the incident wave in XOY  plane and X  axis is α, 
which is called the azimuth angle. 

If there are M LFM signals from far-field, the output 
of the n th element can be written as: 

 n
1

( ) ( ) ( ), 1,2, ,
M

n m nm
m

x t s t n t n N


     ,  (1) 

The incident wave

 
Fig. 1. The uniform circular array model. 

  ( ) exp j (2 )m m ms t f t t    . (2) 

In (1) and (2), nn(t) is the noise, sm(t) is the mth LFM sig-
nal, fm is the central frequency of the mth LFM signal, γm is 
the modulated frequency of the mth LFM signal, τnm is the 
time delay of the mth LFM signal on the nth element re-
spect to the reference element. If we regard O as a virtual 
reference element and the speed of light is c, the time delay 
caused by the wave path difference for each element re-
spect to the reference element is: 

 e a

2 ( 1)
( ) sin( )cos( )nm m m

r n
t

c N

   
  .  (3) 

In (3), am is the azimuth angle of the mth LFM signal and 
em is the elevation angle of the mth LFM signal. 

In this paper, we assume that the modulated frequen-
cies of LFM signals are not identical, namely:  

 , , , 1, 2, ,i j i j i j M     .  (4) 

Dechirping algorithm is a kind of time-domain trans-
form technique used in high-resolution radar, which can 
greatly reduce the amount of data, so it has been widely 
used in the imaging field. Firstly, we construct a LFM 
signal whose central frequency and modulated frequency 
are the same as the original LFM signal. Then, we process 
difference frequency treatment between the original signal 
and the reference signal. Finally, we can get a single-fre-
quency signal. For the LFM signals received by each array 
element, we use the ith LFM signal received by the refer-
ence element to carry through Dechirping process. So we 
can get: 
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Due to the different modulated frequency of all LFM 
signals, znm(t) is a single-frequency signal just when m = i, 
otherwise znm(t) is a LFM signal. So the received signals of 
each element are the superposition between (M – 1) LFM 
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signals and a single-frequency signal after Dechirping 
process. 

For (5) and (6), we can execute FFT on both ends of 
the equal sign to get the frequency-domain expression. 
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In (7),  is the impulse function, Qm = γm – γi, 

nm m i m nmB f f     , 2 2nm m nm m nmC f    . 

Since each LFM signal owns a certain bandwidth, the 
result of (7) is an isolated impulse point when 2 i ni    . 
So we can regard this point as the output of the array, 
namely: 
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For (8), we only take the prominent parts of the 
isolated impulse for each LFM signals. 

 2ni niX A ,  (10) 

 2exp j ( 2 )ni i ni i niA f       .  (11) 

The second term of Ani is very small, so we generally 
ignore it in practice, namely: 

  exp j2ni i niA f   .  (12) 

We can let i traverse from 1 to M and get Xni through 
the above method. In this way, we can get a new array data 
model. 
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3. 2-D DOA Estimation Algorithm 
Based on Dechirping Algorithm 

3.1 Dechirping-MUSIC Algorithm 

From (13), we can get the correlation matrix of the 
array output [35]. 

 H H 2[ ]E   X SR XX AR A I .  (14) 

In (14), RS is the correlation matrix of the LFM signals, 2 
is the power of Gaussian white noise, I  is the unit matrix. 
Since the signal and noise are independent, RX can be 
decomposed into two parts: signal and noise. So, we can 
proceed features decomposition and get the following 
expression. 

 H H X S S S N N NR = U U + U U .  (15) 

In (15), US and UN respectively are signal subspace and 
noise subspace. So we can construct the MUSIC spatial 
spectrum [31] as follows. 

 a e H H
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We can proceed two-dimensional search based on 
(16) and find the angle (am, em) when its value is maxi-
mum. (am, em) is the DOA of the mth LFM signal. 

From (16), we can also see that Am(am, em) is differ-
ent for different LFM signals, so in the case of multiple 
signals, the Dechirping-MUSIC algorithm needs to proceed 
the two-dimensional search repeatedly, which causes huge 
computation. So it is necessary to research the algorithm 
based on Dechirping algorithm and ESPRIT algorithm. 

3.2 Dechirping-ESPRIT Algorithm 

ESPRIT algorithm needs rotational invariance of the 
array [36], [37]. But the circular array does not have this 
structural characteristic, so we use mode-space algorithm 
firstly in this paper. Mode-space algorithm is a kind of 
spectral estimation algorithm for the UCA [38], [39] and its 
central idea is to equalize a UCA to a virtual uniform linear 
array (ULA) through matrix transformation so that the 
DOA estimation algorithm based on the ULA can be ap-
plied to a UCA. We ignore the details of the mode-space 
algorithm in the main body and show the results as (17). 
The details of UCA equalization to ULA are included in 
Appendix: The derivation of (17). 
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In (17), Y  is the output of the virtual ULA, T  is the trans-
formation matrix, Ac is the manifold matrix of the virtual 
linear array, F is the spatial discrete Fourier transform 
(DFT) transformation matrix, Jm(x) is the order m of Bessel 
function, m is a factor related with the incoming wave 
parameters. K  is the maximum phase mode excited by the 
UCA, so the number of phase mode excited is 2 1K  . 
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In (19), min  expresses the minimum,   is the rounded 
down symbol. 

In this way, the UCA is converted to be a ULA whose 
element number is 2 1K  . 

As the parameters of LFM signals are different, so: 

 , , , 1, 2, ,i j i j i j M     .  (20) 

Based on (20), we can see that Ac is not a general 
manifold matrix of the ULA. So we cannot simply divide 
the array into several sub-arrays and use ESPRIT algorithm. 
Bessel functions have the recursive nature of the order, 
namely: 
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We can get the following expressions from (17) and (21). 
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In (22), C1 is a (2K – 1)  M sub-array cut out at the 
beginning of the first line of Ac, C2 is a (2K – 1)  M sub-
array cut out at the beginning of the second line of Ac, and 
C3 is a (2K – 1)  M sub-array cut out at the beginning of 
the third line of Ac. 

Because Ac is the manifold matrix of the virtual ULA, 
so C1, C2 and C3 separately are the manifold matrix of the 

three sub-array, which correspond to their own signal sub-
space, so (22) can also be written as: 
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In (23), US1, US2 and US3 separately are the signal subspaces 
of the three sub-arrays. 

We can use the least square (LS) method to solve the 
above equation and the result is: 
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In (24),   represents the generalized inverse matrix. LS1 is 
the first M rows data of LS and LS2 is the second M rows 
data of LS. We can separately proceed features decompo-
sition for LS1 and LS2. The eigenvalues of them respec-
tively are 1m (m = 1,…, M) and 2m (m = 1,…, M), so the 
DOA of the mth LFM signal is: 
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In (25), arg() represents a phase angle function of a plural 
and real() means to take the real part of a plural.  

We can see from (25) that the Dechirping-ESPRIT 
algorithm does not need to proceed eigen decomposition 
repeatedly in the case of multiple signals. 

For the readers’ convenience, the step by step proce-
dure of the proposed algorithm is given in Tab. 1. 

If there are M LFM signals arriving at a UCA with N 
sensors and the sampling numbers are L for each signal. 
We can analyze the computational complexity of the algo-
rithm based on the procedure of the algorithm in Tab. 1. 
For the DOA estimation algorithms based on time-
frequency analysis tools, the differences of the computatio-
nal complexity  are  mainly concentrated on the  process  of 
 
 
 

1) Select the ith LFM signal as the reference signal to proceed 
Dechirping process. 

2) Execute FFT on the Dechirping results and get the prominent 
parts of the isolated impulse. 

3) Let i traverse from 1 to M and repeat (1) – (2) to get the novel 
array data model. For Dechirping-MUSIC algorithm, proceed 
(4). For Dechirping-ESPRIT algorithm, proceed (5)-(7). 

4) Proceed the two-dimensional search according to (16) and get 
the DOA estimation. 

5) Proceed the mode-space transformation based on (17) and get 
the new manifold matrix. 

6) Construct the rotational invariant equation according to (23) and 
get LS  according to (24). 

7) Proceed eigen decomposition for LS and obtain the DOA 
estimation based on (25). 

Tab. 1. The complete procedure of the algorithm proposed. 
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establishing the new array model. So the algorithm 
computational complexity in this paper is the computa-
tional complexity of establishing the array model. Based on 
the procedure of the algorithm in Tab. 1, M LFM signals 
need to be processed by Dechirping algorithm in each 
sensor firstly and the computation is MNL. Then, the 
Dechirping results are transformed from time domain to 
frequency domain using FFT whose computation is 
MNLlog2L. Finally, we can construct a new array data 
model through extracting the prominent parts of the im-
pulse in the frequency domain and the computation is MN. 
So the computational complexity of the proposed algorithm 
is O(MNLlog2L). For the DOA estimation algorithms based 
on WVD [20–24], the computational complexity is 
O(MN2L2log2L). For the DOA estimation algorithms based 
on STFT [25], [26], the computational complexity is 
O(MNL2log2L). For the DOA estimation algorithms based 
on FRFT [27–32], the computational complexity is 
O(NL + MN2). So the computational complexity of the 
proposed algorithm achieves a low level contrast to the 
other DOA estimation algorithms based on time-frequency 
analysis tools, which is prone to realization in engineering. 

4. Numerical Simulation 
We proceed the numerical simulation of the proposed 

algorithm in this paper and use a UCA with sixteen sensors 
 

Signal 
number 

Frequency 
[Hz] 

Modulated 
frequency [Hz/s] 

Sampling 
rate [Hz] 

1 810 10  126 10  810  

2 88 10  122 10   810  

3 89 10  123 10  810  

Signal 
number 

Snapshot 
numbers 

SNR [dB] DOA [  ] 

1 300 20 (–25,–35) 

2 300 20 (25,–15) 

3 300 20 (35,15) 

Tab. 2. The parameters of three LFM signals. 

 
Fig. 2.  The results of the reference element after Dechirping 

process and FFT. 

whose radius is 0.4 m. There are three far-field LFM 
signals whose parameters are shown in Tab. 2. 

Firstly, the LFM signals received by each element are 
processed by the Dechirping algorithm and the frequency 
domain result of the reference element is shown in Fig. 2.  

As can be seen from the figure, the three LFM signals 
correspond to the three isolated impulse points in the 
frequency domain after Dechirping process. We can take 
the prominent parts of the isolated impulse for each array 
element to get the new array output matrix. 

4.1 Dechirping-MUSIC Algorithm Simulation 

We use the Dechirping-MUSIC algorithm to estimate 
DOA of the three LFM signals and the MUSIC spectrum is 
shown in Fig. 3. In order to facilitate the observation, the 
MUSIC spectrum of these three signals is displayed on 
a map, which means that the value of the azimuth angle 
and elevation angle is changed every three points.  

We proceed the two-dimensional search on the 
MUSIC spectrum and the search range are all from –90° to 
90° in the azimuth and elevation direction. The search step 
is 0.01°. We can get the estimates of DOA by searching the 
peak point which respectively are: (–25.02°,–35.01°),  
(25.02°,–14.99°), and (35.02°, 15.01°). The estimates 
match with the DOA set in Tab. 2. 

In order to further examine the performance of the 
algorithm, we also analyze the relationship between the 
root mean square error (RMSE) of DOA estimation and 
signal to noise ratio (SNR) of LFM signals. In addition to 
an incremental SNR of LFM signals, the other parameters 
remain unchanged. In order to reduce the effect of random 
errors, we proceed a total of 1000 times Monte Carlo simu-
lation and the results are shown in Fig. 4. 

In Fig. 4(a) there is the RMSE of azimuth angle along 
with SNR and in Fig. 4 (b) there is the RMSE of elevation 
angle along with SNR. For comparison purpose, the 
Cramer-Rao lower bound (CRLB) [40–44] is also pre-
sented in Fig. 4. As can be seen from the figure, the RMSE 

 
Fig. 3.  The Dechirping-MUSIC spectrum of these three LFM 

signals. 
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(a)  Azimuth angle 

 
(b) Elevation angle 

Fig. 4.  RMSE of DOA estimation along with SNR using 
Dechirping-MUSIC algorithm. 

of DOA estimations decrease rapidly as the SNR of signals 
increase and achieve the convergence condition (The 
RMSE is infinitely close to zero) ultimately. In the case of 
low SNR (less than 0 dB), the algorithm still has a good 
estimation performance. For a UCA, it has isotropy for the 
waves of different direction in theory, however we use the 
approximation in (12) when constructing the new array 
data model, so the DOA estimation performance for the 
waves of different direction are not the same. The simula-
tion results are in line with expectations. 

4.2 Dechirping-ESPRIT Algorithm 
Simulation 

We use the Dechirping-ESPRIT algorithm to estimate 
DOA of the three LFM signals. According to (19), we can 
get that the value of K is 6, which means the number of 
phase mode excited is 13, so we can equalize this UCA to 
a ULA with 13 elements based on (17). Then following the 
steps 6) and 7), we can obtain the estimates of DOA for 
these three LFM signals, which are: (–25.28°,–34.96°), 
(25.19°,–14.94°), and (35.26°, 14.93°). The estimates 
match with the angle set in Tab. 2. 

 
(a)  Azimuth angle 

 
(b) Elevation angle 

Fig. 5.  RMSE of DOA estimation along with SNR using 
Dechirping-ESPRIT algorithm. 

This paper also simulates the relationship between 
RMSE of DOA estimation of Dechirping-ESPRIT algo-
rithm and SNR of these three LFM signals. In addition to 
an incremental SNR, the other signal parameters remain 
unchanged. We proceed a total of 1000 times Monte Carlo 
simulation and the results are shown in Fig. 5. 

In Fig. 5(a) there is the RMSE of azimuth angle along 
with SNR and in Fig. 5(b) there is the RMSE of elevation 
angle along with SNR. As can be seen from the figure, the 
RMSE of DOA estimations decrease rapidly as the SNR of 
signals increase and achieve the convergence condition 
ultimately which are similar to the Dechirping-MUSIC 
algorithm. Compared with the Dechirping-MUSIC algo-
rithm, the RMSE of DOA estimation of Dechirping-
ESPRIT algorithm is larger, which means the estimation 
precision is lower. This is due to the inherent high preci-
sion of MUSIC algorithm [44]. But the advantage of 
Dechirping-ESPRIT algorithm is that the calculation 
amount is less. Especially in the case of multiple signals, 
the Dechirping-ESPRIT algorithm does not need to pro-
ceed eigen decomposition repeatedly, which reduces the 
computational complexity greatly. When using Dechirping-
ESPRIT algorithm, we use the approximation not only 
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when constructing the new array data model but also when 
proceeding mode-space conversion in (17), so the DOA 
estimation performance for the waves of different direction 
are not the same and the differences are more obvious 
compared with Dechirping-MUSIC algorithm according to 
Fig. 4 and Fig. 5. The simulation results are in line with 
expectations. 

4.3 Algorithm Comparison Simulation 

In order to further examine the performance of the 
algorithm, we proceed the comparison simulation between 
WVD-MUSIC algorithm in [21], WVD-ESPRIT algorithm 
in [24], STFT-ESPRIT algorithm in [25], STFT-MUSIC 
algorithm in [26], FRFT-ESPRIT algorithm in [27], FRFT-
MUSIC algorithm in [29] and the algorithm proposed by 
this paper. We select signal 1 in Tab. 2 as the incoming 
wave signal and the parameters of uniform circle array are 
unchanged. We proceed a total of 1000 times Monte Carlo 
simulation and the results are shown in Fig. 6. 

In Fig. 6(a) there is the RMSE of azimuth angle along 
with SNR based on MUSIC algorithm, (b) is the RMSE of 
elevation angle along with SNR based on MUSIC algo-
rithm, (c) is the RMSE of azimuth angle along with SNR 
based on ESPRIT algorithm, (d) is the RMSE of elevation 
angle along with SNR based on ESPRIT algorithm. We 
can see from Fig. 6 that the estimation precision of four 
kinds of DOA estimation algorithm is every high and they 
all can achieve the convergence condition finally. By con-
trast, the algorithm based on WVD owns the highest esti-
mation precision, followed by the algorithm based on 
STFT, the algorithm proposed in this paper and the algo-
rithm based on FRFT. Meanwhile, the estimation precision 
differences of these four kinds of algorithm are not big. 
Especially in high SNR situation, the estimation precision 
is almost the same. But based on the above analysis, the 
algorithm proposed in this paper owns the lowest computa-
tional complexity and uses the relatively simple FFT opera-
tor. In addition, when constructing the new array data 
model of LFM signals, the algorithm proposed in this 
paper extracts only the prominent parts of the impulse. 

 
(a)  Azimuth angle based on MUSIC algorithm 

 
(b) Elevation angle based on MUSIC algorithm 

 
(c)  Azimuth angle based on ESPRIT algorithm 

 
(d) Elevation angle based on ESPRIT algorithm 

Fig. 6.  RMSE of DOA estimation along with SNR using 
different algorithms. 

So the proposed algorithm is prone to be easily realized in 
engineering. 

In conclusion, we can contrast the main DOA estima-
tion algorithm in many ways, such as the estimation preci-
sion, the computational complexity, the sampling rate, the 
cross-term interference and so on. The comparison results 
are shown in Tab. 3. 
 



306  K. B. CUI, W. W. WU, X. CHEN, ET AL., 2-D DOA ESTIMATION OF LFM SIGNALS BASED ON DECHIRPING ALGORITHM … 

Algorithm 
Estimation 
precision 

Computational 
complexity 

Cross-term 
interference 

Dechirping 3rd 2( log )O MNL L  N 

WVD 1st 2 2
2( log )O MN L L  Y 

STFT 2nd 2
2( log )O MNL L  N 

FRFT 4th 2( )O NL MN  N 

Algorithm 
Sampling 

rate 
Time-frequency 

point 
Window 
function 

Dechirping Normal N N 
WVD High Y N 
STFT Normal Y Y 
FRFT Normal N N 

Tab. 3. The comparison results of four algorithms. 

In Tab. 3, “1st”, “2nd”, “3rd” and “4th” stand for the 
order of the estimation precision which means the algo-
rithm based on WVD owns the highest estimation preci-
sion, followed by the algorithm based on STFT, our pro-
posed algorithm and the algorithm based on FRFT. “N” 
stands for no and “Y” stands for yes. From Tab. 3, we can 
see that the proposed method owns high estimation preci-
sion and low computational complexity. Also it does not 
exist the cross-term interference and the puzzle of selecting 
the appropriate time-frequency point. The requirement for 
the system sampling is not high and it does not use the 
window function. The proposed algorithm also uses the 
relatively simple FFT operator. So it is easy to be realized 
in engineering. 

5. Conclusion 
In this paper, we proposed a new DOA estimation 

algorithm of multiple LFM signals based on the thoughts 
of Dechirping algorithm. Firstly, we proceed the difference 
frequency treatment between LFM signals received by 
each element and a specific reference signal. The reference 
signal is the signal to be estimated. It is received by the 
reference element. We can get a single-frequency pulse 
related to the signal to be estimated after Dechirping pro-
cess. Then, we transform the Dechirping results from time 
domain to frequency domain by FFT to obtain an impulse 
pulse. We construct a new array data model through ex-
tracting the prominent parts of the impulse to obtain the 
time-invariant steering vector matrix. Finally, we realize  
2-D DOA estimation of LFM signals by using MUSIC 
algorithm and ESPRIT algorithm respectively. The method 
proposed by this paper does not exist the cross-term inter-
ference and the puzzle of selecting the appropriate time-
frequency point and window function. The computational 
complexity of the proposed algorithm achieves a low level 
contrast to the other DOA estimation algorithms based on 
time-frequency analysis tools. The algorithm also uses the 
relatively simple FFT operator and has the capability of 
estimating DOA of multiple LFM signals simultaneously 
with a high precision. The simulation results verify the 
effectiveness of the algorithm and it can be applied to 
DOA estimation of LFM signals. 

Appendix. The Derivation of (17) 

If there are M LFM signals from far-field, according 
to (13), the output of the nth element can be written as: 

      1 1 1exp j2 exp j2n n M nM Mx f s f s        .  (26) 

We can carry out N point discrete Fourier transform 
(DFT) on the output of the array element and get (27). 
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  (27) 

In (27), Jm() stands for the order m of Bessel function, m 
is a factor related to the incoming wave parameters. 
m = 2 sin(em)rfm/c,  = max[2rfm/c], q  [–, ] Z 
and   is the rounded down symbol. Z is the mathematical 
set of whole numbers. If K = , the phase modes excited 
by this UCA [44] are: –K,–K + 1, …, K. So the number is 
2K + 1, which means the UCA can be equivalent to a ULA 
with 2K + 1 elements.  

If uq = v–q, (27) can be expressed as matrix form: 

 cNU JA S ,  (28) 

  T, ,K Ku u U ,  (29) 

 diag{j , , j }K K J ,  (30) 
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We can also express the definition of DFT as matrix 
form: 

 
HU F X ,  (32) 

  1K K K  F w w w , (33) 

    
H

2 2 ( 1)
1 exp j exp jq

N
q q

N N

                
w  .  (34) 

Based on (28) and (32), we can get: 

 c Y TX A S .  (35) 

In (35), 1 H / NT J F , which is called transformation 
matrix. In this way, we complete the mode-space 
transformation of UCA and the UCA with N elements is 
equivalent to a ULA with 2K + 1 elements. Then we can 
get (17). 
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